Preamble:

The undergraduate programmes at the Institute of Chemical Technology are reputed worldwide. Alumni from these programmes have found a place of price in the Indian chemical industry including some top names and many as entrepreneurs, in Universities/ Institutes and Research Organisations throughout India and the vorld. The B.Tech. programmes in the then Department of Chemical Technology, University of Mumbai started in 1934 as post B.Sc., second graduation as B.Sc.(Tech.). Keeping national, societal needs in focus, post-independence, the programme grew into multiple branches keeping connection with chemical engineering content. Once the Institute became a University in 2009, these became independent B. Tech. Programmes retaining their dual core nature. The Institute of Chemical Technology is committed to keeping its syllabi updated and globally relevant for the industry. We have revamped the syllabi of all the B. Tech. programmes now in 2021. The 205 credit programmes each have around 6% humanities, 23% basic sciences, 8% engineering sciences, 12% chemical engineering plue 51% special subjects..

All the courses are credit based and the evaluation are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition of credits is based on student workload, learning outcomes and contact hours. This system is described in detail in Regulation No.9 of the Institute. Each theory course consists of Lectures and tutorials. During tutorial session, it is expected that the problem solving / case studies / relevant real life applications / student presentations / home assignments/individual or group projects are discussed in the presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the topic. Institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation.

-2000 by Acaden

B. Tech. (Pharm. Chem. & Tech.)

PROGRAMME EDUCATIONAL OBJECTIVES for B. Tech. (Pharm. Chem. Tech.)

- PEO-1: To generate excellent trained undergraduates with state of art knowledge in pharmaceutical technology and allied subjects in an ambience of motivation that could stimulate growth and excellence
- PEO-2: To create undergraduates who are trained in sync with the requirements of the pharmaceutical industry and adapt readily to national healthcare programmes
- PEO-3: To create professionals of standing who would spread across the country and the globe in various areas including education, research, industry and government
- PEO-4: To mold students to emerge as future leaders of the pharmaceutical industry and as entrepreneurs
- PEO-5: To sensitize students to local and global needs of environment protection and sustainability

sustainabiny

Programme Outcomes (POs) for B. Tech. (Pharm. Chem. & Tech.)

PO1	Pharmaceutical Technology Knowledge: Apply the knowledge of mathematics, science, chemical engineering and Pharmaceutical technology fundamentals, and Pharmaceutical technology specialization to the solution of complex problems in Pharmaceutical technology.
PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex Pharmaceutical technology problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and Pharmaceutical engineering sciences
PO3	Design/Development of Solutions: Design solutions for complex Pharmaceutical technology problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex Pharmaceutical technology activities with an understanding of the limitations
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional practice of Pharmaceutical technology
PO7	Environment and Sustainability: Understand the impact of the professional Pharmaceutical technology solutions in societal and environmental contexts, and demonstrate the knowledge oi, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the practice of Pharmaceutical technology.
PO9	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
PO1 0	Communication: Communicate effectively on complex Pharmaceutical technology activities with the Pharmaceutical community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO1 1	Project Management and Finance: Demonstrate knowledge and understanding of the Pharmaceutical technology and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO1 2	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
	(B) Programme Specific Outcomes (PSOs)
PO1 3	Pursue higher studies/research with high level of motivation, in institutes of international repute.
PO1 4	Apply the knowledge and training in Pharmaceutical technology to emerge as entrepreneurs.
PO1 5	Evolve as technocrats who could influence major policy decisions related to pharmaceutical and allied industries

