Syllabus for Multi-Disciplinary Minor (MDM) Degree

in

Biotechnology and Bioengineering

Under the National Education Policy (NEP 2020) (2023-2024)

Offered by

DEPARTMENT OF BIOLOGICAL SCIENCES AND BIOTECHNOLOGY

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

The recent and continuing advances in biotechnology are crafting disruptive innovations in enabling advance human development. In recent years, biotechnology has offered superior outcome for improved health care, enhanced food security, better supplies of potable water, cleaner environment, advanced industrial, agricultural processes for transforming raw materials and facilitating energy securities of the world. Successful capture of biotechnology potential will further provide significant opportunities for sustainable economic, environmental and societal growth.

Applications of biotechnology, engineering research, and manufacturing techniques is critical to the future of creating products and services that improve the quality of human life. In the coming years, biotechnological knowledge will be essential for advance medicines, renewable and advance raw materials, to develop innovative ways of improving food-fuel-feed security of the world, and in nutshell for the overall sustainability. Therefore, there is a need to foster and ignite young minds and create a community driven by knowledge, curiosity, innovation, design and scientific acumen.

In tune with the above-mentioned requirements, "The Minor degree Course in Biotechnology and Bioengineering" has been designed to encompass diverse domains of biotechnology and bioengineering from fundamental to advance stage. The course content will enable the students to gain deep insight into a range of biotechnological fields, such as Cell Biology, Microbial Technology, Genetic Engineering, Bioinformatics, Environmental Biotechnology, Marine Biotechnology, Industrial Biotechnology, Bioprocess Technology, Animal and Plant Biotechnology and more. The course will provide the opportunity to explore the wide spectrum of biotechnology and understand its role in sustainable development.

According to National Education policy guidelines, the course has been designed for a total of 14 credits as per the requirements of a minor degree. The course contains five theory and one practical course as mentioned below. The details of each course are given in later sections.

Sr No	Semester	Course Credits	Name of the course
1	III	2	Introduction to Biological Science
2	IV	2	Fundamental of Applied Biotechnology
3	V	4	Lab Techniques in Biotechnology
4	VI	2	Genetic Engineering and Bioinformatics
5	VII	2	Bioprocess Technology
6	VIII	2	Industrial Biotechnology

B. Structure of the MDM course

Subject Code	Semester	Subject	Credits	Hrs	s/We	eek	Marks for various Exam		s Exams	
				L	T	P	CA	MS	ES	Total
BBT1201	III	Introduction to Biological Science	2	2	0	0	20	30	50	100
BBT1202	IV	Fundamental of Applied Biotechnology	2	1	1	0	20	30	50	100
BBP1303	V	Lab Techniques in Biotechnology	4	8	0	0	50	-	50	100
BBT1304	VI	Genetic Engineering and Bioinformatics	2	1	1	0	20	30	50	100
BBT1405	VII	Bioprocess Technology	2	2	0	0	20	30	50	100
BBT1406	VIII	Industrial Biotechnology	2	1	1	0	20	30	50	100
		Total	14	16						600

C. Program Specific Outcomes

$Programme\ Specific\ Outcomes\ (PSOs)\ for\ Biotechnology\ and\ Bioengineering\ (MDM)$

PSO1	To develop Strong foundation of Biological Sciences which is directly connected to knowing different biological organisms, understanding biomolecules as well as cellular energetic to corroborate basic life processes on the planet earth and their applications for basic science and technological advancements
PSO2	To identify, review and analyse concepts and applications pertaining to biotechnology, microbiology, bioinformatics, fermentation, genetic engineering, bioprocessing and downstream processing methods.
PSO3	To develop a multi-disciplinary human workforce with the understanding of biotechnology as an independent and integration of scientific disciplines and technologies including; biochemistry, microbiology, molecular biology, immunology bioinformatics, recombinant DNA Technology, fermentation processes and bioprocess engineering
PSO4	To understand impact of Biotechnology for individual, society, industry, environment and sustainability
PSO5	To discern basic as well as emerging biotechnological knowledge to be able to correlate both and develop innovative thinking

D. Recommended batch size: Minimum 15; Maximum 35

E. Eligibility criteria:

- a. CGPA of the first two semesters.
- b. In case the results of the 2nd semester are not available, eligibility will be based on CGPA of the 1st Semester (50% weightage) and CET/JEE score (converted into percentile based on admitted students, 50% weightage).

