Syllabus for Multi-Disciplinary Minor (MDM) Degree

In

Dyestuff Technology

Under the National Education Policy (NEP 2020) (2023-2024)

Offered by

Department of Speciality Chemicals Technology

Institute of Chemical Technology (University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA), www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

Department of Speciality Chemicals Technology (earlier Dyestuff Technology) was established in 1944 under the stewardship of Prof. K. Venkataraman, the then director of Institute of Chemical Technology (ICT, formerly known as UDCT), University of Mumbai. The department has trained more than 1000 undergraduate students and over 500 postgraduate students.

While the dyestuff technology has had its origins during the second world war, today its influence is felt across various domains such as agro, fertilizer and perfumery industry to name a few. The speciality chemicals technology is a multi-billion-dollar industry. And, with the advent of rapid shifting of the manufacturing of colorants from west to east makes it a highly promising industry for future innovations, research & development and sustainability. It is pertinent to note that dyestuff technology is the backbone of the entire organic process technologies of industrial relevance.

The department is a unique centre of learning that offers an advanced curriculum in tune with the latest industrial and academic developments. Not only has it produced a new generation of talented technologists and bright researchers, it has also led to an effective industry-academia relationship.

The department currently engages on niche areas of research like fluorescent dyes for sensing and sensitizers for DSSC besides the high-performance textile colorants and DFT computations, design and synthesis of graphene derivatives and their applications; energy storage materials, flame retardants, bio-probes, waste stream treatment, advanced catalysts, semiconductor materials, anticancer materials, sensors and surfactants, macro molecule synthesis, green processes for intermediates, dyes, and specialty chemicals, fragrance molecules, agrochemical synthesis, bioactive molecules and functional colorants. The outstanding research work (reported over 1000 publications) carried out by these stalwarts has created a permanent impact on dyestuff and allied industries, globally and locally.

Accordingly, this minor degree course in dyestuff technology has been designed to encompass different aspects of dyestuff technology with relevance towards fundamental & applied components, research & development and allied aspects. A major goal of these courses is to provide a solid overview of various fundamental & applied perspectives related to the dyestuff technology. This would enable the student to pursue higher degree courses in this department and also make them industry relevant towards employment. Thus, the course has been designed for a total of 14 credits as per the requirements of a minor degree and as per the national education policy guidelines.

B. Programme Outcomes:

	Programme Specific Outcomes (PSOs) Multidisciplinary Minor Degree									
PSO1	Intermediates & dyestuff products analysis : Able to apply analytical techniques for intermediates & dyestuffs safety, quality assurance and regulations									
PSO2	Innovations in intermediates & dyestuff development : Able to translate emerging sciences in developing innovative intermediates & dyestuff products									
PSO3	Intermediates & dyestuff technology knowledge : Apply the knowledge of mathematics, science, chemical engineering and dyestuff technology fundamentals to the solution of complex problems in intermediates & dyestuff chemistry & technology									

DSO 4	Design/Development of Solutions: Design solutions for complex intermediates &
	dyestuff technology problems and design system components or processes that meet the
PSO4	specified needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations
DCO5	Dyestuff Technology: Able to translate emerging science in developing innovative
PSO5	dyestuff products

C. Recommended batch size: Minimum 15; Maximum 35

D. Duration: Three years

E. Eligibility criteria:

Students enrolled in the Bachelor of Chemical Engineering and Bachelor of Technology programmes of Institute of Chemical Technology will be eligible. The allotment of minor degree programme will be as per the policy of the institute

F. PEDAGOGY/TEACHING METHODS:

Lecture/Discussions: These sessions will discuss the subject matters of the course **Experiential Learning**: The sessions will involve hands on training.