Course Code Subjects Credits Hr ≥ V = ℓ Marks for various Exams L T P C.A. M.S. E.S. Total CHT11317 Organic Chemistry · 1 3 2 1 0 10 15 25 50 CHT1139 Industrial Inorganic 3 2 1 0 10 15 25 50 CHT1139 Chemistry 3 2 1 0 10 15 25 50 MAT1101 Applied Mathematics - 1 4 3 1 0 20 30 50 100 GEP1113 Engineering Graphics and Elementary Autocad 4 2 0 4 5 8 - 500 100 Ch11343 Physical And Analytical 2 14 5 8 - 500 Ch11342 Physical Chemistry · 11 3 2 1 0 100 15 25 50 CHT1342			Semeste	r I				Y		
Subjects Credits L T P C.A. M.S. E.S. Total CHT1137 Organic Chemistry -1 3 2 1 0 10 15 25 50 CHT1334 Physical Chemistry -1 3 2 1 0 10 15 25 50 CHT139 Industrial Inorganic 3 2 1 0 20 30 50 100 MAT101 Applied Mathematics -1 4 3 1 0 20 30 50 100 GEP1113 Engineering Graphics and Elementary Autocad 4 2 0 4 50 - 50 100 CHP1343 Physical and Analytical TOTAL: 23 14 5 8 - - 50 50 Code Subjects Credits L T P C.A M.S. E.S. Total ChT1342 Physical Chemistry -11 3 2 1<	Course			Hr	s/We	ek	Mark	s for va	arious	Exams
CHT1137Organic Chemistry -1321010152550CHT1341Physical Chemistry -1321010152550MAT101Applied Mathematics -14310203050100GEP1113Engineering Graphics and Elementary Autocad4310203050100GEP113Engineering Graphics and Chemistry Laboratory221458155050CH1343Physical and Analytical Chemistry Laboratory2214581550Subject CodeSubjectsCreditsHTPC.A.M.S.E.S.500CH11401Analytical Chemistry -11321010152550CH11342Physical Chemistry -11321010152550CH11342Physical Chemistry -11321010152550CH11342Physical Chemistry -11321010152550CH1342Physical Chemistry -11321010152550CH1342Physical Chemistry -11321010152550CH1342Applied Mathematics -11431010152550 <t< th=""><th>Code</th><th>Subjects</th><th>Credits</th><th>L</th><th>т</th><th>Р</th><th>C.A.</th><th>M.S.</th><th>E.S.</th><th>Total</th></t<>	Code	Subjects	Credits	L	т	Р	C.A.	M.S.	E.S.	Total
CHT1341 Physical Chemistry - I 3 2 1 0 10 15 25 50 CHT1138 Industrial Inorganic Chemistry 3 2 1 0 20 30 50 100 PYT1101 Applied Mathematics - I 4 3 1 0 20 30 50 100 GEP1113 Engineering Graphics and Elementary Autocad 4 2 0 4 50 - 25 50 CHP1343 Physical and Analytical Chemistry Laboratory 23 1 5 8 - - 500 Orde TOTAL: 23 1 4 8 8 - - 500 Christop TOTAL: 23 1 0 10 15 25 50 Christop Subjects Credits 3 2 1 0 10 15 25 50 CHT1432 Physical Chemistry - II 3 2 1	CHT1137	Organic Chemistry - I	3	2	1	0	10	15	25	50
CHT1139 Industrial Inorganic Chemistry 3 2 1 0 10 15 25 50 MAT1101 Applied Mathematics - 1 4 3 1 0 20 30 50 100 PYT1101 Applied Physics - 1 4 3 1 0 20 30 50 100 GEP1113 Engineering Graphics and Elementary Autocad Chemistry Laboratory 2 0 4 55 8 - - 50 100 CH1343 Physical and Analytical Chemistry Laboratory 2 1 5 8 - - 50 50 Subject Code Subjects Credits I 7 P C.A. M.S. E.S. Total CH1140 Analytical Chemistry - II 3 2 1 0 10 15 25 50 CH1130 Organic Chemistry - II 3 2 1 0 10 15 25 50 PYT1103	CHT1341	Physical Chemistry - I	3	2	1	0	10	15	25	50
MAT1101 Applied Mathematics - 1 4 3 1 0 20 30 50 100 PYT101 Applied Physics - 1 4 3 1 0 20 30 50 100 GEP1113 Engineering Graphics and Chemistry Laboratory 4 2 0 4 50 - 50 100 CHP1343 Physical and Analytical Chemistry Laboratory 2 0 0 4 25 - 25 50 Subject TOTAL: 23 14 5 8 - - 500 CH1133 Organic Chemistry 3 2 1 0 100 15 25 50 CH11342 Physical Chemistry - II 3 2 1 0 100 15 25 50 OYT103 Applied Physics - II 3 2 1 0 100 15 25 50 OYT103 Applied Chemistry - II 3 1 <	CHT1139	Industrial Inorganic Chemistry	3	2	1	0	10	15	25	50
PYT1101 Applied Physics - 1 4 3 1 0 20 30 50 100 GEP1113 Engineering Graphics and Elementary Autocad 4 2 0 4 50 - 50 100 CHP1343 Physical and Analytical Chemistry Laboratory 2 14 5 8 - - 500 500 Code Subjects Credits L T P C.A. M.S. E.S. Total CHT1401 Analytical Chemistry - II 3 2 1 0 100 15 25 50 CHT1330 Organic Chemistry - II 3 2 1 0 100 15 25 50 CHT1342 Physical Chemistry - II 3 2 1 0 100 15 25 50 CHT1342 Organic Chemistry - II 3 2 1 0 10 15 25 50 PY1103	MAT1101	Applied Mathematics - I	4	3	1	0	20	30	50	100
GEP1113 Engineering Graphics and Elementary Autocad ChP1343 4 2 0 4 50 - 50 100 CHP1343 Chemistry Laboratory Chemistry Laboratory 2 0 0 4 25 50 50 TOTAL: 23 14 5 8 - 500 500 Subject Code Credits 1 Credits Markstoresterstersterstersterstersterstersterst	PYT1101	Applied Physics - I	4	3	1	0	20	30	50	100
CHP1343 Physical and Analytical Chemistry Laboratory 2 0 0 4 25 - 25 50 TOTAL: 23 14 5 8 - - 500 Subject Subject Markstructure Subject Markstructure CHT1401 Analytical Chemistry - II 3 2 1 0 10 15 25 50 CHT1342 Physical Chemistry - II 3 2 1 0 10 15 25 50 CHT1343 Organic Chemistry - II 3 2 1 0 10 15 25 50 PYT103 Applied Physics - II 3 2 1 0 10 15 25 50 PYT103 Applied Mathematics - II 4 3 1 0 20 30 50 100 CET1507 Process Calculations 4 3 1 0 20 20 </td <td>GEP1113</td> <td>Engineering Graphics and Elementary Autocad</td> <td>4</td> <td>2</td> <td>0</td> <td>4</td> <td>50</td> <td>-</td> <td>50</td> <td>100</td>	GEP1113	Engineering Graphics and Elementary Autocad	4	2	0	4	50	-	50	100
TOTAL: 23 14 5 8	CHP1343	Physical and Analytical Chemistry Laboratory	2	0	0	4	25	-	25	50
Semistra ii		TOTAL:	23	14	5	8				500
Subject CodeSubjectsPressonPressonMartiserMartiserMartiserMartiserCH11401Analytical Chemistry321010152550CH11342Oppsical Chemistry32101001552550CH11343Oppsica Chemistry32101001552550PY1103Applied Physics - II43101001552550MAT1102Applied Matematics - II4310203050100CET1307Applied Matematics - II4310203050100PYP1103Applied Matematics - II4310203050100CH1132Applied Matematics - II4310203050100PYP1103Applied Matematics - II4310203050100CH1132Organic Chemistry Laboratory20011101010101010HUP101Communication Skills20011111111SubjectSubjectsCommunication Skills2111111111111111111111			Semeste	rυ						
Code Subjects Creating of the state of	Subject	Cubicata	Quadita	Hr	s/we	ek	Mark	s for va	arious	Exams
CHT1401 Analytical Chemistry 3 2 1 0 10 15 25 50 CHT1342 Physical Chemistry - II 3 2 1 0 10 15 25 50 CHT1138 Organic Chemistry - II 3 2 1 0 10 15 25 50 PYT1103 Applied Mathematics - II 4 3 1 0 20 30 50 100 CET1507 Process Calculations 4 3 1 0 20 30 50 100 PYP1101 Physics Laboratory 2 0 0 4 25 - 25 50 CHP1132 Creanunication Skills 2 0 0 4 25 - 25 50 HUP1101 Communication Skills 2 0 0 4 50 - 50 Subject Subjects TOTAL: 26 14 6 <t< th=""><th>Code</th><th>Subjects</th><th>Credits</th><th>Ľ</th><th>Т</th><th>Р</th><th>C.A.</th><th>M.S.</th><th>E.S.</th><th>Total</th></t<>	Code	Subjects	Credits	Ľ	Т	Р	C.A.	M.S.	E.S.	Total
CHT1342 Physical Chemistry - II 3 2 1 0 10 15 25 50 CHT1138 Organic Chemistry - II 3 2 1 0 10 15 25 50 PYT1103 Applied Mathematics - II 3 2 1 0 10 15 25 50 MAT1102 Applied Mathematics - II 4 3 1 0 20 30 50 100 CET1507 Process Calculations 4 3 1 0 20 30 50 100 CET1507 Process Calculations 4 3 1 0 20 30 50 100 CHP1132 Laboratory 2 0 0 4 25 - 25 50 HUP1101 Communication Skills 2 0 0 4 50 - 50 Subject Subjects Subjects Credits H 7	CHT1401	Analytical Chemistry	3	2	1	0	10	15	25	50
CHT1138 Organic Chemistry - II 3 2 1 0 10 15 25 50 PYT1103 Applied Physics - II 3 2 1 0 100 15 25 50 MAT1102 Applied Mathematics - II 4 3 1 0 20 30 50 100 CET1507 Process Calculations 4 3 1 0 20 30 50 100 PYP101 Physics Laboratory 2 0 0 4 25 - 25 50 CHP1132 Organic Chemistry Laboratory 2 0 0 4 50 - 25 50 HUP101 Communication Skills 2 0 0 4 50 - 50 HUP101 Communication Skills 2 0 0 4 50 - 50 Subject Subjects Subjects Credits HT F CA.	CHT1342	Physical Chemistry - II	3	2	1	0	10	15	25	50
PYT1103 Applied Physics - II 3 2 1 0 10 15 25 50 MAT1102 Applied Mathematics - II 4 3 1 0 20 30 50 100 CET1507 Process Calculations 4 3 1 0 20 30 50 100 PYP101 Physics Laboratory 2 0 0 4 25 - 25 50 CHP1132 Organic Chemistry Laboratory 2 0 0 4 50 - - 50 HUP1101 Communication Skills 2 0 0 4 50 - - 50 HUP1101 Communication Skills 2 0 0 4 50 - - 50 HUP1101 Communication Skills 2 0 0 4 6 12 - - 50 BStillos Subjects Subjects Credits	CHT1138	Organic Chemistry - II	3	2	1	0	10	15	25	50
MAT1102 Applied Mathematics - II 4 3 1 0 20 30 50 100 CET1507 Process Calculations 4 3 1 0 20 30 50 100 PYP101 Physics Laboratory 2 0 0 4 25 - 25 50 CHP1132 Organic Chemistry Laboratory 2 0 0 4 25 - 25 50 HUP1101 Communication Skills 2 0 0 4 50 - - 50 HUP1101 Communication Skills 2 0 0 4 50 - - 50 HUP1101 Communication Skills 2 0 0 4 10	PYT1103	Applied Physics - II	3	2	1	0	10	15	25	50
CET1507 Process Calculations 4 3 1 0 20 30 50 100 PYP1101 Physics Laboratory 2 0 0 4 25 - 25 50 CHP1132 Organic Chemistry Laboratory 2 0 0 4 25 - 25 50 HUP101 Communication Skills 2 0 0 4 50 - - 50 HUP101 Communication Skills 2 0 0 4 50 - - 50 HUP101 Communication Skills 2 0 0 4 10 10 50 50 Forward Z 14 6 12 - - 50 Subject Subjects Subjects Credits H T P C.A. M.S E.S Total BST1100 Basics of Biology and Applications to Technology 3 2 1 0 <td>MAT1102</td> <td>Applied Mathematics - II</td> <td>4</td> <td>3</td> <td>1</td> <td>0</td> <td>20</td> <td>30</td> <td>50</td> <td>100</td>	MAT1102	Applied Mathematics - II	4	3	1	0	20	30	50	100
PYP1101 Physics Laboratory CHP1132 Physics Laboratory Organic Chemistry Laboratory 2 0 0 4 25 - 25 50 HUP1101 Communication Skills 2 0 0 4 25 - 25 50 HUP1101 Communication Skills 2 0 0 4 50 - - 50 HUP1101 Communication Skills 2 0 0 4 50 - - 50 HUP101 Communication Skills 2 0 0 4 50 - - 50 KIL T C I F CA. MS. E.S. Total BST1110 Basics of Biology and Applications to Technology 3 2 1 0 10 15 25 50 GET1110 Basic Mechanical Engineering 3 2 1 0 10 15 25 50 DHT1081 SPL1: Pharmaceutical Formulatio	CET1507	Process Calculations	4	3	1	0	20	30	50	100
CHP1132 Organic Chemistry Laboratory 2 0 0 4 25 25 50 HUP1101 Communication Sk!lls 2 0 0 4 50 50 HUP1101 Communication Sk!lls 2 0 0 4 50 50 HUP101 Communication Sk!lls 2 0 0 4 6 12 50 HUP101 Communication Sk!lls 2 1 6 12 4 500 Generation Subject Subjects Credits HT : Ever Mark = recover 50 Subject Subjects Credits 1 7 P C.A. M.S. E.S. Total BST1100 Basics of Biology and Appli:ations to Technology 3 2 1 0 10 15 25 50 GET1100 Easic Mechanical Engineering 3 2 1 0 10 <	PYP1101	Physics Laboratory	2	0	0	4	25	-	25	50
HUP1101 Communication Skills 2 0 0 4 50 - 50 Image: Control of the stress	CHP1132	Organic Chemistry Laboratory	2	0	0	4	25	-	25	50
TOTAL: 26 14 6 12 550 Syllabus Structure B. Tech. Second Year Year Year Year Subject Code Subjects Credits Hrs Veek Marks for various Exams BST1110 Basics of Biology and Applications to Technology 3 2 1 0 10 15 25 50 GET1110 Basic Mechanical Engineering 3 2 1 0 10 15 25 50 PHT1081 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 BST1102 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 <td>HUP1101</td> <td>Communication Skills</td> <td>2</td> <td>0</td> <td>0</td> <td>4</td> <td>50</td> <td>-</td> <td>-</td> <td>50</td>	HUP1101	Communication Skills	2	0	0	4	50	-	-	50
Syllabus Structure B. Tech. Second Year Subject Code Subjects Hrs Marks for variable BST1110 Basics of Biology and Applications to Technology 3 2 1 0 10 15 25 50 GET1110 Basics of Biology and Applications to Technology 3 2 1 0 10 15 25 50 GET1110 Basic Mechanical Engineering 3 2 1 0 10 15 25 50 PHT1081 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 4 3 1 0 10 15 25 50 PH1081 Formulation Technology 3 2 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 4 3 1 0 10 15 25 50 PH1081<		TOTAL:	26	14	6	12				550
Syllabus Structure B. Tech. Second Year Semester III Subject Code Subjects Hrs /week Marks for various Exams BST1110 Basics of Biology and Applications to Technology 3 2 1 0 10 15 25 50 GET1110 Basic Mechanical Engineering 3 2 1 0 10 15 25 50 PHT1081 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 BST1102 Material Technology 3 2 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50										
Semester III Subject Code Subjects Hrs /weither Marks for values values Total BST1110 Basics of Biology and Applications to Technology 3 2 1 0 10 15 25 50 GET1110 Basic Mechanical Engineering 3 2 1 0 10 15 25 50 PHT1081 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 25 50 BST1102 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dges 3 2 1 0 10 15 25 50 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50		Syllabus Strue	cture B. Te	ech. S	Seco	nd Ye	ar			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		~	Semester	r III						
CodeSubjectsCreditsLTPC.A.M.S.E.S.TotalBST1110Basics of Biology and Applications to Technology321010152550GET1110Basic Mechanical Engineering321010152550PHT1081SPL1: Pharmaceutical Formulation Technology - I4310101550100CET1704Material Technology - I431010152550BST1102Biochemistry/Txt, Poly, Dyes321010152550BST1109Microbiology/Txt, Poly, Dyes321010152550PHP1081Formulation Technology2004252550PHP1084Pr 2: Pharmaceutical Biochemistry Analysis2004252550PHP1084Pr 2: Pharmaceutical and Biochemistry Analysis2004252550PHP1084Pr 2: Pharmaceutical and Biochemistry Analysis2004252550PHP1084TOTAL:241468-2550	Subiect			Hrs	s /we	ek	Mark	s for va	arious	Exams
BST1110 Basics of Biology and Applications to Technology 3 2 1 0 10 15 25 50 GET1110 Basic Mechanical Engineering 3 2 1 0 10 15 25 50 PHT1081 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 25 50 DEST1102 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 PHP1081 Formulation Technology Laboratory I 2 0 0 4 25 25 50 PHP1084 Pr 2: Pharmaceutical and Biochemistry Analysis 2 0 0 4 25 25 50 PHP1084 <th>Code</th> <th>Subjects</th> <th>Credits</th> <th>L</th> <th>Т</th> <th>Р</th> <th>C.A.</th> <th>M.S.</th> <th>E.S.</th> <th>Total</th>	Code	Subjects	Credits	L	Т	Р	C.A.	M.S.	E.S.	Total
GET1110 Basic Mechanical Engineering 3 2 1 0 10 15 25 50 PHT1081 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 50 100 CET1704 Material Technology 3 2 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 4 3 1 0 20 30 50 100 BST1102 Biochemistry/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 PHP1081 Formulation Technology Laboratory I 2 0 0 4 25 25 50 PHP1084 Pr 2: Pharmaceutical and Biochemistry Analysis 2 0 0 4 25 25 500 TOTAL: 24	BST1110	Basics of Biology and Applications to Technology	3	2	1	0	10	15	25	50
PHT1081 SPL1: Pharmaceutical Formulation Technology - I 4 3 1 0 10 15 50 100 CET1704 Material Technology 3 2 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 4 3 1 0 20 30 50 100 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 PHP1081 Formulation Technology Laboratory I 2 0 0 4 25 25 50 PHP1084 Formulation Technology Laboratory I 2 0 0 4 25 25 50 PHP1084 Pr 2: Pharmaceutical and Biochemistry Analysis 2 0 0 4 25 25 50 Microbiologic distry Analysis 24 14 6 8	GET1110	Basic Mechanical Engineering	3	2	1	0	10	15	25	50
CET1704 Material Technology 3 2 1 0 10 15 25 50 BST1102 Biochemistry/Txt, Poly, Dyes 4 3 1 0 20 30 50 100 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 PST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 PHP1081 Formulation Technology Laboratory I 2 0 0 4 25 25 50 PHP1084 Pr 2: Pharmaceutical and Biochemistry Analysis 2 0 0 4 25 25 50 PHP1084 TOTAL: 24 14 6 8 1 1 500	PHT1081	SPL1: Pharmaceutical Formulation Technology - I	4	3	1	0	10	15	50	100
BST1102 Biochemistry/Txt, Poly, Dyes 4 3 1 0 20 30 50 100 BST1109 Microbiology/Txt, Poly, Dyes 3 2 1 0 10 15 25 50 PHP1081 Formulation Technology Laboratory I 2 0 0 4 25 25 50 PHP1084 Formulation Technology Laboratory I 2 0 0 4 25 25 50 PHP1084 Pr 2: Pharmaceutical and Biochemistry Analysis 2 0 0 4 25 25 50 TOTAL: 24 14 6 8 - - 500	CET1704	Material Technology	3	2	1	0	10	15	25	50
BST1109Microbiology/Txt, Poly, Dyes321010152550Pr 1: Pharmaceutical PHP1081Formulation Technology Laboratory I2004252550PHP1084Pr 2: Pharmaceutical and Biochemistry Analysis2004252550PHP1084TOTAL:241468500	BST1102	Biochemistry/Txt, Poly, Dves	4	3	1	0	20	30	50	100
PHP1081Pr 1: Pharmaceutical Formulation Technology Laboratory I2004252550PHP1084Pr 2: Pharmaceutical and Biochemistry Analysis2004252550TOTAL:241468500	BST1109	Microbiology/Txt, Poly, Dyes	3	2	1	0	10	15	25	50
PHP1084Pr 2: Pharmaceutical and Biochemistry Analysis2004252550TOTAL:241468500Semester IV	PHP1081	Pr 1: Pharmaceutical Formulation Technology Laboratory I	2	0	0	4	25		25	50
TOTAL: 24 14 6 8 500 Semester IV Image: Semester III Image: Semester IIII Image: Semester III Image: Semester IIII Image: Semester IIII Image: Semester IIII Image: Semester II	PHP1084	Pr 2: Pharmaceutical and Biochemistry Analysis	2	0	0	4	25		25	50
Semester IV		TOTAL:	24	14	6	8				500
			Semester	· IV						

