Syllabus for Multi-Disciplinary Minor Degree

In

Chemical Sciences

Under the National Education Policy (NEP 2020)

in

(2023-2024)

Offered by

DEPARTMENT OF CHEMISTRY

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence

Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

Chemistry is known as the 'central science' – a sound understanding of the interactions between molecules is critical in all the technical applications. Understanding the fundamentals of Chemistry is the first step towards designing high throughput synthetic methodologies for fine and bulk chemicals, pharmaceutical components, plastics, etc. All industrial progress relies primarily on the improved materials provided by the chemical industry. Applications based on the chemical sciences are bound to play an indispensable role in achieving sustainable development goals at a global level.

The present module of Multidisciplinary Minor (MDM) degree in Chemical Sciences is offered by the Department of Chemistry, Institute of Chemical Technology (ICT) under the aegis of the National Education Policy (NEP 2020). The aim of the Chemical Sciences MDM degree is to equip Chemical Engineering and Chemical Technology undergraduates with a thorough understanding of the concepts and applications of Chemistry. The salient features of the MDM degree in Chemical Sciences are as follows:

Industry relevance: The bulk and fine manufacturing industries rely heavily on their trained experts to bridge the gap between concepts and technology. The MDM aims to equip students for diverse roles in numerous industries such as pharmaceuticals, polymers, dyes, and textile industries

Innovation and Entrepreneurship: The national objectives of self-reliance are driving the economy towards a setup where entrepreneurial ventures will be more important. With the growth in demand for locally manufactured chemicals and in accordance with the Institute's legacy of producing industrialists and entrepreneurs, students will be able to successfully combine the expertise in Chemistry and technology to address this expanding market.

Research and Development: The future of research in interdisciplinary areas with greater coordination between the scientists and technologists. The students will comprehend and combine both aspects through their training to be competent researchers on a global level.

Sustainable development: The current challenges of pollution and non-renewable feedstocks can only be addressed through well-trained chemical experts. Development of clean technologies and energy-efficient transportation can be achieved only through application of chemical knowledge. Chemistry can play a pivotal role in ensuring food security and access to health care – key factors in alleviating poverty.

B. Programme Specific Outcomes:

Programme Specific Outcomes (PSOs) for Chemical Sciences (MDM)

	Foundation of Organic Chemistry: Understand the structure and properties of hydrocarbons
PSO1 ((including aliphatic, aromatics, heterocyclics) to enable problem solving related to the
1	argest class of industrially relevant compounds and processes related to their manufacture
F	Foundation of Physical Chemistry: Use the principles of kinetics, interfacial phenomena,
PSO2 a	and the underlying thermodynamic concepts to link basic chemical sciences and
e	engineering principles for solving real life problems
F	Foundation of Computational Chemistry: Apply modern computational theories and
	methods to model chemical systems from the molecular scale to bulk scale – critical in
	developing advanced understanding
	Foundation of Catalysis: Understand the diverse applications of catalysis and the
	developments in the field to enable application of cutting-edge chemical technology on a
	arge scale
	Conduct investigations of complex problems: Identify, formulate, review research
1	literature, and analyze complex real-life problems using chemical know-how Use research-
PSO5 b	based knowledge in chemical sciences and research methods including design of
e	experiments, analysis, and interpretation of data to unfold complex problems from industry
a	and academia and provide working solutions.
S	Societal Applications of Chemistry: Apply reasoning informed by the existing knowledge
PSO6 p	pool to convert into a quantitative framework, collect relevant information and address
V	various societal issues using chemical tools

C. Intake: Minimum 15 and Maximum 35 (the intake criteria is subject to the norms prescribed by the Institute)

D. Eligibility criteria: The courses offered require a basic understanding of the principles of Chemistry at Std XII (HSC or equivalent) level. The students enrolled for the B. Chem. Engg. / B. Tech. (Chemical Technology) programs of the Institute of Chemical Technology are eligible due the present criteria for admission. The allotment to the MDM degree and/or change, if any, in MDM after Sem-III examination will be as per the Institute's rules.