Tutorials: Problem solving/case studies/relevant real-life applications/ student presentations/home assignments/individual or group projects

G. Evaluation:

Theory course

Continuous Assessment Test (CAT): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. These CATs will carry a total weightage of 20%. Depending on the instructor, class test, assignments, case studies, group discussions, report submission and seminar/presentation could also form part of the continuous assessment. **Mid-semester:** Total 30 Marks (Theory paper) **End-semester:** Total 50 Marks (Theory paper)

Practical course

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, vivavoce, group/personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course. **End Semester:** 50 Marks (Lab experiment performance followed by viva-voce examination)

H. Structure of the Multidisciplinary Minor Courses:

Multidisciplinary Minors: Intermediates & Dyestuff Technology

Semester	Course Code	Subject		H	rs./V	Vk	Μ		or vari ams	ious
				L	Т	Р	CA	MS	ES	Total
SEM-III	DYT1012	Unit Processes: An Introduction to Dyestuff Technology	2	1	1	0	20	30	50	100
SEM-IV	DYT1022	Physico Chemical Aspects of Colorants	2	1	1	0	20	30	50	100
SEM-V	DYT1032	Technology of Intermediates & Dyes - I	4	3	1	0	20	30	50	100
SEM-VI	DYT1042	Technology of Intermediates & Dyes - II	2	1	1	0	20	30	50	100
SEM-VII	DYP1052	Estimation of Intermediates & Chromatographic Procedures	2	0	0	4	-	50	50	100
SEM-VIII	DYP1062	Synthesis of Intermediates & Dyes	2	0	0	4	-	50	50	100
		TOTAL	14	6	4	8				600

I. Instructors: (Tentative)

Semester	Course Code	Subjects	Faculty
III	DYT1012	Unit Processes: An Introduction to Dyestuff Technology	GSS
IV	DYT1022	Physico Chemical Aspects of Colorants	NS
V	DYT1032	YT1032 Technology of Intermediates & Dyes - I	
VI	DYT1042	Technology of Intermediates & Dyes - II	NaSa
VII	DYP1052 Estimation of Intermediates & Chromatographic Procedures		GaS
VIII	DYP1062	Synthesis of Intermediates & Dyes	SuS

List of instructors:

NS: N. Sekar GSS: G.S. Shankarling SuS: Surajit Some SaS: Satyajit Saha NaSa: Nabanita Sadhukhan GaS: Garimella Subrahmanyam

I. Detailed syllabus:

MDM | Course Code: | Unit Processes: An Introduction to Dyestuff Technology | Credits = 2

	DYT1012		L	Τ	P
	Semester: III	Total Contact Hours: 30	1	1	0
		List of Prerequisite Courses	I		
HSC (Se	cience) and 1st yr c	hemical engg/chemical tech			
	List	of Courses where this course will be prerequisite			
Physico	Chemical Aspects	of Colorants, Technology of Intermediates & Dyes - I & I	I, Estin	natio	n o
nterme	diates & Chromato	graphic Procedures and Synthesis of Intermediates & Dyes			
	Descript	ion of relevance of this course in the B. Tech. Program			
• To r	make the students u	inderstand chemistry of various intermediates used for cher	nical in	dustr	y in
		dustry. In particular, to make them understand the unit pro			-
rele	vance in chemical	ndustries.			
• То е	enable them to ana	lyses and identify the proper synthetic and industrial met	hod and	1 cho	oose
		processes to make intermediates.			
	e i	apacity understand proper selection of the chemical proc	resses ł	ased	lon
	nomy and ecologic			Jubee	. 01
		*	Re	quire	ed
Sr. No		Course Contents (Topics and Subtopics)	Но	-	
	Chemical feedsto	ock for Dyestuff industry- Basic Raw materials			
	a. Fossil feedstoo	· · ·		0.5	
1	b. Petroleum and	coal based raw materials		05	
	c. Importance of	BTX			
2	Chemistry of Ber	nzenoid intermediates-			
	a. Electrophilic a	romatic substitution reaction		05	
	b. Orientation in	aromatic substitutions			
	Introduction of F	unctional groups into benzene and technology involved			
	A. Basic Unit pro	ocesses			
	a. Sulphonation				
	b. Nitration				
	c. Reduction				
	d. Halogenation				
	B.Sulphonation				
	• •	omenon and conditions agents and solvents			
	· · ·	Material of construction			
	• •	in benzene and substituted benzene			
	(v) Plant and pro				
3	• •	rocess control parameters		05	
	C. Nitration:				
		nomenon and conditions			
	(ii) Nitrating age				
		Material of construction			
		in benzene and substituted benzene			
	(v) Plant and pro				
		rocess control parameters, Run away reactions			
	D. Reduction:				
	(i) Reducing age	nts			
	(ii) Reduction me	ethods			
	(iii) Selection of	best method for Benzene and substituent			