Subject	Cubicata	Credite	Hr	s/we	ek	Mark	s for va	arious	Exams
Code	Subjects	Credits	L	Т	Р	C. A.	M.S.	E. S.	Total
GET1117	Engineering Mechanics and Strength of Materials	3	2	1	0	10	15	25	50
CET1105	Transport Phenomena	4	3	1	0	20	30	50	100
GET1105	Electrical Engineering and Electronics	3	2	1	0	10	15	25	50
PHT1051	SPL2: Chemistry of Natural Products	4	3	1	0	20	30	50	100
PHT1050	SPL3: Physiology and Pharmacology	3	2	1	0	10	15	25	50
PHT1052	SPL4: Pharmaceutical Analysis and Green Chemistry	3	2	1	0	10	15	25	50
GEP1106	Electrical Engineering and Electronics Laboratory	2	0	0	4			25	50
MAP1201	Computer Applications Laboratory	2	0	0	4			25	50
	TOTAL:	24	14	6	8				500
	Syllabus Stru	ucture B	Tech.	Thir	d Yea	r			
		Semeste	r V						_
Subject	Subjects	Credits	Hrs	s /we	ek	Mark	s for va	arious	Exams
Code	Chomical Engineering	0	L		Р	С. А.	M.S.	E. S.	Total
CET1401	Operations	3	2	1	0	10	15	25	50
CET1212	Engineering	3	2	1	0	10	15	25	50
PHT1082	SPL5: Pharmaceutical Formulation Technology -II	4	3	1	0	20	30	50	100
PHT1049	SPL6: Medicinal Natural Products	3	2	1	0	10	15	25	50
PHT1050	SPL7: Medicinal Chemistry	3	2	1	0	10	15	25	50
MAT1106	Design and Analysis of Experiments	4	2	2	0	20	30	50	100
PHP1044	Pr 3: Pharmaceutical Chemistry and Formulation Technology Laboratory	4	0	0	8			50	100
PHP1056	Pr 4: Niedicinal Natural Products Laboratory	2	0	0	4			25	50
	TOTAL:	26	13	7	12				550
	×	Semester	' VI						
Subject	Subiects	Credits	Hr	s/we	ek	Mark	s for va	arious	Exams
Code			L	Т	Р	C.A.	M.S.	E. S.	Total
PHT1055	SPL8: Pharmaceutical Chemistry and Catalytic Process	4	3	1	0	20	30	50	100
PHT1063	SPL9: Pharmaceutical Biotechnology	4	3	1	0	20	30	50	100
PHT1056	SPL10: Medicinal Chemistry II	3	2	1	0	10	15	25	50
HUT1103	Industrial Psychology & Human Resource Management	3	2	1	0	10	15	25	50

Environmental Science and Technology	3	2	1	0	10	15	25	50
Institute Elective – I (Annexure A)	3	2	1	0	10	15	25	50
Seminar	3	0	0	6	~	0		50
Pr 5: Pharmaceutical Chemistry Laboratory	2	0	0	4	25	V	25	50
Pr 6: Biotechnology Laboratory	2	0	0	4	25		25	50
TOTAL:	27	14	6	14	0			550
In-plant Training of 8 to 10 weeks after end of semester				105				
	Environmental Science and Technology Institute Elective – I (Annexure A) Seminar Pr 5: Pharmaceutical Chemistry Laboratory Pr 6: Biotechnology Laboratory TOTAL: In-plant Training of 8 to 10 weeks after end of semester	Environmental Science and Technology3Institute Elective – I (Annexure A)3Seminar3Pr 5: Pharmaceutical Chemistry Laboratory2Pr 6: Biotechnology Laboratory2TOTAL:27In-plant Training of 8 to 10 weeks after end of semester4	Environmental Science and Technology32Institute Elective – I (Annexure A)32Seminar30Pr 5: Pharmaceutical Chemistry Laboratory20Pr 6: Biotechnology Laboratory20TOTAL:2714In-plant Training of 8 to 10 weeks after end of semester	Environmental Science and Technology321Institute Elective – I (Annexure A)321Seminar300Pr 5: Pharmaceutical Chemistry Laboratory200Pr 6: Biotechnology Laboratory200TOTAL:27146In-plant Training of 8 to 10 weeks after end of semesterInInIn	Environmental Science and Technology3210Institute Elective – I (Annexure A)3210Seminar3006Pr 5: Pharmaceutical Chemistry Laboratory2004Pr 6: Biotechnology Laboratory2004TOTAL:2714614In-plant Training of 8 to 10 weeks after end of semesterInInInIn	Environmental Science and Technology321010Institute Elective – I (Annexure A)321010Seminar3006Pr 5: Pharmaceutical Chemistry Laboratory200425Pr 6: Biotechnology Laboratory200425In-plant Training of 8 to 10 weeks after end of semester714614	Environmental Science and Technology32101015Institute Elective – I (Annexure A)32101015Seminar3006Pr 5: Pharmaceutical Chemistry Laboratory200425Pr 6: Biotechnology Laboratory200425In-plant Training of 8 to 10 weeks after end of semester714614-	Environmental Science and Technology3210101525Institute Elective – I (Annexure A)3210101525Seminar3006Pr 5: Pharmaceutical Chemistry Laboratory20042525Pr 6: Biotechnology Laboratory20042525In-plant Training of 8 to 10 weeks after end of semester-14614

Internship

• After the end of the sixth semester examination and before the start of the seventh semester, every student will have to undergo an internship. The internship would be of 6 credits.

