Syllabus for Multi-Disciplinary Minor (MDM) Degree

in Mechanical Engineering

Under the National Education Policy-NEP 2020 in (2023-2024)

Offered by

DEPARTMENT OF GENERAL ENGINEERING

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence

Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

The mechanical engineering minor is tailored to students who want to understand the fundamentals of mechanical engineering other than courses covered in engineering sciences. The students will develop abilities in design, analysis and experimentation through foundation of math, physics, chemistry including modelling, energy engineering, mechanics of materials, product design and hydraulics.

The students can combine the skills and technological expertise of this minor with a major in technology of aligned branch and chemical engineering to prepare for a wide variety of opportunities in industrial fields and in demand careers.

B. Programme Specific Outcomes:

Programme Specific Outcomes (PSOs) for Mechanical Engineering (MDM) as per course outcomes

PSO1	Use of Mechanical engineering knowledge in the design of chemical process equipment's, energy conservation systems.
PSO2	To provide specialized aspects of mechanical engineering to enhance their skill set and capabilities within their discipline specific field.
PSO3	To expand the working knowledge of Mechanical engineering principles to broader engineering activities.

C. Structure of the MDM course:

Subject Code	Semester	Subject	Subject Credits Hrs./Week		Hrs./Week		N		rious	for
									ams	
				L	T	P	CA	MS	ES	Total
GEP1132	III	Workshop Practice	2	0	0	4	50	-	50	100
GET1133	IV	Advanced strength of Materials	2	1	1	0	20	30	50	100
GET1134	V	Energy Engineering & Management	4	3	1	0	20	30	50	100
GET1135	VI	Mechanical design of chemical process equipment's.	2	1	1	0	20	30	50	100
GET1136	VII	Industrial Hydraulics	2	1	1	0	20	30	50	100
GET1137	VIII	Product Design and Development	2	1	1	0	20	30	50	100
		Total	14							600

D. Intake: Minimum 15 and maximum 35 students

E. **Duration:** 3 years (6 semesters)

F. **Eligibility criteria:** Students enrolled in B. Chem. Engg and B. Tech programme are eligible. The allotment of minor degree programme will be as per the policy of the Institute.

G. Pedagogy/Teaching Method:

Lecture/Discussions: These sessions will discuss the subject matters of the course.

Experiential Learning: The sessions will involve hands-on training.

Tutorials: Problem solving / case studies / relevant real-life applications / student presentations

/ home assignments / individual or group projects.

H. Method of Evaluation/Delivery

Subject Code	Semester	Course	Method of Evaluation	Methods of Delivery
GEP 1132	III	Workshop Practice	a) Continuous internal Evaluation on assigned Job.b) Skill based end exam.	a) Hands on Training
GET 1133	IV	Advanced strength of Materials	a) Minimum 2 class testsb) Assignmentsc) Seminar/ Presentationd) Report submission	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1134	V	Energy Engineering & Management	 a) Minimum two class test b) Assignments c) Seminar/ Presentation d) Report submission 	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1135	VI	Mechanical design of chemical process equipment's.	a) Minimum two class testsb) Assignmentsc) Seminar/ Presentationd) Report submission	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1136	VII	Industrial Hydraulics	a) Minimum two class testb) Assignmentsc) Seminar/ Presentationd) Report submission	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1137	VIII	Product Design and Development	a) Minimum two class testsb) Assignmentsc) Seminar/ Presentationd) Report submission	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects

I. Faculty/Instructor for the course

Subject	Semeste	Course	Instructor/Faculty
Code	r		
GEP 1132	III	Workshop Practice	Dr. Sachin Solanke
GET 1133	IV	Advanced strength of Materials	Prof. Dilip Sarode
GET 1134	V	Energy Engineering & Management	Dr. D. Biswas

GET 1135	VI	Mechanical design of chemical	Prof. Suresh Deshmukh/Prof
		process equipment's.	V. R. Gaval
GET 1136	VII	Industrial Hydraulics	Prof. R.S.N. Sahai
GET 1137	VIII	Product Design and Development	Dr Vikram Korpale