F. Prerequisites: None

G. Pedagogy/Teaching method

- a. Lecture/Discussions: These sessions will discuss the subject matters of the course.
- b. Experiential Learning: The sessions will involve hands-on training.
- c. Blended learning/Hybrid learning: The sessions will involve combined traditional and online learning in a flexible and engaging way.
- d. Tutorials: Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects

H. List of Faculty members who will be engaged in teaching MDM course

Prof Samir Kulkarni (SK)	Dr Hitesh Pawar (HP)
Dr Ratnesh Jain (RJ)	Dr Mayur Ladole (ML)
Dr Gunjan Prakash (GP)	Dr Chandrakant Holkar (CH)
Dr Manju Sharma (MS)	Dr Anand Jadhav (AJ)
Dr Shamlan Reshamwala (SR)	Dr Rohit Sathe (RS)

I. Faculty members associated with each subject (Tentative)

Sr No	Semester	Course Credits	Name of the course	Faculty
1	III	2	Introduction to Biological Science	SK&AJ
2	IV	2	Fundamental of Applied Biotechnology	GP&MS
3	V	4	Lab Techniques in Biotechnology	ML&CH
4	VI	2	Genetic Engineering and Bioinformatics	SR&RS
5	VII	2	Bioprocess Technology	RJ&HP
6	VIII	2	Industrial Biotechnology	GP&SK

J. Evaluation

• Theory Courses (BBT1201, BBT 1202, BBT 1304, BBT1405, BBT1406)

Continuous Assessment Test (CAT): Total 20

Flexible (Instructor specific); including but not limiting to Assignments, Quiz, problem statement, written test, presentation, short project, end of the class problem.

Mid semester: Total 30 Marks (Theory paper) End semester: Total 50 Marks (Theory paper)

• Practical Courses (BBP1303)

Continuous Assessment: 50 Marks (Theory + Lab)

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination).

K. Detailed syllabus

	Course Code: BBT1201	Course Title: Introduction to Biological Sciences	Cred	lits =	= 2
			L		P
	Semester: III	Total contact hours: 30	2	0	0
	I -4 - F C				
		rses where this course will be Prerequisite			
	 Fundamental and Applied Bio Genetic Engineering and Bioi 	• •			
	3. Bioprocess Technology (BI				
	4. Industrial Biotechnology (BB	·			
	5. Lab Techniques in Biotechno				
		Contents (Topics and subtopics)	Requ	1.	
	Course	(Topics and susceptes)	hour		
1	Introduction to cells			6	
	 Eukaryotes and prokaryotes, 	Cell architecture and organelles			
	Asexual and sexual modes	s of reproduction example Binary fission, budding,			
		pores, bacterial conjugation, mitosis, and meiosis.			
2	Chemistry of life			6	
		Monosaccharides and Disaccharides, Polysaccharides;			
		ls; Proteins: Amino acids, Peptides and Proteins, Structure			
	of amino acids and proteins.				
		cture, chemistry, DNA, RNA and Chromosomes			
		Structural Lipids in Membranes, Lipids as Signals,			
3	Cofactors			-	
3	Enzymology	of Engage		6	
	Nomenclature & classification				
	• Enzyme structure and propert				
	_	, factors affecting enzyme action.			
4	 Activation energy; active site Cellular Energetics 	activators and innibitors.		6	
4	F 2 137 1 1			O	
	9	ad apparable respiration, and photosynthesis			
		nd anaerobic respiration, and photosynthesis. actions, Redox potentials in biological systems			
5	Introduction to Metabolic Pathwa	,		3	
6	Transition of Biological Sciences			3	
0	Transition of Biological Sciences	List of Textbooks			
1	Prescott's Microbiology; Authors	s: Joanne M. Willey, Kathleen M. Sandman (Author),			
	Dorothy H. Wood (Author), Lans				
2	Nelson, D.L. and Cox, M.M. (20	017) Lehninger Principles of Biochemistry. 7th Edition,			
	W.H. Freeman, New York, 1328.				
		al Reading Material / Reference Books			
	As suggested by the concerned fa	culty			
	Course	Outcomes (students will be able to)			
CO ₁		nal aspects of cell; the basic unit of life, and its different		K1	
		cell as a factory. Classify different microorganism as well			
		okaryotic and eukaryotic cell			
CO2		nctional aspects of macromolecules of cells		K2	
CO3	*	of enzymes in the biological systems		K2	
CO4		f cell metabolism, their regulation and correlate with		K2	
	cellular energetics				