• The internship (preferably Industrial Internship) would be assigned to the student by the Departmental Internship Coordinator, with the approval of the Head of the Department.

The total duration of the internship would be for a period equivalent to 12 Calendar weeks. This
period typically start from 1st May and end before 30th July every year. This means the end
semester examination of T. Y. Tech (Semester VI) should be completed by 25th April every year.
The Semester VII (4th Year B.Tech.) should commence w.e.f. 1st Aug every year. The internship
may be completed in one or more organizations as described below.

• The internship could be of the following forms:

(i) Industrial internship in a company (within India or Abroad) involved in R & D/design/ manufacturing (QA/QC/Plant Engineering/Stores and Purchase)/marketing /finance/consultancy /Technical services/Engineering / Projects, etc.

(ii) Research internship in reputed Institutes (within India or Abroad) like, ICT, IITs, NITs, IISC, NCL, IICT etc.

• At the end of the internship, each student will submit a written report based on the work carried Out during the Internship. The report will be countersigned by the Supervisor from Industry/ Institute as the case may be.

- Performance of the student will be assessed based on the written report and a presentation to a committee consisting of two faculty members from the Department.
- Students will be assigned a grade based on the written report and a presentation; evaluated by a committee of faculty members.

	Syllabus Stru	Icture B.	recn.	Fina	ai yea	r								
Semester VII														
Subject	arious Exams													
Code	Subjects	Credits	L	Т	Р	C. A.	M.S.	E.S.	Total					
CET1703	Chemical Process Control	3	2	1	0	10	15	25	50					
PHT1083	SPL11: Pharmaceutical Formulation Technology III	3	2	1	0	10	15	25	50					
PHT1084	SPL12: Validation and Regulatory Requirements	3	2	1	0	10	15	25	50					
	Institute Elective- II (Annexure B)	3	2	1	0	10	15	25	50					
PHP1078	In-Plant Training	6	0	0	0	10	15	25	50					
HUT1203	Industrial Management	4	3	1	0	20	30	50	100					
CEP1714	Chemical Engineering Laboratory	2	0	0	4	25		25	50					
PHP1054	Pr 7: Medicinal Chemistry Laboratory	2	0	0	4	25		25	50					
PHP1074	Project I	2	0	0	4				50					
	TOTAL:	28	11	6	12				500					

	Semester VIII														
Subject	Subjects Credits Hrs /week Marks for various														
Code	Subjects	Credits	L	Т	Ρ	C.A.	M.S.	E. S.	Total						
CET1504	Chemical Project Engineering and Economics	3	2	1	0	10	15	25	50						
PHT1058	SPL13: Process Technology of Drugs and Intermediates	4	3	1	0	20	30	50	100						
PHT1057	SPL14 : Medicinal Chemistry III	3	2	1	0	10	15	25	50						
PHT1060	SPL15: Chemistry and Technology of Fine Chemicals	3	2	1	161	10	15	25	50						
	Programme Elective (Annexure C)	3	2	1	0	10	15	25	50						
	Pre-approved Open Electives from MOOOCs/NPTEL	3	2	10	0	10	15	25	50						
PHP1075	Project II	4	0	0	8				100						
PHP1055	Pr 8: Process Technology Laboratory	4	0	0	8	50		50	100						
	Total	27 🔾	13	6	16				550						

Semester I

	Course Code: CHT1137	Course Title: Organic Chemistry – I	Cre	dits T	= 3 P					
	Semester: I	Total Contact Hours: 45	2	1	0					
		List of Prerequisite Courses	LL							
This is buildin	a Basic Organic Ch g up Advanced Orga	nemistry course. The Organic Chemistry studied at HSC is the ba anic Chemistry knowledge.	asis fo	or						
	List	t of Courses where this course will be Prerequisite								
Organi	c Chemistry – II (Cl	HT1138), Biochemistry (BST1102) and several Special Subjects	of							
Pharm	aceutical Sciences	and Technology Department								
De	escription of releva	ance of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gram	me						
To acq	uaint the students w	vith IUPAC and other types of Nomenclature of organic compour	ıds,							
fundan	nentals of Organic C	Chemistry including reaction mechanisms, organic transformation	ns, typ	oes o	of					
reactio	ns, selectivity of che	emical transformations, etc., stereochemical implications of orga	nic rea	actio	ns,					
functio	nal group identificat	ion and reactions								
Sr. No.		Course Contents (Topics and Subtopics)	Re H	quire ours	ed ;					
	a. IUPAC Nomen	clature of Organic Compounds		3						
1	b. Reactive interr	nediates								
_ _	Carbocations, Ca	arbanions, Carbon radicals and Carbenes – Generation,		5						
	Structure, Stability	and Reactions								
	Stereochemistry	of Organic Compounds containing one and two asymmetric								
	carbon atoms, Ste	ereo descriptors – R/S, E/Z, erythro and thero, Conformation –								
2	Ethane and butan			8						
	Enantiomers and	Diastereomers, meso compounds, different representations of								
	interconversions	saw-norse, Newmann, weuge and uash and Fischer and their								
		Q								
3	Alinhatic Nucleon	nilic Substitution Reactions: Sv1, Sv2		7						
	Aliphatic Nucleophilic Substitution Reactions: $S_N 1$, $S_N 2$ Elimination Reactions: E1, E2									
	Chemistry of Car	bonyl Compounds								
	Concept of acidity	and tautomensm of carbonyl compounds, General methods of								
1	preparation and N	ucleophilic Addition reactions		٩						
	Enolate chemistry	, Aldol and related condensation reactions, Michael reaction,		3						
	Robinson annulati	on, Claisen condensation, Dieckmann condensation, Mannich								
	reaction Chamietry of Are	matic Compoundo								
5	Hückel rules Aror	natic Non-aromatic and Anti-aromatic compounds. Benzenoid		2						
5	and non-henzenoi	d accmatic compounds		5						
	Electrophilic Aro	matic Substitution Reactions	<u> </u>							
	Nitration, Halogen	ation, Alkylation, Acylation and Sulfonation								
6	Activating, deactiv	ating and orienting effects of functional groups in mono- and		10						
0	poly-substituted be	enzenes		10						
	Friedel-Crafts alk	ylation, Acylation, Gattermann, Gattermann-Koch, Riemer-								
	Tiemann reactions	<u>,</u>								
	2	Total		45						
	Claude J. Craa	LIST OT TEXT BOOKS/RETERENCE BOOKS		20						
⊢ ⊥	Croherry October	- T. M. Fridde, Croig D. Cruder, Cost A. Crussis, Charles 1		. <u>.</u>						
2	Wiley & Sons. Inc.	s, т. w., Frynie, Craig в.; Snyder, Scott A. Organic Chemistry; 12 . (2016)	²" Ed.	; Jor	IN					
3	Smith, M. B.; Marc ed.; Wiley, India (2	ch's Advanced Organic Chemistry: Reactions, Mechanisms and 2015)	Struct	ure;	7th					
4	Carey F. A., Sunda 5 th ed.; Springer (2	perg, R. J. Advanced Organic Chemistry: Part A: Structure and N 2005)	1echa	nism	IS;					
5	Carey F. A., Sund	perg, R. J.; Advanced Organic Chemistry: Part B: Reaction and S	Synthe	esis;	5 th					
5	ed.; Springer (200	7)								
6	Wade, L. G.; Sime	k, J. W.; Singh, M. S. Organic Chemistry; 9 th ed.; Pearson Educ	ation ((2019	Э)					
7	Eliel, E. L. Stereod	chemistry of Carbon Compounds; Mcgraw-Hill (2001)								
8	Bruice, Paula, Y. C	Drganic Chemistry; 8 ^m Ed.; Pearson Education (2020)								

CO1	draw structures of organic compounds and write their IUPAC names correctly.(K2)
CO2	appreciate the stereochemical implications of organic compounds and visualize and appreciate chirality concept.(K2)
CO3	understand organic chemistry reactions related to aliphatic as well as aromatic compounds as well as decipher the outcome of a given organic transformation.(K3)
CO4	interpret and analyse reactions having different functionalities, deduce and solve problems related to the reactions as well as apply them, if need be.(K4)

~

		Ma	apping	g of Co	ourse	Outco	mes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A	9		Р		
C01	K									~	5				
	2	3	2	0	2	1	3	3	2	3	3	3	1	3	2
CO2	K									0					
	2	3	2	0	1	0	3	3	1	2	3	2	0	3	2
CO3	K								4						
	3	3	3	1	2	2	3	1	3	3	2	3	2	3	3
CO4	K							(\sim						
	4	3	3	1	3	2	3	2	3	2	3	3	2	3	3
Cours	K							1							
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge-level from cognitive domain, A, Affective domain; P, Psychomotor domain