J. Detailed syllabus:

	Course Code:	Course Code: Course Title:			s=2	
	GEP 1132	Workshop Practice	L	T	P	
	Semester: III	Total contact hours: 60	0	0	4	
	beinester: III	List of Prerequisite Courses	U			
	Engineering Graphics (
		ist of Courses where this course will be prerequisite	l			
	Equipment Design and I	Drawing (GEP1138), Design and fabrication of Molds (PET1609)			iours	
	Course Contents (Topics and subtopics)					
1	Introduction to various Production Processes					
	Study of Construction, Milling etc.	Mechanism and Application of Lathe Machines, Drilling Machine,		16		
3		g a minimum of four Machining operations such as plane turning, tapering and knurling etc. with its process sheet.		16		
4	Classification of various Joining and metal forming processes and their applicability such a adhesive bonding, mechanical fastening, welding, and allied processes.					
5						
6	Basics of CNC Machine	es and 3D Printing technology.		5		
		List of Textbooks/ Reference Books	l			
1		Practice by K C John, PHI Learning 1. Workshop Technology Vol. 1 8. S. Dhanpat Rai & Sons,1998.				
2	Workshop Technology 1998.	by Chapman W.A. J and Arnold E. Viva low priced, student edition,				
3		S Bawa, Tata McGraw-Hill, 2009.				
4		Materials, B J Black, CRC Press.				
5	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Media promoters and publishers private limited, Mumbai, Vol. I 2008 and Vol. II 2010.					
CC1	III. 1	Course Outcomes (students will be able to)	ı	***		
CO1		erations performed using Lathe, drilling, and milling machine		K2		
CO2		he operations to fabricate engineering part		K3		
CO ₄		en joining and forming process for a suitable application.		K4 K2		
CO4	4 Understand fabrication methods such as forming, bending, rolling and CNC machines					

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)					
	PSO1	PSO2	PSO3		
CO1	1	3	3		
CO2	1	3	2		
CO3	3	2	1		
CO4	3	2	2		

Course Code:		C	ts = 2		
GET 1133	Course Title: Advanced Strength of Materials	L	T	P	
Semester: IV	Total contact hours: 30	1	1	0	
	List of Prerequisite Courses				
Structural Mechanics (GET1123), Basic Mechanical Engineering (GET1306),					
Applied Mathematics I (MAT1101), Applied Mathematics II (MAT1102)					
List of Courses where this course will be prerequisite					

	Equipment Design and Drawing I (GEP 1111) and II (GEP 1112), Design and fabrication of Molds (PET1609), Home paper I (CEP 1709) and II (CEP 1711)	
	Course Contents (Topics and subtopics)	Reqd hour
1	Thick and Thin cylinders - concept of radial, longitudinal stresses, behavior of thin cylinders. Problems on thin cylindrical and spherical shells. Behavior of thick cylinders (theory only)	3
2	cylinders (theory only). Torsion of a circular shaft - concept, basic derivation, shear stress distribution, simple problem.	3
3	Short and Long columns (Struts) - Basic concept, crippling load, end conditions. Euler's and Rankine's approach (without derivations)	3
4	Advance stresses and strains – Representation of stress and strain at a point, Stress stain relationship, plane stress and plane strain. Transformation of stresses and its importance, Principal stresses and strains, maximum shearing stress, Mohr's circle its use and construction.	6
5	Basics of Engineering Design - Steps in the engineering design, Importance of analysis, 1-D, 2-D and 3-D analysis and interpretation of results. Force displacement relationship, Strain deformation relationship, Introduction to finite element Analysis. Computer aided analysis and design.	5
6	Different types of loads, load factor, factor of safety, Design philosophies, Working stress approach, Ultimate stress approach and Limit state theory. Performance based design Approach.	2
7	Natural Materials, Manmade materials, Alloys, Composite Materials – Types of composite materials, Cement and its varieties, cement composites, properties, recycling of waste, Sustainable materials	4
8	Advance materials for industrial applications - Advances in materials, Materials used for coatings, anticorrosive coatings, special purpose floorings, water proofing compounds, Various polymers and epoxies used for industrial applications.	3
9	Different types of performance enhancing and special purpose construction chemicals. Plasticizers and super-plasticizers, air entraining agents, accelerators and retarders, viscosity modifying agents, corrosion inhibitors	4
	List of Textbooks/ Reference Books	
	 Engineering Materials by Rangwala Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India 	
	Pvt. Ltd Strength of Materials by S. Timoshenko and D. H. Young, McGraw Hill Publications. 4. Concrete Technology by A. M. Neville, Pearson Education ltd	
	 Concrete Technology – Theory and Practice by M. S. Shetty, S. Chand & Co. Fundamental of Fibre reinforced composite materials by A. R. Busell and J. Renard, Taylor & Corrosion and Corrosion Protection Handbook by Philip A. Schweitzer, CRC press 	

	Course Outcomes (students will be able to)				
CO1	Understand stresses induced in thin cylinders, shafts and columns.	K2			
CO2	Apply knowledge of equilibrium for analysis of complex stress situations.	K3			
CO3	Analyse different complex problems in engineering design.	K3			

CO4	Understand Force displacement relationship, Strain deformation relationship.	K2
CO5	Apply knowledge of materials for various engineering applications.	K3