Mappii	ng of Course ((COs) with es (PSOs)	Programn	ne Specific
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	3	2
CO2	3	2	2	2	2
CO3	3	2	2	2	2
CO4	3	2	2	2	2

^{3,} Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0– No Contribution

	Course Code: BTB1202	Course Title: Fundamentals of Applied	Credit	
	Semester: IV	Biotechnology Total contact hours: 30	L T 1	
	Semester: 1v	Total contact hours: 50	1 1	U
		Prerequisite courses		
1.	Introduction to Biological			
1.		Courses where this course will be prerequisite		
		nd Bioinformatics(BBT1304)		
	2. Bioprocess Technology			
	3. Industrial Biotechnolog			
	4. Lab Techniques in Bio			
		rrse Contents (Topics and subtopics)	Reqd.	
			hours	
1		ology, The colours of Biotechnology, Applications of	3	
	Biotechnology			
2	Microbiology	1	6	
	 Types and forms of mice Solvative methods for it 			
		solation of pure cultures, and preservation of pure culture,		
	 Quantitative measurem 			
	 Microscopy as a tool to 			
	 Application of microbe 	·		
3	Introduction to Animal Cel		3	
	• History, development	of cell lines, Origin of animal cell line and maintenance.		
		dary culture, Animal culture media and growth conditions.		
	 Biotechnological applie 	cation of animal cells		
4	Introduction to Agriculture	=-	4	
		of food to meet the demand of an increasing population,		
		griculture, Biofertilizers, Biopesticides, Secondary agriculture.		
		ture technology and its application.		
5	Genetic modification o Marina Piotachnology	i Plants	3	
5	Marine Biotechnology	crobes and their nutrition	3	
	 Applications of Marine 			
6	Environmental Biotechnological		4	
		nediation, Bioleaching, nitrification, denitrification, enhanced		
	phosphorus removal, A			
		ophiles, Halophiles, Acidophiles, Actinomycetes, and their		
	applications in modern			
	• Environmental Biotech	nology and sustainability		

7	Pharmaceutical Biotechnology	4
	• Introduction and application of Pharmaceutical Biotechnology in the healthcare and	
	diagnostics	
	Basic principle of recombinant DNA technology and application in the production of	
	vaccines, hormones, interferon, monoclonal antibodies etc	
	List of Textbooks	
1	Prescott's microbiology; Authors: Joanne M. Willey, Kathleen M. Sandman (Author),	
	Dorothy H. Wood (Author), Lansing M. Prescott; Edition: Eleventh edition.	
2	Kuby, Janis Title(s): Kuby immunology/ Judith A. Owen, Jenni Punt, Sharon A.	
	Stranford; with contributions by Patricia P. Jones. Edition: 7th ed.	
3	Plant Tissue Culture: Theory and Practice. By S.S. Bhojwani, M.K. Razdan.	
	List of Additional Reading Material / Reference Books	
	As suggested by the concerned faculty	
	Course Outcomes (students will be able to)	
CO1	Comprehend different types of biotechnology and appreciate the importance and scope of	K2
	biotechnology in everyday life.	K2
	Acquire basic and applied understanding of microbiology, animal culture technology,	
CO2	Agriculture Biotechnology, Environmental Biotechnology, Marine Biotechnology,	K2
	Immunology	
CO3	Analyze impact of biotechnology on environmental sustainability	K3

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	2	2	3	2		
CO2	3	3	2	3	2		
CO3	3	2	2	3	2		

^{3,} Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0– No Contribution

	Course Code: BBP1303	Course Title: Lab Techniques in Biotechnology	Cre	edits	s = 4	
		course two roundances in Proceedings	L	T	P	
	Semester: V	Total contact hours: 120	0	0	4	
		Prerequisite course				
1.						
2. Fundamentals of Applied Biotechnology(BBT1202)						
	List of courses where this course will be prerequisite					
		Bioinformatics(BBT1304)				
	2. Bioprocess Technology(B	BT1405)				
	3. Industrial Biotechnology(BBT1406)				
	Cour	se Contents (Topics and subtopics)		qd. urs		
	Basic Microbiology		110	ui b		
	Microbial Isolation and qu	antitative measurements				
1	 Microscopy, Sample prep 	aration, morphology-based identification,		24		
	• Dilution & Plating/spectro	photometric cell growth estimation				
	 Assays: VitB12 and Antib 	iotic resistance assays				
	Microbial Growth Kinetics					
2	• Microbial growth curve p	reparation,		30	,	
	 Optical density measurem 	ent,				