Semester: I Total Contact Hours: 45 2		•									
	1	0									
List of Prerequisite Courses											
Standard XII Chemistry											
List of Courses where this course will be Prerequisite											
Physical and Analytical Chemistry Laboratory (CHP1343), Physical Chemistry II (CHT134)	2)										
Description of relevance of this course in the B. Tech. Programme											
I he course will enable the students to understand and apply the principles of thermodynal world systems. The students would be able to apply the insights to understand the stability.	imics to	real-									
spontaneity of physical/chemical processes, effect of thermodynamics parameters on	n bhase	and									
chemical equilibria, etc.	prices	0									
Sr. Course Contents (Tonics and Subtorics)	Requir	ed									
No.	Hours	3									
Introduction - Thermodynamic systems, Work, Heat and Energy, State and Path functions, Intensive and Extensive variables	3										
First Law of Thermodynamics - Enthalpy and heat capacities, Application of	6										
2 First Law to gases, Standard States, Entitlapy changes of chemical and physical conversions. Thermochemistry – Hess's Law	0										
Second and Third Laws of Thermodynamics - Statements and applications											
of Second Law of thermodynamics, Clausius inequality, Entropy as a state											
3 function, Entropy changes for reversible and irreversible processes, Entropy	6										
and probability Third Law of Thermodynamics, Absolute entropies, Verification of Third Law											
Spontaneous Process and Equilibrium - Combined statement of First and											
Second Laws of thermodynamics, Helmholtz and Gibbs free energy,											
4 Spontaneity and Free energy, Maxwell's relations, Effect of T and P on free	7										
energy, van't horr equation, Free energy and equilibrium constant, Ellingham											
Multicomponent Systems - Free energy and entropy of mixing. Partial molar											
⁵ quantities and chemical potential, Gibbs Duhem equation	5										
Phase Equilibria - Gibbs Phase rule, Clausius- Clapeyron equation, Stability											
6 and two two-component systems, I-L systems - TC, PC phase diagrams,	3										
distillation and azeotropes, L/S systems, S/S – eutectics and deep eutectics,	C C										
Phase diagram of three-component systems											
Equilibrium in Solutions – Ideal and non-ideal solutions, Henry's law and Bacult's law Colling tive properties											
Solubility Equilibria – Solubility constant. Common ion effect. Effect of added	-										
⁷ salts on solubility pH, Weak and strong acids and bases, Buffer solutions,	6										
Ionic solutions, Activity and activity coefficients, Thermodynamic properties of											
electrolytes in solutions											
8 temperature, pressure and composition on equilibrium	6										
Electrochemistry – Thermodynamics of electrochemical systems - Types of											
9 electrochemical cells, Determination of electrode potentials, Activity and	3										
	45										
List of Text Books/Reference Books											
Atkins, Peter W.; Paula, Julio de; Keeler, James. Atkin's Physical Chemistry; 11th	ed.; O	xford									
1 University Press (2018)											
Atkins Peter W: Paula Julio de Elements of Physical Chemistry: 7th ed : Oxfor	rd Unive	arsity									
2 Press (2017)		Jony									
3 Levine, Ira. Physical Chemistry; 6 th ed.; McGraw-Hill Education (2009)											
Course Outcomes (Students will be able to)	ne mole	cular									
basis for the same. (K2)		Junu									
CO2 apply the concepts of partial molar quantities to explain the behaviour of pure sub- solutions.(K3)	stances	and									

CO3	understand principles of phase equilibria in two- and three-component systems.(K3)													
CO4	elucidate the effect of thermodynamic quantities on chemical equilibria and relate it to													
	properties of chemical systems.(K2)													

	_	Ma	apping	g of C	ourse	Outco	omes ((COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α		7	Р		
C01	K										~	1			
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K										2				
	3	3	3	2	2	2	3	1	3	0	- 3	2	2	2	3
CO3	K										<u> </u>				
	3	3	3	1	2	2	0	3	3	2	3	3	2	3	3
CO4	K									2					
	2	2	2	0	2	0	3	3	3	3	3	3	1	2	2
Cours	K								~						
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution, 1, Low Contribution; 0, No Contribution

K, Knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

J. Jomain

	Course Code:	Course Title:	Cre	dits :	= 3					
	CHT1139	Industrial Inorganic Chemistry	L	Т	Ρ					
	Semester: I	Total Contact Hours: 45	2	1	0					
		List of Prerequisite Courses								
Standa	ard XII Inorganic Che	mistry								
	List	of Courses where this course will be Prerequisite								
Materi Enviroi	al Technology (PCB1 nment Science and Te	.302), Engineering Mechanics and Strength of Material echnology (HUT1106)	s (GE	T117	'),					
	Description	n of relevance of this course in the B. Tech. Programme								
To acq chemic	To acquaint the students with synthesis, properties and applications of various industrial inorganic chemicals									
Sr. No.	Re F	equiro lours	ed ;							
1	Primary Inorganic Inorganic Peroxo Co Compounds, Phosp Sulfuric acid and Su Compounds	Materials: Water, Hydrogen, Hydrogen Peroxide and ompounds, Nitrogen, Ammonia, Nitric acid, and Nitrogen horus, Phosphoric acid and its Compounds, Sulfur, ilfur Compounds, Halogens, Chloralkali and Halogen		12						
2	Metals and Their Compounds, Alumi Chromium, Silicon and Manganese, Me	10								
3	Organo-Silicon Co Compounds, Indust Products	mpounds: Industrially important Organo-silicon rially Important Silanes Silicones, Industrial Silicone	7							
4	Inorganic Solids: Materials, Enamel, Fillers, Inorganic Pig	: Silicate Products, Inorganic Fibers, Construction Ceramics, Metallic Hard Materials, Carbon Modifications, gments, Cemert, Glass	8							
5	Nuclear Cycle: Information about t Reactor Types, Nu Power Stations	Economic Importance of Nuclear Energy, General he Nuclear Fuel Cycle, Availability of Uranium, Nuclear clear Fue' Production Disposal of Waste from Nuclear		8						
		Total		45						
	Rüchol Karl Hainz	List of Text Books/ Reference Books	ionio (hom	lictry					
1	Buchel, Kall Heiliz,	, Morello, Halls-Heinnen, Woullsen, Peter. Industrial more	janic (Jilein	istry,					
3	Swaddle, T. W. Inor Academic Press (19	ganic Chemistry – An Industrial and Environmental Perspec 997)	tive; 1	st ed.;						
4	House, James, E. I	norganic Chemistry; 3 rd ed.; Academic Press, Inc. (2019)								
	C	ourse Outcomes (Students will be able to)								
CO1	understand various halogens.(K2)	s industrial chemicals of nitrogen, sulfur, hydrogen, p	hosph	orus	and					
CO2	understand alkali ar	nd alkaline-earth metal based industrial chemicals, iron meta	allurgy	(K3)						
CO3	understand inorgani	ic solid materials like glass, silicone, cement, ceramics, etc.	(K2)							
CO4	understand nuclear	fuel and power industry.(K2)								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			Р		
C01	K														
	2	3	2	1	2	0	3	2	3	3	3	3	1	3	2
CO2	K														
	3	3	3	2	2	2	3	3	1	3	3	2	2	3	3
CO3	K														
	2	3	2	0	2	1	3	3	3	3	0	3	1	2	1
CO4	K														
	2	3	2	1	2	1	2	3	3	3	3	1	1	3	2

Cours	K																
е	3	3	3	2	2	2	3	3	3	3	3	3	2	2	3		
:	3, St	rong (Contrib	ution;	2, Mo	derate	Contri	butior	n; 1, Lo	w Con	tributio	n; 0, No	Con	tribu	tion		
	К, К	nowle	dge le	vel fro	m cog	nitive o	domair	ι; Α, Α	ffective	e doma	ain; P, F	sychom	iotor	dom	ain		
	Cou	irse C	ode:		0	Course	• Title	Ann	lied Ma	them	atics -	10	2	Cre	dits	= 4	
	N	IAT11	.01									· V		L	Т	Р	
	Se	emest	er: I				Total	Conta	act Hou	urs: 60)	0		3	1	0	
					Li	st of F	Prerec	uisite	Cours	ses		7					
HSC SI	tanda	ard Ma	athema	atics							<u></u>						
List of Courses where this course will be prerequisite												ubio	ete la	tor			
1115 15	a va		escrir	tion o	f relev	vance	of thi		rse in 1	the B	Tech	Program	ubjet n	<u>LIS 18</u>	lei.		
Applied	d Ma	thema	atics is	bevor	nd cru	nching	num	pers.	t is us	eful fo	r solvin	ng real-li	ife pr	roble	ms a	and	
make a	an ir	npact	in the	e world	d, tech	nolog	y bein	g one	e of the	ose fie	elds. Th	ne knov	vledg	ie ga	ained	is	
require	d for	solvir	ng vari	ous m	athem	atical	equation	ons in	severa	al Che	mical E	ngineer	ing c	ours	es si	uch	
as MEI	BC,	Mome	entum	Transf	er, Re	action	Engir	neerin	g, Sep	aration	n Proce	esses, T	hern	nody	nami	CS,	
and sev	veral	other	s.							0							
Sr.	Course Contents (Topics and Subtopics)													Required			
NO.	Linear Algebra: Vectors in IR ⁿ Notion of linear independence														ours	5	
	den	ender	nce \	a.ve /ector	suhsn		of IR ⁿ	Basi	s of a	vecto	r subsr	nace R					
	spa	ce, Ni	ull spa	ce, an	d Colu	imn si	bace.	Rank	of a m	atrix, I	Determ	inants a	and				
	rank	c of ma	atrices	,		- 1	,	- 6	8	,							
	Abs	tract	vector	space	es, Lir	near ti	ransfo	matio	ns in	IR ⁿ , N	/latrix d	of a line	ear				
	tran	sform	ation,	Chang	e of b	asis a	nd sin	hilarity	, Rank	-nullity	theore	em, and	its				
1	app	icatio	ns				C			I		P			15		
	Inne	er pro	duct s	paces,	Ortho	onorma	al das	es, G	ram-Sc	nmidt	orthog	onalizat	ion				
	process, Eigenvalues and eigenvectors, Characteristic polynomials											ast					
	methods												asi				
	Diad	gonaliz	zation	of ma	trices	and its	s appli	catior	is stoc	hastic	matrice	es, Solv	ing				
	initial value system of linear ordinary differential equations																
	Diff	erenti	al Cal	culus	: High	er ord	er diffe	erentia	ation a	nd Lei	bnitz R	ule for	the				
	deri	vative	, Taylo	or's an	d Mac	l'aurin'	s theo	rems,	Maxin	na/Min	ima, Co	onvexity	′ of	f			
2	func	tions,	Radiu	S OF C	urvatu	re.	Limit	and a	ontinui	tu Dor	tial diffe	prontiati	on	15			
	Tota	der	ivative	s Ta	vlor's	theor	,∟IIIIII em fr	anu c or mi	iltivaria	ıy, rai ıhle fi	inction	s and	its				
	app	licatio	n to er	ror cal	culatio	ns. Ma	axima/	Minim	a			o unu	110				
	Inte	gral	Calcul	us: B	eta a	nd Ga	mma	functi	ons, D	ifferen	tiation	under	the				
3	integ	gral s	ign, M	ultiple	integi	als, L	ine ar	nd sur	face ir	itegral	s, Appl	ications	of		15		
	Gre	en's, (Gauss-	Diverg	gence	and St	okes t	heore	ms								
	Pro	babili	ty &	Statis	tics:	Rando	om va	riable	s and	cumu	lative	distribut	ion				
	tunc	tion,	Probal	ollity n	nass 1	UNCTIO	n and	prop	ability	densit	y tunct	ion, Sol	me				
	Nor	mal F	Expect	ation	and N	lons. Iomen	ts Mo	nai, r oment	nener	, onin ating	functio	n Multi	nle				
4	rand	dom v	ariable	es and	Joint	distri	bution	Mar	ginal d	istribut	tions, C	Covariar	ice		15		
	and	Corre	ation						5		,						
	Con	сері о	of para	meter	estim	ation:	Maxim	ium lil	kelihoo	d estir	nation,	Method	of				
	leas	t squa	ares ar	nd Sim	ple lin	ear reg	gressio	on, No	nlinear	regree	ssion						
					Liet	f Terr	hoole		Konoc	Peels		To	Ital		60		
1	Star	nu C	Linea	· Alaph	LISE (hite Ar	nlicati	one. /	th pd	Thome	5 00 (20)	06)					
2	Anto	n Ho	ward [.]	Kaul /	Anton	Fleme	ntarv	l inea	r Algeh	ra: 12 ^t	M · ho	vilev (20)19)				
_	Frie	dberg	. Step	hen F	I.; Ins	el, Arr	nold J	: Spe	ence, L	awrer	ice E.	Linear	Alge	bra:	5 th 6	ed.;	
3	Pea	rson E	Educat	ion (20)19).	,		, 1	,				0	,		<i>`</i>	
Δ	Hug	hes-⊢	lallett,	Debor	ah; Gl	eason	, Andre	ew M.	; McC	allum,	William	n G. Cal	culus	s: Sin	gle a	and	
	Mult	tivaria	ble; 6th	ed.; J	ohn W	/iley &	Sons,	Inc. (2012)	46							
5	Krey	/szig,	E.; Ad	vance	d Eng	ineerir	ng Mat	hema	tics; 10) ^m ed.;	Wiley	Global	Educ	atior	ı (20	10)	
-		icially	Presci		, n,	/ <u>A</u>	onard	Enei		Math	omotic	Ath a-	1	nha	Color	200	
6	1yen (201	iyar, t ⊿∖	5. K. K	., Jali	I, R. I	. Auv	anced	⊏ngli	ieenng	wath	ematics	s, 4 [∞] eC	i., Al	pna	Sciel	ice	
7	Ros	s She	eldon M		rst Co	urse in	Proh	ahility.	10 th er	1 · Pea	irson F	ducation	1 (20	18)			
		5, 510						y,	-5 00	,			0				