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)							
	PSO1 PSO2 PSO3						
CO1	3	1	2				
CO2	3	1	2				
CO3	3	2	2				
CO4	1	1	2				
CO5	2	2	2				

³⁻Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

	Course Code: GET 1134 Course Title:		•	Cred	
	Course Coue. GET 1134	Energy Engineering and Management	L	T	P
	Semester: V	Total contact hours: 60	3	1	0
	List of Prerequisite Courses Elements of Mechanical Engineering (GET1128), Basic Mechanical Engineering (GET1306), Applied Mathematics I (MAT1101), Applied Mathematics II (MAT1102)				
		where this course will be prerequisite			
		(CET1175), Chemical Project Economics (CET1180) tents (Topics and subtopics)	R	eqd	
1.	Security • Energy Conservation and its 2001,	Importance, Features of Energy Conservation Act- us forms, Material and Energy balance.		06	
2.	 Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy audit and management, approach-understanding energy costs, Bench marking, Energy performance, maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring & targeting: Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV. 			16	
3.	 Energy Management and Energy Conservation in Electrical Systems Electricity billing, Electrical load management and maximum demand Control, Energy efficient equipment and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control Occupancy sensors, daylight integration, and use of intelligent controllers, Energy conservation opportunities in water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives. 			16	j
4.	 Boilers and furnaces: Classific Wilcox Boiler, Cochran Boiler and Accessories, Boiler Perfor Steam Turbine: Classification Turbine, Compounding of Steam 	ycle, Reheat cycle, Regenerative cycle. cation, Study of various Boilers such as Babcock & c, La-Mount Boiler, Benson Boiler, Boiler Mountings mance on, Calculation of Power Developed by Steam am Turbine er, various types of steam condenser, Condenser		16	5
5.	thermal, solar Photo-voltaic, C cells, wind, ocean, bio-mass ar	onventional and alternate energy sources such as solar cooling techniques to cool Photovoltaic		06	j

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C. B. Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. Thermodynamics by P.K. Nag
- 9. Power plant by Morse
- 10. Heat Engines by P.L. Balani
- 11. Renewable Energy resources by Tiwari and ghosal, Narosa publication.
- 12. Non-conventional energy sources, Khanna publications

Course Outcomes (students will be able to)			
CO1	To identify and describe the present state of energy security and its importance.	K2	
CO2	To identify and describe the basic principles and methodologies adopted in energy audit.	K3	
CO3	To describe the energy performance evaluation of electrical and thermal installations	K3	
	and identify the energy saving opportunities.		
CO4	To analyse the data collected during performance evaluation and recommend energy	K4	
	saving measures.		
CO5	Discuss the steam formation process, working of steam boilers, mountings, and	K2	
	accessories and their properties.		
CO6	Explain the need for and importance of various renewable energy sources.	K2	
CO7	Employ this knowledge for energy saving in various devices.	K3	

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)						
	PSO1	PSO2	PSO3			
CO1	3	1	2			
CO2	3	1	2			
CO3	3	1	2			
CO4	3	1	1			
CO5	1	1	2			
CO6	3	1	1			
CO7	3	1	2			

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

	Course Code: Course Title: Mechanical Design of Chemical Process Credit				s=2	
	GET 1135	equipment	L	T	P	
	Semester: VI	Total contact hours: 30	1	1	0	
	•	List of Prerequisite Courses				
		es (GET1123), Basic Mechanical Engineering (GET1306),				
	Advanced Strength of Materials (GET 1303E), Engineering Graphics (GEP1127)					
		of Courses where this course will be prerequisite				
		quipment Design and drawing (GEP1138), Home paper I CEP 1711), Internship/ On Job Training Project (CEP				
		Course Contents (Topics and subtopics)	Re ho	qd. ur		
1	Introduction to Basic	c Design concepts		2		
2	Design of Pressure V	Vessel				
		sure vessels used in process Industries.		16	5	
		n for pressure vessels				
		esign stresses, factor of Safety, Types of stresses on Vessel				
		at Elevated and low temperatures. Cyclic loading and				
		orrosion for design Design of vessel Shell for Interna				
		loading and for external stresses, Use of reinforcement ring various types of head or cover Design and types of Nozzles				
		Flange Joints for shell and nozzles Various types of supports				
	for pressure vessels	riange Joints for shell and nozzles various types of support	1			
3	Design of Storage V	essel,				
	Types and uses of s	torage Vessels used for storing various fluids and gases.		12	2	
	Loss mechanism in					
	Design of Recta	ngular				
	tank					
	Design of Vessel					
	Design of bottom Pl					
	Wind girders, roof Design of self-suppo					
	Use of support colun					
	ose of support coluin	List of Textbooks/ Reference Books	<u> </u>			
	1. Process Equipme	ent Design by, V. V. Mahajani				
	2. Equipment Designment Designment					
	3. Equipment Design	- •				
		logy by O. P. Khanna				
		Course Outcomes (students will be able to)	<u> </u>			
CO1	Understand Basic D			K	2	
			+			
CO2	Design of Pressure	Vessel and Storage Vessel		K^{2}	4	