	(iv) Process and workup					
	(v) Safety aspect					
	E. Halogenation					
	(i) Basic nucleophilic and Electrophilic substitution					
	(ii) Reaction and MOC					
4	Naphthalene Introduction	05				
4	a. Nomenclature, Reactions, Reactivity rules	05				
	Chemistry: Naphthalene intermediates					
5	a. Synthesis of naphthalene	05				
5	b. Substitution pattern					
	c. Reactions possible and criterion for the same					
	Technology and Reactions of naphthalene					
	a. Nitration					
6	b. Sulphonation	05				
0	c. Halogenation	05				
	d. Reduction					
	(Key points are similar to benzene)					
	Total	30				
	List of Textbooks/Reference Books					
1	Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993					
2	Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004					
3	Chemistry of Synthetic Dyes, Lubs H. A., NY 1995					
4	Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952					
5	Organic Chemistry, Clayden, Oxford Univ. Press, 2001					
	Course Outcomes (Students will be able to)					
CO1	Understand the basics of dyestuff industry in terms of raw materials utilized (K	2)				
CO2	Apprehend basic benzene and naphthalene chemistry (K2)					
CO3	Analyze the various methods for synthesis of different intermediates used in dye	es (K2)				
CO4	Know the various technology and safety aspects for reactions (K2)					
CO5	<i>Identify</i> the substrates and chemistry to synthesize desired product (K2)					

Mappi	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	1	2	2	3	1				
CO2	1	2	2	2	1				
CO3	1	3	3	2	2				
CO4	3	2	3	2	1				
CO5	1	3	2	3	2				
Course	1	3	2	2	1				

	Course Code:	Course Title: Physicochemical Aspects of Colorants	Cre	edits	= 2				
MDM	DYT1022	Course rule. Thysicochemical Aspects of Colorants	L	Т	Р				
Semester: IV Total Contact Ho		Total Contact Hours: 30	1	1	0				
	List of Prerequisite Courses								
HSC (Sci	HSC (Science); Unit Processes: An Introduction to Dyestuff Technology								
	List of courses where this course will be prerequisite								

Technology of Intermediates & Dyes-I; Technology of Intermediates & Dyes-II, Estimation of Intermediates & Chromatographic Procedures and Synthesis of Intermediates & Dyes

	Description of relevance of this course in the B. Tech. Program	
Students	will be able to understand the relation between the chemical structure and the col	
Sr. No	Course Contents (Topics and Subtopics)	Required Hours
1	Origin of colour in organic molecules. Chromatic and achromatic colors. Red shift, blue shift, hyperchromic effect, solvatochromism, halochromism. Beer-Lambert's law, absorptivity, oscillator strength, , and half band width.	02
2	Early theories of color and constitution - empirical correlations between the chemical structures and their color. Chromophores, auxochromes, distribution rules, chromogens. $n \rightarrow \pi^*$, donor-acceptor, acyclic and cyclic polyene, and cyanine type chromogens	02
3	Resonance theory of color, failures of resonance theory. Steric effects in electronic absorption spectra – some general considerations.	02
4	Perturbational molecular orbital theory: Alternation of the electronegativity of an atom in an even alternant system. Alteration of the electronegativity of an atom in an odd alternate system, Dewar rules. Other empirical approaches to substituent effects, Mesomeric and field effects, Correlation between the frequency shift of a substitution and the Hammett substituent constant	02
5	Simple donor-acceptor chromogens: general characteristics – donor group, unsaturated bridge, acceptor group. The carbonyl acceptor – merocyanine types of compounds.	02
6	Complex donor-acceptor chromogens: classes of complex acceptor residues, donor substituted quinones. Donor substituted azo compounds. Color and constitution of simple azo dyes. Steric effects, and azo-hydrazonetautomerism in azo dyes	02
7	Color and chemical constitution of indigoid dyes. Introduction to cross- conjugated chromophores. Chromogens based on acycyclicand cyclic polyene systems: general characteristics with examples. Cyanine type chromogens.	02
8	Di- and triaryl methane colorants, heterocyclic analogues of di- and triaryl methane colorants. Simple color and constitution relationships.	02
9	Essentials of computational colour chemistry – brief introduction to one particle system. Schrodinger equation. Particle in a box.	02
10	Two particle system, Many particle systems – HartreeFock theory. Basis sets.	02
11	Electronic Structure theory. Molecular orbitals and light absorption. Semiempirical methods,	02
12	Limitations of HartreeFock method, Computational complexities in post HartreeFock (wavefunction based methods).	02
13	Introduction to Density Functional Theory and its application in colour chemistry	02
14	Excited State calculations, Configuration Interaction Singles.	02
15	Time Dependent Density Functional Theory.	02
	Total	30
1	List of Textbooks/Reference Books	. 1 .
$\frac{1}{2}$	Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E Krieger Public	Ishing
$\frac{2}{2}$	Company, New York, 1977 Chamietry of Synthetic Dyog, Vol I, Venketeremen, K., Academic Press, 1052	
3	Chemistry of Synthetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952	