8	Hines, William W.; Montgomery, Douglas C.; Goldsman, David M.; Borror, Connie M.							
	Probability and Statistics in Engineering; 4 th ed.; John Wiley & Sons, Inc. (2003)							
0	Boes, Duane C.; Graybill, Franklin A.; Mood, Alexander McFarlane. Introduction To the							
9	Theory of Statistics; 3 rd ed.; McGraw Hill Education (India) (2013)							
	Course Outcomes (Students will be able to)							
CO1	understand the notion of differentiability and be able to find maxima and minima of functions							
001	of one and several variables.(K3)							
CO2	compute surface and volume integrals.(K3)							
CO3	understand the notion of vectors and vector spaces.(K2)							
CO4	solve systems of linear equations and eigenvalue problems analytically and numerically.							
CO4	(K3)							
CO5	fit relationship between two data sets using linear, non-linear regression.(K3)							

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with F	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	К3+	K2+A	K3	K6+A+	K3	K4
								S		A			Р		
C01	K								\sim						
	3	3	3	2	0	2	3	3	2	3	3	3	2	3	3
CO2	K														
	3	3	3	2	2	2	3	1	1	3	3	2	1	3	3
CO3	K							6							
	2	3	2	1	2	1	2	3	3	3	3	3	0	3	2
CO4	K							1							
	3	3	3	2	1	2	3	2	0	0	0	3	2	3	3
CO5	K						G								
	3	3	3	1	2	2	3	3	2	3	3	1	2	3	3
Cours	K					* a.	9								
е	3	3	3	2	2	2	3	3	2	3	3	3	2	3	3

9

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

, wull evel from cogn

	Course Code: PYT1101	Course Title: Applied Physics – I	Cre L	dits T	= 4 P
	Semester: I	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
Standa	ard XII th Physics				
Applie (CET1	d Physics – II (PY 703), Chemical F Descrip a basic physics c	t of Courses where this course will be prerequisite T1103), Physics Laboratory (PYP1101), Chemical Process Co Reaction Engineering (CET1212), Transport Phenomena tion of relevance of this course in the B. Tech. Program ourse. This knowledge will be required in almost all subjects la	ntrol (CE ter o	 n.)5)
This k will be proces	nowledge is also r introduced in cou sses, thermodynar	equired for understanding various chemical engineering conce rses such as momentum transfer, reaction engineering, separa nics, heat transfer, etc.	pts th tion	nat	
Sr. No.		Course Contents (Topics and Subtopics)	Re F	quir lours	ed S
1	Solid State Phy Crystal Structure indices, direction FCC, Hexagonal of x-ray diffractio spectrometer Semiconductor F Fermi level, class intrinsic and extr carriers, conduct	sics of Solids: unit cell, space lattices and Bravais lattice, Miller s and crystallographic planes, Cubic crystals: SSC, BCC, crystals: HCP, atomic radius, packing fraction, Bragg's law n, determination of crystal structure using Bragg Physics: Formation of energy bands in solids, concept of sification of solids: conductor, cemiconductor and insulator, insic semiconductors, effect of doping, mobility of charge ivity, Hall effect		15	
2	Fluid Mechanic Basic concepts of Pascal's law, at surface tension a equation, stream of viscosity, brief	s of density and pressure in a fluid, ideal and real fluids, psolute pressure and pressure gauges, basic concepts of and buoyancy, fluid flow, equation of continuity, Bernoulli's lined and turbulent now, concept of viscosity, Newton's law introduction to non-Newtonian behaviour		15	
3	Optics and Fibr Diffraction: Introd Fraunhofer and F double slit, and r grating and its ap Polarisation: Intro refraction, scatte activity Fibre Optics: Intro internal reflection associated with o optical fibres	e Optics Juction to interference and example; concept of diffraction, Fresnel diffraction, Fraunhofer diffraction at single slit, nultiple slits; diffraction grating, characteristics of diffraction oplications oduction, polarisation by reflection, polarisation by double ring of light, circular and elliptical polarisation, optical oduction, optical fibre as a dielectric wave guide: total n, numerical aperture and various fibre parameters, losses optical fibres, step and graded index fibres, application of		10	
4	Lasers Introduction to in laser: population inversion, types least squares an	teraction of radiation with matter, principles and working of inversion, pumping, various modes, threshold population of laser: solid state, semiconductor, gas; application of lasers d Simple linear regression, Nonlinear regression		10	
5	Ultrasound Generation of ult propagation of ul affecting it, meas	rasound: mechanical, electromechanical transducers; trasound, attenuation, velocity of ultrasound and parameters surement of velocity, cavitation, applications of ultrasound		10	
	1	List of Textbooks/Reference Books	Ĺ		
1	Physics: Vols. I a	nd II – D. Halliday and R. Resnick, Wiley Eastern			
2	Lectures on Phys M. Sands, Naros	sics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and a.			
3	Concepts of Mod	lern Physics – A. Beiser, McGraw-Hill.			
4	Introduction to M	odern Optics – G. R. Fowles ,Dover Publications			
5	A Course of Exp	eriments with LASERs – R. S. Sirohi, Wiley Eastern.			
		IIIIIUIIIcalloII - G. KEISEI, MCGIAW-MIII - 1 Wilson and 1 F. B. Hawkes 2nd ed. Drantice-Hall India			

8	Ultrasonics: Methods and Applications – J. Blitz, Butterworth
9	Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.
	Course Outcomes (Students will be able to)
CO1	apply acoustic cavitation of Chemical Engineering Processes. (K3)
CO2	apply Bernoulli equation in simple pipe flows. (K3)
CO3	introduced to the principles of lasers, types of lasers and applications. (K2)
CO4	calculate resolving power of instruments.(K3)
CO5	describe principles of optical fibre communication.(K2)