	Production of Bakers yeast by fermentation,	
	Growth and substrate analysis and correlation	
	Biochemistry and Molecular Biology	
	• To prepare Tris-HCl Buffer with a specific pH (eg. pH 8.8)	
	• quantitative estimation of carbohydrates	
	Total Lipid extraction and gravimetric analysis	
	Separation of Amino acids by Paper Chromatography and Thin Layer Chromatography	
2	• determination of the unknown concentration of protein concentration by plotting a	20
3	standard curve of BSA using Bradford reagent	30
	Ammonium sulphate precipitation and dialysis for a protein	
	Primer designing	
	• Analysis of Protein purity and determination of molecular weight of pure protein by	
	SDS PAGE and Coomassie Brilliant blue staining of proteins on SDS gel	
	Quantitative DNA estimation (Demo)	
	Enzymology	
	Isolation and assay of enzyme from natural source	1.5
4	Primary screening assay for extracellular enzymes	16
	Cell Immobilization by entrapment method	
	Fermentation	
5	Bioreactor study, dress up	20
	Demonstration of Batch cultivation	
	List of Textbooks	
1	Prescott's Microbiology; Authors: Joanne M. Willey, Kathleen M. Sandman (Author),	
	Dorothy H. Wood (Author), Lansing M. Prescott; Eleventh edition.	
2	Principles and Techniques of Biochemistry and Molecular Biology, Keith Wilson, John	
	Walker; Cambridge University Press (2010)	
	List of Additional Reading Material / Reference Books	
	As suggested by the concerned faculty	
	Course Outcomes (students will be able to)	
CO ₁		K3
CO ₂	1 7 7	K3
CO ₃		K4
CO ₄	Know different bioreactor parts and their function	K2

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1 PSO2 PSO3 PSO4 PSO5						
CO1	3	3	2	3	2		
CO2	3	2	2	2	2		
CO3	3	2	2	2	2		
CO4	2	2	2	2	2		

^{3,} Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0– No Contribution

G G I PRITAGO	Course Title: Genetic Engineering and Bioinformatics		Credits = 2				
Course Code: BBT1304			T	P			
Semester: VI	Total contact hours: 30	1	1	0			
Prerequisite course							
1. Introduction to Biological Sciences(BBT1201)							

Fundamentals of Applied Biotechnology(BBT1202)

List of Courses where this course will be Prerequisite

- 1. Bioprocess Technology(BBT1405)

	Industrial Biotechnology(BBT1406)	
	Course Contents (Topics and subtopics)	Required hours
Geneti	Engineering	1
	Coding of Genetic Information	
1	DNA replication and transcription, Protein biosynthesis, Gene regulation and	3
	gene expression	
_	Gene Cloning	_
2	Cloning vectors, Expression vectors, Prokaryotic host cells, Restriction	5
	endonucleases, Polymerase chain reaction	
3	Transformation of Cells	3
	Prokaryotes, Yeast, Plant cells, Animal cells	
4	Genome Modification and Integration Strategies, including CRISPR	2
5	Synthetic Biology	2
	Standardization of DNA parts, Assembly of standard parts	_
ioinfo	rmatics	1
	Introduction to Bioinformatics	
6	• History, development of the field, interdisciplinary contribution to the field,	1
Ü	important concepts in the field, current research scenario in bioinformatics,	
	artificial intelligence, etc.	
7	Databases	2
	NCBI, PDB, DDBJ, PubMed, GenBank, EMBL, PubChem, BioMed Central, etc.	
	File Formats	
8	• FASTA, FASTQ, PDB, alignment formats (SAM, BAM, CRAM), Stockholm	1
	formats (VCF), GFF, GTF, JSON, PHYLIP, PIR, etc.	
	Nucleotide Sequence Alignment	
9	• Concept of sequence alignment, Global alignment, local alignment, pairwise	1
	alignment, multiple sequence alignment, different algorithms of sequence	
	alignment, FASTA, BLAST, EMBL-EBI, CLUSTALW	
10	Protein Sequence Alignment	1
	Algorithms of alignment, Clustal Omega, UniProt, SIM, ExPASy	
1.1	Three-dimensional Molecular Structures	2
11	• Importance of visualizing molecules in 3D, programs for 3D visualization,	2
	creating and editing 3D structures, structural alignments, geometry optimization	
10	Molecular Modeling	
12	• Protein structures and their importance, protein structure predictions, homology	2
	modeling, different bioinformatics tools available for molecular modeling	
10	Molecular Docking	2
13	• Introduction to protein-ligand interactions, models of protein-ligand interactions,	2
	different bioinformatics tools available for molecular docking	
1.4	Industrial Applications of Bioinformatics	1
14	• Applications of bioinformatics and related fields into chemical, pharmaceutical,	1
	and various other industries.	
	List of Textbooks	ion) 1
1	Molecular Biotechnology: Principles and Applications of Recombinant DNA (6th edit	ion) by
2	Bernard R. Glick, Cheryl L. Patten (Wiley)	r Drogg)
2	Molecular Biology of the Gene (7th edition) by James D. Watson (Cold Spring Harbon Cone Claring and DNA Analysis An Introduction (6th edition) by T. A. Provyn (Wild	
3	Gene Cloning and DNA Analysis: An Introduction (6th edition) by T. A. Brown (Wile	;y)
4	Introduction to Bioinformatics by M. Lesk (2002) Oxford University Press.	