In case the candidate wishes to opt for the MDM degree in Chemical Sciences but does not meet the eligibility criterion, he/she/they may have to acquire the same by successfully completing equivalent courses and providing evidence for the same.

- E. **Pedagogy:** The courses will be taught in a combination of classroom lectures and experiential learning modules. Laboratory demonstrations will be incorporated wherever required for enhanced understanding. Courses like Computational Chemistry will involve practical exercises as an important component.
- F. **Evaluation:** The students will be assessed based on a combination of continuous assessment and end-semester test. The continuous assessment could be incorporated in the form of quizzes, assignments, presentations, group projects, etc. The evaluation policies are subject to the norms prescribed by the Institute.

Subject Code	Sem	Subject	Credit s	Hr	s./We	eek	Ma	arks for	various	Exams
				L	Т	Р	CA	MS	ES	Total
CHT 1003	III	Chemical Kinetics	02	2	0	0	20	30	50	100
CHT 1004	IV	Interfacial Chemistry	02	2	0	0	20	30	50	100
CHT 1005	V	Organic Synthesis	04	3	1	0	20	30	50	100
CHT 1006	VI	Organic Spectroscopy	02	2	0	0	20	30	50	100
CHT 1007	VII	Computational Chemistry	02	2	0	0	20	30	50	100
CHT 1008	VIII	Organometallic Chemistry and Catalysis	02	2	0	0	20	30	50	100
		Total	14							

G. Structure of the multidisciplinary minor (MDM) degree program in Chemical Sciences:

H. Faculty members:

- 1) Chemical Kinetics Prof. R. V. Jayaram
- 2) Interfacial Chemistry Prof. R. V. Jayaram
- 3) Organic Synthesis Dr. A. R. Kapdi

- At.

- 4) Organic Spectroscopy Prof. A Chaskar / Visiting faculty
- 5) Computational Chemistry Dr. R. V. Pinjari
- 6) Organometallic Chemistry and Catalysis Prof. B. M. Bhanage / Dr. A. Kapdi

•

I. Detailed syllabus:

	Course Code:	Course Title: Chemical Kinetics	C	redi	ts = 2
	CHT 1003		L	Т	Р
	Semester: III	Total contact hours: 30	2	0	0
C 1 YH	CI.	List of Prerequisite Courses			
Std XII	Chemistry				
Interfor		ourses where this course will be prerequisite		-	
Interfac	cial Chemistry (CHT 1004)) rance of this course in the MDM in Chemical Sciences			
The co	-	ots of three of the principal topics in chemical kinetics.) will	haln
		an go. Understanding of reaction rates and kinetic parame			
		and controlling many industrially relevant processes.		sanc	cung
the sum	te are entited for designing	, and controlling many industrially relevant processes.			
	Course Co	ontents (Topics and subtopics)		Hou	irs
		ntroduction, concept of reaction rates and order,		03	
1		h kinetic studies, differential and integral methods to			
	-	of zero, first and second order			
2	Complex reactions- para	llel, consecutive, and reversible reactions, order, and		03	3
2	molecularity	7			
		mechanism- steady state and rate determining step		06	5
3	-	notochemical chain reactions, polymerization reactions,			
		and kinetics of enzyme catalysis			
4	Kinetics of surface react surface react	ions - Adsorption, Hinshelwood, and Ridel models of		02	2
		es and temperature effects- Collision theory and TST		04	1
5	Theory of unimolecular r			0-	•
		olutions- solvent effects and effects of ionic strength		04	1
6	Kinetic isotope effect			Ū	•
8		ons in molecular beams – experimental techniques		03	3
9	Kinetics of solid-state rea			02	2
10	Applications – Food indu	stry, Pharmaceutics, Industrial synthesis		03	3
				3()
		ist of Textbooks / Reference Books			
1	Chemical Kinetics – K.J.				
2		inetics- J.C.House, Publisher Wm C. Brown, 1997			
3		Study of Reaction Rates in Solution, Kenneth Antonio C	Conr	iors,	John
	Wiley & Sons, 1990	m Malaanlan Structure to Observed Destrict	[
4	Elsevier, 2021	m Molecular Structure to Chemical Reactivity, 1	Lu18	A	maut,
		e Outcomes (students will be able to)			
CO1		different mechanisms using appropriate models		K2	,
CO1 CO2	•	emical reactions and processes		K2 K3	
002	rippiy the rate laws to en	ennear reactions and processes		N)	,