		Ma	apping	g of Co	ourse	Outco	mes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		А	5		Р		
C01	K									V					
	3	3	3	2	2	2	1	1	3	3	3	3	2	3	3
CO2	K									0					
	3	3	1	2	1	2	3	3	3	3	3	0	2	1	3
CO3	K								1.						
	2	3	2	1	2	0	3	3	3	3	2	3	1	3	2
CO4	K														
	3	2	3	2	1	2	2	0	2	3	3	3	2	0	3
CO5	K							C							
	2	3	2	1	2	0	0	3	3	1	3	1	1	3	2
Cours	K							0							
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits T	= 4						
	Compostory I	Engineering Graphics and Elementary AUTOCAD	L 2	-							
	Semester: I	list of Processia Courses	2	U	4						
Basic	Geometry										
Dasic		t of Courses where this course will be prerequisite									
Basic (GET1	Mechanical Engine	eering (GET1110), Engineering Mechanics and Strength of Ma ngineering Operations (CET1401), Chemical Process Control (terial CET	s 1703)						
A Cha	Descrip	tion of relevance of this course in the B. lech. Program		d : 0	the						
A Che proces conde severa manuf 'Drawi used t accura writter in mar	processes. Some of the elementary processes such as filtration, size reduction, evaporation, condensation, crystallization etc., are very common to all the branches of Technology. These and several other processes require machines and equipments. One should be familiar with the design, manufacturing, working, and maintenance of such machines and equipments. The subject of 'Drawing' is a medium through which, one can learn all such matters, because the drawings are used to represent the objects and the processes on paper. With the help of the drawings, a lot of accurate information is conveyed, which otherwise will not be oracticable through spoken words or written text. Drawing is a language used by Engineers and Technologists. This course is required in many subjects as well as later on in the professional career.										
Course Contents (Topics and Subtopics)											
1	Orthographic P front view, top vie Sectional views of Problems with se Orthographic vie drawing board	Projections: Conversion of 3D object or pictorial view into ew and side views using first angle method of projection draw sectional front view, top view, and side view ection plane cutting object exactly at centre or off centre ews of at least 15 machine parts using mini drafter and		20							
2	Isometric Proje view or 3D view Machine parts w inclined planes At least 10 isome	Isometric Projections and Isometric Views: Isometric scale, draw pictorial view or 3D view using front and top view or front view and any one side view Machine parts with circle, semicircle in the orthographic views and slots on 12 inclined planes									
3	Missing Views: Draw any one si is given. Problen At least 6 machir	Draw top view when front and any one side view is given de view or both the side views when front view and top view ns involving sectional views. The parts using mini drafter and drawing board.		12							
4	Assembly Draw after assembling Convert assemb Assembly drawir	ving : Draw front view and top view or side view of assembly all the details of machine parts ly into details or of Nut and bolt, footstep bearings, Plummer block, etc.		20							
5	Introduction to development of drawing with di mandatory) Introduction to S using suitable mo	Computer-Aided Drawing: Role of CAD in design and new products, Advantages of CAD. Creating two-dimensional mensions using suitable software (Minimum 2 exercises Solid Modelling: Creating 3D models of various components odelling software (Minimum 2 exercises mandatory)		26							
	2	Total		90							
1	Bright, Steven. A and Modeling (20	List of Textbooks/Reference Books AutoCAD Fundamentals: A Comprehensive Guide on Enginee 020)	ring [Draw	ving						
2	Rathnam, K. A F	irst Course in Engineering Drawing; Springer (2017)									
3	Agrawal, Basant	. Engineering Drawing; McGraw-Hill Education (2015)									
4	Bhatt, N. D. Engineering Drawing by N. D. Bhatt.; 11 th ed.; C. Publishing House Pvt. Ltd. (2011)										
5	Shah, M. B.; Rar	na, B. C. Engineering Drawing; 2 nd ed.; Pearson Education (202	14)								
6	Giesecke, Frede Drawing with En	rick E.; Lockhart, Shawna; Goodman, Marla; Johnson, Cindy gineering Graphics; 15 th ed.; Pearson Prentice Hall (2016)	M. Te	echn	ical						
7	Dubey, N. H. Eng	gineering Drawing; 15 th ed.; Nandu (2015)									
		Course Outcomes (Students will be able to)									
CO1	prepare multi vie positions. (K3)	w orthographic projections of objects by visualizing them in diff	erent	:							
CO2	draw sectional vi	ews and develop surfaces of a given object. (K3)									

CO3	prepare pictorial drawings using the principles of isometric projections to visualize objects in three dimensions. (K3)
CO4	prepare assembly drawing. (K3)
CO5	obtain Multiview projections and solid models of objects using CAD tools (K3)

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		P01	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		К3	K4	K6	K5	K6	К3	K3+ S	К3	K3+ A	K2+A	К3	K6+A+ P	K3	K4
C01	K 3	3	3	2	2	2	3	3	3	3	5	3	2	3	3
CO2	ĸ										~		-		
	3	3	2	2	2	2	3	3	3	1	2	3	2	3	1
CO3	K 2	2	2	2	2	1	1	2	2	~	2	2	2	2	2
CO4	к К	5	5	2	2			5	5	5	5	5	2	2	5
004	3	3	3	2	2	2	3	0	2	3	3	3	2	3	1
CO5	K	_	_												
Cours	<u>к</u>	3	2	2	0	2	3	3	3		3	0	2	3	3
e	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
e 3 3 2 2 2 3 3 3 3 3 2 3 3 3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain															

	Course Code:	Course Title:	Cr	edits	= 2				
	CHP1343	Physical and Analytical Chemistry Laboratory	L	Т	Р				
	Semester: I	Total Contact Hours: 60	0	0	4				
	•	List of Prerequisite Courses							
Stan	dard XII th Chemistry	/ Laboratory courses							
	Li	st of Courses where this course will be prerequisite							
This	is a basic Course.	This knowledge will be required in Applied Chemistry subjects late	er.						
	Descri	ption of relevance of this course in the B. Tech. Program							
Studen tasks, i	its will become fam understand the relev	iliar with laboratory experimental skills, plan and interpretation vance of principles of physical chemistry in chemical processes	of ex	perim	ental				
Sr. No.	Course Contents (Topics and Subtopics) Required Hours								
1	Experiments base electrolyte systems and CMC measurements	ed on chemical reaction kinetics, phase equilibria and s, surface and interfacial phenomena such as surface tension	4 hrs 15	s/sess sessi	ion X ons				
		Total		60					
		List of Text Books/ Reference Books							
1	Practical physical	Chemistry – B. Viswanthan and P. S. Raghavan							
2	Practical physical	Chemistry- Alexander Findlay							
		Course Outcomes (students will be able to)							
_ CO1	identify and deter	mine physicochemical parameters using simple tools.(K3)							
CO2	interpretation of d	ata and drawing scientific conclusions, dryers, etc.(K4)							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO
							~								2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
						1		S		Α			Р		
C01	Κ					X									
	3	3	3	2	2	2	3	3	3	2	3	3	2	3	3
CO2	K				- (2									
	4	3	3	1	3	1	2	3	1	3	3	0	2	3	3
Course	K				1										
	4	3	3	2	- 3	2	3	3	3	3	3	3	2	3	3

ADDrove

Semester II

	Course Code: Credits = 3											
	CHT1401	Analytical Chemistry	L T P									
	Semester: II	Total Contact Hours: 45	2 1 0									
		List of Prerequisite Courses										
Standa	ard XII Chemistry											
Dhunin	Lis	t of Courses where this course will be prerequisite										
Green	Chemistry (PHT1	052), other Chemistry Courses	'sis and									
	Descrip	tion of relevance of this course in the B. Tech. Program										
The co	ourse introduces t	he students to key concepts of chemical analysis - sampling	, selection of									
analyti	cal method and	data analysis. It presents basic techniques like spectr	oscopy and									
chrom	atograpny. The st	udents should be able to select an appropriate analytical te	cnnique and									
appiy i Sr	I III accordance w		Pequired									
No.		Course Contents (Topics and Subtopics)	Hours									
	Introduction to C	chemical Analysis, Terminology (technique/method/procedure										
1	/protocol), Broa	d classification of analytical techniques, Good Laboratory	5									
	Practices (GLP)											
	Sampling: Basic	s and procedures, preparation of laboratory samples										
2	Criteria for sele	cting analytical methods – accuracy, precision, sensitivity,	8									
	Calibration and	alidation										
	Data Analysis: F	rrors – Systematic and random errors statistical treatment of										
3	experimental re	sults (F, O and t tests, rejection of data, and confidence	6									
	intervals), least s	square method, correlation coefficients										
	Spectroscopic N	lethods: General principles, instrumentation and applications										
4	of - UV-visible sp	pectroscopy	8									
	- Fluorescence s	pectroscopy										
5	Electrochemical	Methods: General principles, Instrumentation and	8									
	Chromatographi	c Methods: General principle instrumentation and										
_	applications of	- Gas chromatography (GC). High-performance liquid										
6	chromatography	(HPLC), Jon-exchange chromatography, Size-exclusion	10									
	chromatography											
		Total	45									
	· - · · · ·	List of Textbooks/Reference Books										
1	David Harvey. M	odern Analytical Chemistry; McGraw-Hill (1999)										
2	R. A. Day and A.	L. Underwood. Quantitative Analysis, Prentice Hall of India (20	JUI)									
3	ed.: Wadsworth	L. Mernit, J. A. Dean and F. A. Settle. Instrumental Methods of Publishing, USA (2004)	Analysis, 7									
4	D. A. Skoog, D.	M. West, F. James Holler and S. R. Crouch. Fundamentals	of Analytical									
4	Chemistry; 9 th et	.; Cengage Learning (2013)	,									
5	D. A. Skoog, F.	James Holler and S. R. Crouch. Principles of Instrumental Ana	lysis; 6 th ed.;									
	Cengage Learni	ng (2016)										
<u> </u>	onnhy the lunged	Course Outcomes (Students will be able to)	thed (1(2)									
CO1	apply the knowle	euge of sampling, data analysis and select proper analytical me	(K3)									
	explain the princ	iples of electrochemical methods (K2)	<u></u>									
CO4	Inderstand the	nrincinles of chromatographic separations (K2)										
004		ormolpios of ornormalographic separations. (NZ)										

		Ма	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A			Р		
C01	K														
	3	3	3	2	2	2	3	3	0	3	3	0	2	3	3
CO2	K														
	2	3	1	0	1	1	0	3	3	2	3	3	0	2	2
CO3	K														
	2	3	2	1	2	0	3	3	3	3	2	3	1	3	2
CO4	K	3	2	1	1	1	3	2	3	3	3	3	1	1	2