5	Sequence Analysis in a Nutshell: A Guide to Common Tools and Databases by S. Mar León (2003) O'Reilly Press.	kel and D.			
6	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins by A. D. Baxevanis and				
7	Fundamental Concepts of Bioinformatics by D. E. Krane and M. L. Raymer (2002) Pe	arson.			
8	Developing Bioinformatics Computer Skills by C. Gibas and P. Jambeck (2001) O'Rei	lly Media.			
	List of Additional Reading Material / Reference Books				
	As suggested by the concerned faculty				
	Course Outcomes (Student would be able to)				
CO1	Choose appropriate hosts for gene expression and protein production based on the	K3			
	known properties.				
CO2	Understand basic and modern techniques of gene manipulation.	K3			
CO3	Apply principles of synthetic biology to construct gene circuits.	K4			
CO4	Have essential and working knowledge in bioinformatics.	K3			
CO5	Generate important supplementary data to support the research hypotheses with	K4			
	various bioinformatics tools.				

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1 PSO2 PSO3 PSO4						
CO1	3	2	2	2			
CO2	3	2	2	3			
CO3	3	2	2	2			
CO4	2	2	2	2			
CO5	2	2	2	2			

3: Strong Contribution; 2: Moderate Contribution; 1: Low Contribution

	Course Code: BBT1405	Course Title: Bioprocess Technology	Credits = 2 L T P			
	Semester: VII	Total contact hours: 30	2 0 0			
		Prerequisite course				
1	\mathcal{E}					
2	1.1					
	Biotechnology(BBT1202					
	List o	of course where this course will be Prerequisite				
	Industrial Biotect	chnology				
	Co	urse Contents (Topics and subtopics)	Reqd. hours			
1	Introduction to Bioproce	ess Technology	6			
	Bioprocessing in ph Convergence of the					
2	Growth Kinetics		3			
	• Growth phases of m	icroorganisms/cells, Determination of growth rate constants				
	 Factors influencing principles for biopro 					
3	Bioreactor Design and O		3			
	 Types of bioreactors 	s and their applications, Components and functions of and aeration in bioreactors				
4	Downstream Processing		3			

	Cell harvesting methods, Filtration and centrifugation, Purification techniques: abromatography, crystallization, etc.	
5	chromatography, crystallization, etc.	3
3	Bioprocess Control and Automation	3
	Sensors and actuators in bioprocessing, Feedback and feedforward control,	
-	Importance of process automation	2
6	Environmental and Ethical Considerations	3
	Environmental impact of bioprocessing, Ethical issues in biotechnology and	
	bioprocessing, Sustainability in bioprocess technology	
7	Case Studies in Bioprocess Technology	3
	• Success stories in bioprocessing, Failure analysis and lessons learned	
	Innovations and future trends	
9	Applying Knowledge to Bioprocess Improvements	3
	• Identifying areas for bioprocess optimization, Proposing strategies for process	
	intensification: Improvement in expression, continuous processing etc.,	
	Implementing sustainable practices,	
10	Recap and Review	3
	Summary of key concepts covered in the course	
	• Final assessment and Q&A session	
	List of Textbooks	
1.	Shuler M.L. and Kargi, F. (2002). Bioprocess engineering-basic concepts, 2nd	
	Edition, Prentice-Hall of India pvt ltd, New Delhi.	
	List of Additional Reading Material / Reference Books	
	As suggested by the concerned faculty	
	Course Outcomes (students will be able to)	
CO ₁	Define bioprocess technology and explain its significance in different industries.	K2
CO ₂	Describe the growth kinetics of microorganisms and its importance in bioprocess design	n. K2
CO3	Evaluate different bioreactor design for designing a fermentation process	K3
CO4	Discuss downstream processing techniques and their role in product purification.	K3
	Analyse case studies of successful bioprocess applications and learn from past failure	es K3
CO ₅	and apply fundamental knowledge to propose improvements in bioprocess designs an	
	strategies.	