CO3	Analyze the kinetic aspects of chemical processes taking place on the interfacial electrode surface	K3
CO4	Compare the theoretically predicted rates with the rates computed experimentally	K3
CO5	Modify the kinetic parameters to improve the selectivity or yield of given reaction / process	K3
CO6	Evaluate the kinetic model by comparing the experimentally observed data with the proposed rate law	K4

X		0.4		0.1					
Ma	Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)								
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	2	3	2	1	1	2			
CO2	2	3	2	1	1	2			
CO3	2	3	1	2	2	3			
CO4	1	3	3	2	2	1			
CO5	3	2	3	3	2	3			
CO6	2	3	1	2	1	1			

Lerat Contribution

	Course Code:	Course Title: Interfacial Chemistry	Cred		s = 2
	CHT 1004		L	Т	Р
ļ	Semester: IV	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
Chemi	ical Kinetics (CHT 1003)				
		urses where this course will be prerequisite			
Organ	ometallic Chemistry and Ca				
TT1 1		ance of this course in the MDM in Chemical Sciences			<u></u>
	-	ces and disperse systems is important in governing stabi	-		
		ntroduces fundamentals of interfacial chemistry which c ochemistry, separation processes and allied fields.	an t	be ap	pned
		ontents (Topics and subtopics)		Hou	irc
1		Chemistry – Introduction, surface tension and surface		<u>110t</u> 02	
1		etermining surface and interfacial tensions		04	
2		faces – Surface excess, Gibbs adsorption equation,		05	;
	•	s, droplets and foams, Kelvin, Young Laplace and			
	Thomson equations, home				
3	Liquid- liquid and soli	d liquid interfaces - Contact angle, wetting and		04	ŀ
	spreading, adhesion and co	phesion, contact angle measurements and hysteresis			
4		rption at surfaces and interfaces, surfactant aggregates,		06	ĵ.
	factors affecting aggregati				
5	-	surfactants synthesis and applications		02	2
6	Industrial applications of s			03	
7	Environmental effects of s			02	2
8		ions microemulsions and foams, Thermodynamics and		06)
		lloids - preparation, stability, characterization, surface			
	charges and electrical dou	ble layer			
				3()
1		ist of Textbooks / Reference Books		2000	
1 2		l surface chemistry – D. J. Shaw, Butterworth Publicatio	ons,	2000)
2		Illoids- Drew Myers- Wiley VCH, 1999	1		
5		phenomena- Milton J Rosen – Wiley Interscience, 200 factants principles and applications – M.J. Rosen and M		1010	vaka
4	AOCS Press, 2000	ractants principles and applications – wi.j. Rosen and W	Dai	lana	уакс,
5		ence – Robert J Hunter – Oxford university Press, 2001			
		troduction, Second Edition, Geoffrey Barnes and Ian G		e. O	xford
6	University Press, 2011			- , -	
	Cours	e Outcomes (students will be able to)			
CO1	Identify the importance of	interfacial phenomena in influencing the behaviour of		K1	
COI	disperse systems			K1	
CO2		of structural features at the interface and the resulting		K2	,
	effect on properties			112	
CO3		om various characterization techniques to understand		K3	i.
	interfacial features				
CO4	Explain the interfacial pro systems	operties by applying various models to the interfacial		K2	