4	Chemistry of Synthetic Dyes – Vol III, Venkataraman, K., Academic Press, 1972						
5	Colour and Chemical Constitution of Organic Dyes, Griffiths J., Academic Press, 1976						
6	Quantum Chemistry, Chandra A. K., Tata McGraw Hill, 1979						
	Course Outcomes (Students will be able to)						
CO1	Understand the constitution of different colorants (K2)						
CO2	Analysis the correlation of proposed absorption and observed absorption (K2)						
CO3	<i>Identify</i> the colour changes with different classes of molecules (K2)						
CO4	<i>Understand</i> the detail properties of colour changes with respective structural changes (K2)						
CO5	Assess the technical importance of colour chemistry (K2)						

Маррі	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1 PSO2 PSO3 PSO4 PSO5									
CO1	1	1	2	2	3					
CO2	1	1	1	1	2					
CO3	1	2	2	2	2					
CO4	1	2	3	3	2					
CO5	2	2	3	3	3					
Course	1	2	2	3	2					

MDM	Course Code: DYT1032	Course Title: Technology of Intermediates & Dyes - I	Credi	1					
		recumology of filter mediates & Dyes - 1							
			L T		Р				
	Semester - V	Total Contacts hours = 60	3	1	0				
		List of Prerequisite Courses							
	HSC (Science); Unit Processes: An Introduction to Dyestuff Technology; Physicochemical Aspects of								
Coloran									
		rses where this course will be prerequisite							
		yes-II, Estimation of Intermediates & Chroma	tograpł	nic Pr	ocedures				
and Syn	thesis of Intermediates & I	•							
		elevance of this course in the B. Tech. Prog							
		he students learn about various chromophore		•					
		related to chromophores. The course will also		on di	scussing				
the cher	nistry, properties, technolo	gy & their manufacture as well as their drawb	acks						
Sr. No	Course	Contents (Topics and Subtopics)		Requ Hour					
1	Chemistry, Technology	& Manufacture of Acid Dyes			12				
2	Chemistry, Technology	& Manufacture of Direct Dyes			12				
3	Chemistry, Technology	& Manufacture of Reactive Dyes			12				
4	Chemistry, Technology	& Manufacture of Basic Dyes			12				
5	Drawbacks of Ionic Dye	es l			12				
	Li	st of Textbooks/Reference Books			ſ				
1	Chemistry of Synthetic	Dyes, Lubs H. A., NY 1995							

•				
2	Chemistry of azo colorants Vol I and Vol II- P. Zollinger			
3	Chemistry of Synthetic Dyes – Vol I, II, IV, VI Venkataraman, K., Academic Press, 1952			
4	Synthesis and Application of Dyes, Rys and Zollinger			
5 The Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger Publis				
5	Co			
6 Industrial Dyes – Chemistry, Properties, Applications, Hunger K. (Ed), Wiley				
0	Weinheim, 2003			
	Course Outcomes (Students will be able to)			
CO1	Explain and define the classes of dyes, substrates (K2)			
CO2	Understand the variety and chemistry of dyes and their application (K2)			
CO3	Overview of recent trends in the field of dyes containing azo groups (K2)			
CO4	Differentiate the techniques of diazotization and variations available (K2)			
CO5	Design the synthesis of novel azo based dyes (K3)			