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
	PSO1 PSO2 PSO3 PSO4 PSO5							
CO1	2	3	3	3	2			
CO2	2	3	3	2	3			
CO3	2	2	3	2	2			
CO4	2	2	3	2	2			
CO5	2	3	3	2	2			

^{3:} Strong Contribution; 2: Moderate Contribution; 1: Low Contribution

	Course Code: BBT1406	Course Title: Industrial Biotechnology	Credits = 2		2	
			L	T	P	
	Semester: VIII	Total contact hours: 30	1	1	0	
		List of Prerequisite Courses				
	1. Introduction to Biolog	ical Sciences (BBT1201)				
2. Fundamental of Applied Biotechnology(BBT1202)						
	3. Bioprocess Technology(BBT1405)					

	Course Contents (Topics and Subtopics)	Reqd.
1	T. 1 T. 1 1 1 1 1	hours 3
1	 Introduction to Industrial Biotechnology based bioprocess Biochemistry of fermentation. Traditional and Modern Biotechnology- A brief survey of organisms, processes, products. Selection of Appropriate microbe/cell type for industrial biotechnology Significance of wild type and genetically modified organisms (GMO) in Industrial Biotechnology 	3
	Submerged and Solid-state Fermentation, relative advantages and limitations, applications	2
	 Strain Improvement in Industrial Biotechnology: Conventional and advanced Methodologies (random mutagenesis, targeted mutagenesis, recombinant DNA Technology) 	3
2	• Stoichiometry of cell growth and product formation, elemental balances, degrees of reduction of substrate and biomass, available electron balances, yield coefficients of biomass and product formation, productivity, maintenance coefficients	3
3	 Medium requirements for Industrial fermentation processes, Types of Media, Criteria of media design, Raw material, Industrial by products as a source of fermentation medium nutrients Medium optimization methods: One factor at a time, Plackett Burman and Response surface method Cost Economics of fermentation media for different product types (High Value-Low Volume and Low Value-High Volume) 	5
	Entrepreneurship opportunities and challenges in Industrial Biotechnology	2
3	 Applications-I Microbial production of industrial enzymes (glucose isomerase, cellulase & lipases) Production of antibiotics, recombinant products, and amino acids Immobilization of cells and enzymes (conventional and modern methods of immobilization techniques) 	6
4	 Applications-II Process technology to produce cell biomass and some primary metabolites, e.g. ethanol, acetone-butanol, citric acid, dextran, Applications of bioconversion/biotransformation. Bioenergy-fuel from biomass, production, and economics of biofuels. List of Textbooks	6
1	Biotechnology: A Textbook of Industrial Microbiology: T.D. Brock, Smaeur Associates,	
	1990	
2	Industrial Microbiology: L.E. Casida, Wiley Eastern Ltd., 1989	
4	Industrial Microbiology: Prescott & Dunn, CBS Publishers, 1987 Bioprocess Technology- fundamentals and applications, S O Enfors & L Hagstrom (1992), RIT, Stockholm	
5	Bioseparations-Downstream processing for Biotechnology by Paul. A. Belter,	
	E.L.Cussler and Wei-Shou Hu., John Wiley and sons	
	List of Additional Reading Material / Reference Books	
1	Bioprocess engineering principles by Pauline M. Doran, Academic Press	

2 Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Rutledge & A Sasson,			
	Cambridge Univ. Press, Cambridge		
	Course Outcomes (students will be able to)		
CO1	Select type of fermentation based on organism, product and process economics	К3	
CO2	Model the nutrient requirements for a fermentation process with economic perspective	K4	
CO3	Analyse case studies of different industrial biotechnology process	К3	

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)						
	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	3	2	2	
CO2	2	3	3	3	3	
CO3	2	3	3	2	2	

^{3:} Strong Contribution; 2: Moderate Contribution; 1: Low Contribution