CO5	Design surfactants / colloids for a given application using the various surface properties	K3
CO	Justify the observed macroscopic behaviour based on interfacial properties	K4

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO
CO1	1	2	2	2	1	1
CO2	1	2	2	2	1	1
CO3	1	3	3	1	2	2
CO4	2	3	2	1	3	1
CO5	1	2	2	2	3	2
CO6	1	3	3	3	2	2
			1SURY'	0		
	(non	7			
	5. St.	non	stry			

B. Tech. – O	CHT 1005 Semester: V	Course Title: Organic Synthesis	L	T	-
B. Tech. – O	Semester: V				Р
B. Tech. – O		Total contact hours: 60	3	1	0
B. Tech. – O					
B. Tech. – O		List of Prerequisite Courses			
		stry (CHT 1251) or equivalent;			
	· · · · · · · · · · · · · · · · · · ·	HT 1407) or equivalent			
~ . ~		urses where this course will be prerequisite			
), Organometallic Chemistry and Catalysis (CHT 1008)			
		ance of this course in the MDM in Chemical Science			
mechanisms, stereochemic	organic transforma al implications of or	cepts related to fundamentals of Organic Chemistry incl tions, types of reactions, selectivity of chemical tra- ganic reactions, functional group identification and rea- the same for future courses and in their professional ca	ansfo action	rma	tions,
	Course Co	ntents (Topics and subtopics)		Hou	rs
Cher	nistry of Carbonyl (Compounds	1		
		tomerism of carbonyl compounds, General methods of			
· ·	•	ilic Addition reactions Enolate chemistry, Aldol and		10	
		ions, Michael reaction, Robinson annulation, Claisen			
		condensation, Mannich reaction.		10	
		eactions. Mechanisms of nucleophilic substitutions		10	
		l elimination reactions. nds: Basic structures and common names, comparison			
	-	Il properties to benzenoid compounds, Reactivity and		12	
		uran, Thiophene, Pyridine.		14	
	•	ns: Perkin reaction (Mauvine synthesis-dyes), Fischer			
	0	Jacobson Corey epoxide synthesis (Pharmaceuticals),			
	-	tion (Polymer), Multicomponent reactions, Maillard		10	I
-		r amino acid synthesis (Pharmaceuticals & Foods),			
Witti	g reactions, Prilezhae	v reaction			
	ochemistry of Orga	-			
		ymmetric carbon atoms, Stereo descriptors – R/S , E/Z ,			
		nation – Ethane and butane.		10	ł
Enan		omers, meso compounds, different representations of			
		e, Newmann, Wedge and dash and Fischer and their			
	onversions nistry of impor	tant natural products: Terpenes, steroids,			
6	nistry of impor enoids/prostaglandins			8	
Carot	cholds/prostaglanding	,		60	
	L	ist of Textbooks / Reference Books		00	
1 Claye (2012	len, J., Greeves, N.,	Warren, S.; Organic Chemistry; 2nd ed.; Oxford Ur	niver	sity	Press
Grah		Fryhle, Craig B.; Snyder, Scott A. Organic Chemistry;	12th	Ed.:	John
	& Sons. Inc. (2016)		11	,	
Smith		vanced Organic Chemistry: Reactions, Mechanisms and	Stru	cture	e; 7th
i	Viley, India (2015)				
Carey	· · · · · · · · · · · · · · · · · · ·	J. Advanced Organic Chemistry: Part A: Structure and	Me	chan	isms;
4	1.; Springer (2005)	- · ·			