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
	PSO1 PSO2 PSO3 PSO4 PSO5							
CO1	1	2	3	2	2			
CO2	1	3	2	3	3			
CO3	1	2	3	2	2			
CO4	1	2	3	3	3			
CO5	1	3	3	3	3			
Course	1	2	3	3	3			

	Course Code:	Course Title: Technology of Intermediates & Dyes - II	Cre	edits	= 2						
MDM	DYT1042		L	Т	P						
	Semester: VI	Total Contact Hours: 30	1	1	0						
		List of Prerequisite Courses									
HSC (Sc	cience); Unit Proce	esses: An Introduction to Dyestuff Technology; Physicochemic	al As	spect	s of						
Colorant	Colorants; Technology of Intermediates & Dyes-I										
	List	of Courses where this course will be prerequisite									
Estimati	on of Intermediate	s & Chromatographic Procedures and Synthesis of Intermedia	tes &	Dye	es						
	Descript	ion of relevance of this course in the B. Tech. Program									
The stud	ents will be introd	uced to the different chemical and technological aspects of No	on-ior	nic dy	yes						
Sr. No		Course Contents (Topics and Subtopics)	Required								
51.110		Course Contents (Topics and Subtopics)	Hours								
1	Chemistry, Techr	nology & Manufacture of Disperse Dyes	06								
2	Chemistry, Techr	nology & Manufacture of Oxidation Colorants	06								
3	Chemistry, Techr	nology & Manufacture of Vat Dyes	06								
4	Chemistry, Techr	nology & Manufacture of Sulfur Dyes	06								
5	Drawbacks of No	on-ionic dyes	06								
	Total										
	List of Textbooks/Reference Books										
1	Industrial Organic Chemistry, Weissermal K., Arpe H. J., VCH, Weinheim, 1993										
2	Organic Chemistry, Clayden, Greeves, Warren, Oxford University Press, 2001										
3	Chemistry of Syr	nthetic Dyes – Vol I, II, IV, VI Venkataraman, K., Academic Pr	ess,	1952							
4	Synthesis and Ap	plication of Dyes, Rys and Zollinger									

5	The Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger Publishing Co						
6	Industrial Dyes – Chemistry, Properties, Applications, Hunger K. (Ed), Wiley-VCH, Weinheim, 2003						
Course Outcomes (Students will be able to)							
CO1	Define and state different terminologies related to non-ionic dyes						
CO2	Describe and explain the chemistry and technology of non-ionic dyes						
CO3	Applications of non-ionic dyes						
CO4	<i>Outline</i> the synthesis & technology of various commercially important products						
CO5	Develop methods for the synthesis of various intermediates						

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
PSO1 PSO2 PSO3 PSO4 PSO5								
CO1	1	1	2	3	1			
CO2	1	1	2	3	2			
CO3	1	2	3	2	2			
CO4	1	2	3	3	2			
CO5	1	3	3	3	3			
Course	1	1	2	3	2			

	Course Code:	Course Title:	C	redite	s = 2				
MDM	DYP1052 Estimation of Intermediates & Chromatographic Procedures		L	Т	Р				
	Semester: VII	Total Contact Hours: 60	0	0	4				
	List of Prerequisite Courses								
HSC (Sc	cience); Unit Proce	esses: An Introduction to Dyestuff Technology; Physico Chemi	cal A	spect	ts of				
Colorant	ts; Technology of I	Intermediates & Dyes-I; Technology of Intermediates & Dyes-	II						
	Li	ist of Courses where this course will be prerequisite							
Synthesi	s of Intermediates	s & Dyes							
	Descrij	ption of relevance of this course in the B. Tech. Program							
be intro	duced to the seve	e uses of inorganic raw materials in the colorant industry. Besides, t eral chromatographic techniques essential for the monitoring, lecules after chemical transformations							
Sr. No		Course Contents (Topics and Subtopics) Required Hours							