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)					
	PSO1	PSO2	PSO3		
CO1	3	2	1		
CO2	3	2	1		
CO3	3	2	1		

³⁻Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

Course Code: GFT 1136	Course Title: Industrial Hydraulics	Credits = 2

			L	T	P		
	Semester: VII	Total contact hours: 30	1	1	0		
		List of Prerequisite Courses			1		
Applied Physics (PYT1251), Basic Mechanical Engineering (GET1306)							
	List of Courses where this course will be prerequisite						
	Instrumentation and process control, Home paper I (CEP 1709) and II (CEP						
	1711)			.			
		Contents (Topics and subtopics)		Reqo			
1.	requirement of hydraulic hydraulic lines, pumps, va and its applications, Dire	cs: scal law, Advantages of Hydraulic drives, Quality fluids and its requirements, Standard symbols for lves, motors, Check valves, its functions, various types ctional control valve, two way and four way, Two ns direction valve, Rotary valve		8			
2.							
3.	Pumps and Hydraulic motors: Pumps, Gear pumps, vane pumps, Positive displacement axial piston pump Pressure intensifier, Accumulator, Hydraulic motors						
4.	·						
5.		eservoir Tank, Starting Unloader & Controller, Filters, cators, Mufflers / Silencer, After Cooler, Air Dryers,		4			
		ist of Textbooks/ Reference Books					
	 Majumdar S.R, Oil McGraw Hill Majumdar S.R, Pnet McGraw Hill 	er with application, Prentice Hal Hydraulic system- Principle and maintenance, Tata matics Systems Principles and Maintenance, Tata cs and Pneumatics, Taraporewala Publications					
	Cours	e Outcomes (students will be able to)	1				
CO1	Understand basics of hydra	ulics.		K2			
CO2	Analyse applications of va			K5			
CO3	Applications of pumps in			K3			
CO4	Design hydraulic circuits f	11		K6			
CO5	Applications of pneumatic	s in industry.		K3			

Mapping of Course Outcomes (COs) with Programme Outcomes

(PSOs)						
	PSO1	PSO2	PSO3			
CO1	1	2	2			
CO2	1	2	2			
CO3	2	2	1			
CO4	1	1	1			
CO5	3	2	1			

³⁻Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

Course Code:		Course Title: Product Design and development		Credits			
	GET 1137	Course Title. Froduct Design and development		T	P		
Semester: VIII		Total contact hours: 30	1	1	-		
		List of Prerequisite Courses					
	Engineering Graphics (GEP1127), Structural Mechanics (GET1123), Elements						
		Engineering (GET1128)					
		List of Courses where this course will be prerequisite					
	Internship/ On Jo	bb Training Project (CEP 1710)					
		Course Contents (Topics and subtopics)	Req hou				
1	Basics of Design Design definition	n: ons and attributes, Product configurations and component matrix,					
	Understanding	and analysing product contexts, Modularity, and design of s, understanding design situations-parallel and future		08			
2	Product design	· · · · · · · · · · · · · · · · · · ·					
	Design issues, S	Selection of materials and technical requirements, Dimensional functional requirements, Surface finish, Making a product		04			
3	General Design						
	Effect of wall th	ickness, corner radius, drafts, shrinkage, and warpage, inserts and esign of ribs, bosses, threads etc., Cost economics.		06			
4	Design thinking Steps in design	chinking, relevance of design thinking with product development		06			
5	Product design	•					
		of engineering load bearing components such as gears, bearings, storage tanks, pipes etc.		06			
	1	List of Textbooks/ Reference Books					
1.	Plastic product of	design handbook by Edward Miller					
2.	Product design a	and development by Karl T. Ulrich					
3.	Change by Desi	gn by Tim Brown					
	1	Course Outcomes (students will be able to)					
CO1	Understand the	product design and development procedure		K2			
CO2	Apply the produ	ct design concepts to prepare industrial product		K3			
CO3	Analyse basics of	of plastic product design		K4			
CO4	Design engineer	ring plastic products based on technical requirements		K6			

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)						
	PSO1	PSO2	PSO3			
CO1	1	1	2			
CO2	3	2	1			
CO3	2	1	2			
CO4	1	2	3			

 $[\]hbox{$3$-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution}$