	Convert E. A. Sundhana, D. I. Advanged Organic Chemistry, Dart D. Desetion.	and Symthesis, 5th
5	Carey F. A., Sundberg, R. J.; Advanced Organic Chemistry: Part B: Reaction a	and Synthesis; 5th
	ed.; Springer (2007)	\mathbf{E} has the (2010)
6	Wade, L. G.; Simek, J. W.; Singh, M. S. Organic Chemistry; 9th Ed.; Pearson	Education (2019)
7	Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill (2001)	
8	Bruice, Paula, Y. Organic Chemistry; 8th Ed.; Pearson Education (2020)	
9	Bhat, S. V., Nagasampagi, B. A., Meenakshi, S. Natural Products Chemistry	and Applications.
9	Narosa publishing house (2009)	
	Course Outcomes (students will be able to)	
CO1	Identify structures of organic compounds and write their IUPAC names	K0
COI	correctly	K2
	Understand organic chemistry reactions related to aliphatic as well as	
CO2	aromatic compounds as well as decipher the outcome of a given organic	K2
	transformation	
	List the properties and synthetic routes, and decipher outcomes of various	WO.
CO3	transformations involving heterocycles	K3
~~ (Apply the knowledge obtained through the course to predict the outcome of	
CO4	reactions and devise solutions to unknown problems	K3
	Appreciate the stereochemical implications of organic compounds and	
CO5	visualize and appreciate the chirality concept	K3
	Interpret and analyze reactions having different functionalities to predict	
CO6	products and design synthetic protocols	K4
	products and design synthetic protocols	

CO1 CO2	2	1	7 1			
CO_{2}			1	2	2	1
002	2		1	2	2	1
CO3	3	2	2	1	3	1
CO4	3	1	2	2	2	1
CO5	3	2	1	3	1	2
CO6	3	2	2	2	2	2
e P	3-Strong Contr	ibution; 2-Mod	erate Contribut	ion; I-Low Co	ontribution	

	Course Code: CHT 1006 Course Title: Organic Spectroscopy			Credits 2	
			L	T	P
	Semester: VI	Total contact hours: 30	2	0	0
		List of Propaguiaita Courses			
R Cha	m Enga Applied Chen	List of Prerequisite Courses nistry (CHT 1251) or equivalent;			
	<i>ee n</i>	(CHT 1406) or equivalent			
	c Chemistry (CHT 1005)	(erri 1966) of equivalent			
0	• • •	Courses where this course will be prerequisite			
				77	<u> </u>
	Description of relevan	ice of this course in the MDM degree in Chemical Scier	ices		
This co	ourse aims to introduce th	e students to the concepts of organic spectroscopy. The co	ourse	e con	tent
is desig	gned to familiarize the s	tudents with various spectroscopic techniques used for t	he s	truct	ural
elucida	tion of organic molecules				
		Contents (Topics and subtopics)]	Hour	. S
	· · · -	ectroscopy: Introduction, spectrophotometer, Beer-			
		v absorption and electronic transitions, Terms used in			
1		(Chromophore, auxochrome, bathochromic shift,		6	
		yperchromic and hypochromic shift), Woodward -			
	Fieser Rules for diene	s, enones and aromatic compounds,			
	Infrared spectroscopy	v: Vibrational transitions, Selection rule, Modes of			
		, FT-IR (Fourier Transform Infra-Red) spectroscopy.			
2	Group frequencies, Fac	ctors affecting IR group frequency, NIR spectroscopy,		6	
2	Applications of vibrati	onal spectroscopy in structural elucidation of organic		6	
	compounds.				
		tic Resonance) Spectroscopy			
	-	ctroscopy: Basic principle, Nuclear spin states and			
3	-	nts, Chemical shifts, Factors affecting the chemical shift, anism and anisotropic effects.		10	
5	~	ctroscopy: Elementary idea, Chemical shift, Calculation		10	
		chemical shift values, coupling constants, Interpretation			
		spectra, Proton coupled and decoupled ¹³ C NMR spectra.			
	Mass Spectrometry: In	ntroduction, Ion production, Fragmentation, Stevenson's			
	rule, Radical site and C	harge site-initiated cleavage, Rearrangements, Cleavage			
4		n functional groups, Molecular ion peak, Metastable ion		8	
		MS and HRMS, Isotopic abundance and Interpretation of			
/	mass spectra.				
				30	
		List of Textbooks / Reference Books	Ca	n a a a	
1	Learning India Pvt Ltd,				e
2	Spectrometric Identifica Webster, Wiley, 2005	tion of Organic Compounds, Robert M. Silverstein, Franc	ıs X.		
3	Organic Spectroscopy: V	William Kemp, Palgrave , 1975			