	Course Outcomes (Students will be able to)	
	Lundanes, Leon Reubsaet, Tyge Greibrokk Course Outcomes (Students will be able to)	
2	Chromatography: Basic principles, Sample preparations and Related Me	thods by Elsa
1	Vogel's textbook of quantitative chemical analysis, G. H. JEFFERY J. MENDHAM R C. DENNEY, Longman Scientific & Technical, 5 th Edition	BASSETT J.
	List of Textbooks/Reference Books	
	and two colourless compounds Total	60
4	 iv) Tartrazine e) TLC technique – preparation of TLC plate, finding rf value, separation of a mixture of two coloured organic compounds, detection of colourless compounds, separation of a mixture of a coloured and colourless compound 	15
	iii) Orange II	
	ii) Ponceau 4R	15
	i) Sunset Yellow	
	d) Estimation of azo dyes by TiCl ₃ and titrations such as	10
3	c) Estimation of azo coupling compounds by azo coupling method	
	iii) chloroanilines	
	ii) sulphanilic acid	
_	i) aniline	10
2	b) Analyze the purity of primary aromatic amines such as	
	iii) zinc dust	
	ii) sodium sulphide	
	a) Estimation by volumetric titrations of inorganic raw materials such asi) sodium sulphite	10

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)PSO1PSO2PSO3PSO4PSO5							
CO2	1	3	2	3	2		
CO3	1	2	3	3	2		
CO4	1	2	3	2	1		
CO5	1	3	3	3	3		
Course	1	3	3	3	2		

	Course Code:	Course Title:	Cre	dits	= 2		
MDM	DYP1062	Synthesis of Intermediates & Dyes	L	T	P		
	Semester: VIII	Total Contact Hours: 60	0	0	4		
	Semester. VIII	List of Prerequisite Courses					
HSC (S	cience): Unit Processes: An	Introduction to Dyestuff Technology; Physico Chemical Aspects	s of C	olora	ints		
· ·		es-I; Technology of Intermediates & Dyes-II					
	List o	f courses where this course will be prerequisite					
None							
	Description	of relevance of this course in the B. Tech. Program					
	s will learn to understand various and relevance	bus unit processes & their applications in synthesizing some intermedi	ates &	z dye	s of		
		Contanta (Taniag and Subtaniag)	Re	quir	ed		
	Cours	e Contents (Topics and Subtopics)	E	lour	5		
1				60			
	Preparation of any unit processes like						
	i) nitration						
2	ii) sulphonation						
2	2 iii) ammonolysis iv) reduction						
	v) oxidation						
	vi) halogenation etc. on be	nzene, naphthalene and anthraquinone intermediates					
	Preparation of some dyes	such as:		15			
	i) Acid dyes						
3	ii) Direct dyes						
	iii) Reactive dyes						
	iv) Basic Dyes						
	a. Diazotization and coupl	ing of any azo dye and their applications		15			
		Total		60			
		List of Textbooks/Reference Books					
1	1 Fundamental Processes of Dye Chemistry by Hans Eduard Fierz-David And Louis Blangey						
	Co	urse Outcomes (Students will be able to)					
CO1	Ability to synthesize differ	rent intermediates, and ionic & non-ionic dyes (K3)					
CO2	× •	the intermediates, ionic & non-ionic dyes (K3)					
CO3	Differentiate the methods	of synthesis of different classes of dyes (K3)					
CO4	Design the synthesis of dy	es (K3)					
CO5	Develop practical skills in	the synthesis, separation and isolation of the ionic & non-ionic d	yes (H	K4)			

Mapping of Course Outcomes (COs) with Programme								
Specific Outcomes (PSOs)								
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	1	2	3	3	3			
CO2	1	3	3	3	3			
CO3	1	1	2	2	2			

CO4	1	2	2	3	3
CO5	1	3	3	3	3
Course	1	3	3	3	3

3.	Strong Cor	tribution: 2.	Moderate	Contribution:	1. Low	Contribution
,	anong eer		1.10			0011110001011