4	Principles of NMR in one and Two Dimensions: R.R. Ernst, G. Bodenhause	en, A. Wokaun:
•	Oxford Science Publication, 1987	
	Course Outcomes (students will be able to)	
CO1	Understand the general principles of various spectroscopic techniques used for	К2
COI	characterization of organic molecules	K2
CO2	Assign the spectroscopic data to structural features of molecules	K3
CO3	Understand the theory of Nuclear Magnetic Resonance spectroscopy and its	K2
COS	applications to structural problems	K2
CO4	Predict the fragmentation of alkanes, alkyl aromatics, alcohols, ketones using	К3
C04	the principle of Mclafferty rearrangement, and mass spectrometry	K0
CO5	Solve problems based on UV, IR, NMR & MS Spectroscopy for interpretation	K4
COS	of the structure.	N4
CO6	Choose the optimum spectroscopic technique/s for identification and structure	К3
000	elucidation of a given compound	K.J

Ma	apping of Cour	rse Outcomes (COs) with Pro	gramme Out	comes (PSOs)
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	1	1	2	2	1
CO2	2	1	1	2	2	1
CO3	3	2	2	1	3	1
CO4	3	2	2	2	2	2
CO5	3	1	2	2	2	1
CO6	3	2		3	1	2

	Course Code:	Course Titles Computational Chemistry	C	redi	ts = 2
	CHT 1007	Course Title: Computational Chemistry	L	Т	Р
	Semester: VII	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
Standa	ard XII th Mathematics (Calc	culus and Matrix Algebra)			
	List of Co	ourses where this course will be prerequisite			
	Description of relev	vance of this course in the MDM in Chemical Scien	ces		
Quanti	um chemistry gives the mol	ecular level understanding of the chemical reactions an	nd the	prop	erties

Quantum chemistry gives the molecular level understanding of the chemical reactions and the properties of moderated sized isolated molecules, while molecular mechanics can be used for the studying the supramolecules and ensembles. The course will provide a brief introduction to applying computational packages to molecules and supramolecular assemblies.

	Course Contents (Topics and subtopics)	Hours
1	Introduction to Computational Chemistry, Basic concepts	2
2	Historical background of quantum mechanics - failure of classical theory, wave particle duality, uncertainty principle, Postulates of Quantum mechanics, probabilistic interpretation of wave function, Schrodinger wave equation, Eigen values and operators.	4

3	Applications of Schrodinger equation – particle in a box, harmonic oscillator	4
	H and H like atoms- two particle problem, Schrodinger equation in spherical	
	coordinates, representation of orbitals, radial and angular plots, probability	
	functions	
4	Chemical bonding- Born-Oppenheimer approximation, LCAO and MO theory	4
5	Electronic structure - methods: SCF Theory, Energy of Slater Determinant,	6
	Basis Set Approximation, Basis Sets, Hartree-Fock Approximation	
6	Semiempirical Methods, Huckell Theory	4
7	Force fields, potential energy functions, inter and intramolecular interactions,	4
	empirical parameters.	
	Molecular mechanics calculations, energy minimization, conformational	
	analysis	
8	Applications in Drug Designing, QSAR, and Catalysis.	2
		r'
		30
		•
	List of Textbooks / Reference Books	
1	Alan Hinchliffe, Molecular Modelling for Beginners, 2nd Ed. Wiley & Sons, 200	8.
2	Frank Jensen, Introduction to Computational Chemistry, Wiley & Sons, 1999.	
3	Christopher J. Cramer, Essentials of Computational Chemistry: Theories and Mc	dels, 2nd Ed
5	Wiley & Sons, New York.	
4	Daan Frenkel & Berend Smit, Understanding Molecular Simulation, AP, NY, 200)2.
5	Andrew R. Leach, Molecular Modelling: Principles and Applications, 2nd Ed., 1	Prentice Hal
5	2001.	
6	James E. House, Fundamental of Quantum Chemistry, 2nd Ed. Academic Press, 2	2004.
	Course Outcomes (students will be able to)	
CO1	Define the computational techniques currently used to predict the structure and properties of molecules	K2
CO2	Apply semi-empirical / ab initio techniques to model structure and properties of molecules	K3
CO3	Apply molecular dynamics techniques for modelling larger systems and elucidate their properties	К3
	Compare the output of the various computational methods to explain the	K4
CO4	experimental observations	
	Choose the optimum level of theory for computing properties of the systems	K4
CO4 CO5 CO6		K4 K4

Ma	apping of Cour	se Outcomes (COs) with Pro	gramme Out	comes (PSOs)
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	1	2	3	1	2	1
CO2	1	2	3	1	2	1
CO3	1	2	3	2	2	2
CO4	1	3	3	1	1	1
CO5	1	2	3	2	1	1
CO6	2	2	3	2	1	1

	Course Code:	Course Title: Organometallic Chemistry and	C	redit	ts = 2
	CHT 1008	Catalysis	L	Т	Р
	Semester: VIII	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
Organi	c Synthesis (CHT 1005), Ir	nterfacial Chemistry (CHT 1004)			
	List of Co	urses where this course will be prerequisite			
				50	9
	Description of relev	ance of this course in the MDM in Chemical Science	s		
To acq	uaint the students with the	e concepts of organometallic chemistry which is the ba	asis	of a	ll the
catalyti	c processes either known i	n academia or industries. The course will allow students	to a	appre	eciate
the scie	ence behind how catalytic p	processes help expedite synthesis.			
		ontents (Topics and subtopics)		Hou	irs
	_	Organometallic Complexes: 18- electron rule and its			
1		ing in reactions, Bridged complexes, Metal-metal bond.		6	
	Associative-Dissociative				
	_	Ligands: Back bonding concept for explaining metal-			
2	-	ctions. Alkene and Alkyne complexes allyl complexes,		10)
		er-Natta Polymerization, SHOP (Shell Higher Olefin			
	Process), Catalytic Hydro				
		Back bonding concept for explaining metal-carbonyl			
2		nplexes of CO ligands, Dissociative substitution,		10	
3		. Substitution reactions of Metal-CO complexes.		Ц	,
	Process)	Acetic Acid Synthesis), Hydroformylation (Otto Roelen			
	,	stry for meeting future challenges: Environment			
4		zation and depolymerization		4	
				30)
		ist of Textbooks / Reference Books			
1		istry of the transition metals, Robert H. Crabtree, John	Wile	ev &	Sons
2	Ŭ	y of Transition elements: F. P. Pruchnik: Springer		J	
3	0	in Organic Synthesis: Paul R. Jenkins: Oxford Science I	Publ	icatio	on
	Cours	e Outcomes (students will be able to)			
CO1	Learn the basic concepts			K1	
CO2	-	perties for organometallic compounds		K2	
		properties based on structure and bonding in			
CO3	organometallics			K2	
004	-	observations by proposing plausible mechanisms for		17.0	
CO4	catalytic reactions			K3	
COF	Select the suitable organ	ometallic compounds for applications as catalysts in		_V 2	
CO5	organic transformations			K3	
CO6	Develop synthesis and ch	naracterization protocols for organometallics based on		V	
1110	the desired structure and	applications		K3	

CO1				ogramme Out		
001	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	1	2	2	2
CO2	2	2	1	2	2	2
CO3	2	2	1	3	2	2
CO4	1	1	2	3	1	2
CO5	1	1	2	3	1	2
CO6	1	1	1	3	2	2
		mon	ANT -			