	2														
Cours	K												~		
е	3	3	2	2	2	2	3	3	3	3	3	3	2	3	3
					<u> </u>		<u> </u>			~		<u> </u>			

	Course Code:	Course Title:	2	Cre	dits	= 3
	CH11342	Physical Chemistry – II		L		Ρ
	Semester: II	Total Contact Hours: 45	-69	2	1	0
Stands	ord VII th Chomistry	Development (CHT1241)				
Stariua		t of Courses where this course will be prov				
Other	Chemistry and An	nlied Chemistry courses	equisite			
Outer	Descrip	tion of relevance of this course in the E. To	ech. Program			
Studer	nts should learn to	appreciate the relevance of kinetic studies	and parameters	affeo	tina	the
same.	The understandir	ng of kinetic principles should be applied tow	vards understand	ding	comp	olex
reactio	on pathways and	their mechanistic studies. The concept of	interfaces and	surfa	ces	are
instrun	nental in conveyin	g the applications and importance of disperse	systems.			
Sr. No.		Course Contents (Topics and Subtopics)		Re	equir lours	ed S
	Introduction – o	concept of reaction rates and order, experime	ental methods in			
1	kinetic studies, o	lifferential and integral methods to formulate	rate equations		3	
-	of zero, first and	second order reactions			U	
	Experimental me	thods of kinetic studies	n ata adv atata			
	Annetics and R	eaction mechanism - Rate-determining ste	ep, sleady state			
	Complex reaction	ns- narallel, consecutive and reversible reacti	ons			
2	Mechanism of	thermal, photochemical chain reactions.	polymerization		6	
	reactions					
	Fast reactions –	experimental techniques				
3	Homogenous C	atalysis – homogeneous acid / base catalys	sis (specific and		4	
	general acid cata	<u>alysis), enzyme catalysis (Michalis-Menten kir</u>	netics)		•	
4	Reactions at In	Errace – Adsorption isotherms, kinetics of su	rface reactions-		4	
		action Dates - Theory of unimolecular read	tions collision			
5	theory and trans	sition state theory. Effect of temperature, So	lvent effects on		6	
	reaction rates	,,,			-	
6	Surface and Ir	nterfacial Chemistry - introduction, surface	ce tension and		10	
0	surface free ene	rgy methods of determining surface and inter	facial tensions		10	
	Thermodynami	cs of Surfaces - surface excess, Gil	obs adsorption			
7	equation, curve	a surfaces- bubbles, droplets and foams,	Kelvin, Young		4	
	Laplace and inc	mson equations, nomogeneous nucleation	la watting and			
8	spreading adh	sion and cohesion contact and mean	surements and		Л	
	hysteresis	solution and conclosion, contact angle mea	Surements and		-	
	Surfactants -	Types, adsorption at surfaces and interfa	ces, surfactant			
9	aggregates, fac	tors affecting aggregation phenomena,	applications of		4	
	surfactants and	nixed surfactant systems				
	Colloids – Pre	paration, stability, characterization, surface	e charges and			
10	electrical double	layer	annulaiona and		5	
	foams HI B valu		bemuisions and			
	IDams, TED valu	65	Total		45	
	I	List of Textbooks/Reference Books	Total			
1	P. W. Atkins, J.	de Paula and J. Keeler. Physical Chemistr	y; 11 th ed.; Oxfo	rd U	niver	sity
2	Keith 1 Laidler	Chemical Kinetics: 3 rd ed : Harper & Dow No.	W York (1027)			
<u> </u>	Duncan Shaw	Introduction to Colloid and Surface Che	mistry: $\Delta^{\text{th}} \circ \Delta^{\text{th}}$	Rutt	erwo	rth-
3	Heinemann (201			Duit		101*
4	Drew Myers. Su	rfaces, Interfaces, and Colloids: Principles a	nd Applications;	2 nd e	d.; Jo	ohn
4	Wiley & Sons, In	c. (1999)				

5	M. J. Rosen. Surfactants and Interfacial Phenomena; 4 th ed.; John Wiley & Sons, Inc. (2012)
	Course Outcomes (Students will be able to)
CO1	comprehend fundamental knowledge in chemical kinetics with basics of order, molecularity and temperature effect.(K2)
CO2	examine kinetics for complex, fast as well as surface reactions and comprehend different theories in kinetics.(K4)
CO3	comprehend fundamental knowledge and thermodynamics in surface and interfacial chemistry.(K2)
CO4	evaluate the behavior of surface active agents and disperse systems based on the knowledge of interfacial phenomena.(K4)

		Ма	apping	g of Co	ourse	Outco	mes (COs)	with P	rogra	mme O	utcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A			Р		
C01	K									0					
	2	3	2	1	2	0	3	3	3	3	3	3	0	3	2
CO2	K								1						
	4	3	1	2	3	2	3	3	3	3	1	3	2	3	3
CO3	K														
	3	3	3	0	2	2	3	3	2	2	3	3	1	3	2
CO4	K							0	[
	4	3	2	2	3	2	0	3	3	3	3	2	2	3	3
Cours	K							C.							
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 3
	CHT1138	Organic Chemistry – II	L	Т	Ρ
	Semester: II	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Organ	ic Chemistry – I (C	(HIII37)			
Other	LIS Chemistry and An	nlied Chemistry courses			
Other	Descrip	tion of relevance of this course in the B. Tech. Program			
То асо	uaint the students	with concepts related to aromatic, heteroaromatic and pericy	clic re	actio	้ากร
so that	t they are perfectly	y aligned to apply the same for the future courses and in their	profe	ssio	nal
career		2	·		
Sr.		Course Contents (Topics and Subtopics)	Re	quire	əd
No.		- Arenee	Н	ours	\$
1	Nitro and Amin	o Arenes		5	
	Aromatic Nucle	onphilic Substitution Peactions			
2	Addition. elimir	nation mechanism: elimination – addition mechanism		5	
	(benzyne), Sand	Imeyer reaction		-	
	Pericyclic Reac	tions			
	Symmetry of mo	plecular orbitals, frontier orbitals of ethylene, 1,3-butadiene,			
	1,3,5-hexatriene	and allyl system, classification of pericyclic reactions;			
	Woodward-Hom	nann correlation diagrams, FMU and PMU approaches;			
3	allyl systems: cy	veloaddition -antara facial and suprafacial addition. An and		13	
	4n+2 systems.	2+2 addition of ketenes, 1.3 dipolar cycloadditions and		10	
	cheleotropic re	actions; sigmatropic carrangements - suprafacial and			
	antarafacial shift	ts of hydrohen, sigmatropic shifts involving carbon moieties,			
	3,3- and 5,5- s	sigmatropic rearrangements, Claisen, Cope and Aza-Cope			
	rearrangements,	, ene reaction.			
	Heteroaromatic	compounds			
4	henzenoid com	nature, structures and common names, comparison with		10	
	thiophenes and	pyridines			
	Named Organic	Reactions			
	Perkin reaction	(Mauvine synthesis-dyes), Fischer indole synthesis, (dyes),			
5	Jacobson Core	ey epoxide synthesis (Pharmaceutical), Ziegler Natta		12	
	polymerisation	(polymer), Multicomponent reactions, Mailard reaction			
	reactions Prilez	haev reaction			
		Total		45	
		List of Textbooks/Reference Books			
1	Clayden, J., Gre	eves, N., Warren, S.; Organic Chemsitry; 2 nd ed.; Oxford Unive	rsity I	Pres	S
	(2012))			
2	Graham Solomo	ns, T. W.; Fryhle, Craig B.; Snyder, Scott A. Organic Chemistry	; 12 th	Ed.;	
	Jonn Wiley & So	NS. INC. (2016)	nd C+	ruot.	uro:
3	7th ed : Wiley In	ndia (2015)	nu Sti	uulu	11 C,
	Carev F. A., Sun	dberg, R. J. Advanced Organic Chemistry: Part A: Structure an	d		
4	Mechanisms; 5 th	ed.; Springer (2005)			
E	Carey F. A., Sun	dberg, R. J.; Advanced Organic Chemistry: Part B: Reaction a	nd		
5	Synthesis; 5 th ed	I.; Springer (2007)			
6	Wade, L. G.; Sin	nek, J. W.; Singh, M. S. Organic Chemistry; 9 th Ed.; Pearson Ed	ducati	on	
7	(2019) Eliol E. L. Store	achomistry of Carbon Compounds: Magrow Hill (2001)			
/ 	Bruice Paula V	Organic Chemistry: 8 th Ed · Pearson Education (2001)			
	L Dialos, i duia, i.	Course Outcomes (Students will be able to)			
	be well versed w	<i>i</i> th aromatic chemistry and interpret the outcome of general			
CO1	transformations.	(K3)			
CO2	appreciate and v	visualize the reactions involving radicals such as cyclizations, p	ericy	clic	
	reactions in synt	hesis.(K3)			
CO3	understand the i	mportance of heterocycles, learn the properties and synthetic r	outes	, 	
		or compounds and decipher outcomes of various transformatio	ns inv	VUIVII	ng l

	heterocycles.(K3)
CO4	apply the knowledge obtained through the course to predict the outcome of reactions and devise solutions to unknown problems.(K3)

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A	1	\sim	Р		
C01	K											1			
	3	3	3	2	2	2	3	3	3	0	3	3	2	3	3
CO2	K										S				
	3	3	3	2	2	1	3	3	3	3	3	3	2	0	3
CO3	K										5				
	3	3	3	2	1	2	2	1	3	2	3	3	2	3	3
CO4	Κ														
	3	3	2	0	2	2	3	3	3	3	3	3	1	3	3
Cours	Κ									0					
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

Jnti Jomain,

	Course Code:	Credits											
	PYT1103	Applied Physics – II	L	Т	Ρ								
	Semester: II	Total Contact Hours: 45	2	1	0								
		List of Prerequisite Courses											
Standa	ard XII th Physics, A	pplied Physics – I (PYT1101)											
	Lis	t of Courses where this course will be prerequisite											
This is	a basic Physics c	ourse. This knowledge will be required in almost all subjects la	ter o	n.									
	Descrip	tion of relevance of this course in the B. Tech. Program											
The kn	lowledge gained f	rom this course is required for understanding various chemica	l eng	ineer	ing								
concep	ots that will be in	troduced in courses such as momentum transfer, reaction	engi	neeri	ng,								
separa	tion processes, th	iermodynamics, neat transfer, etc.	D -										
Sr. No.		Course Contents (Topics and Subtopics)	Re F	quir lours	ea S								
	Quantum Mech	anics											
	Introduction to q	uantum physics, black body radiation, ex_{μ} 'anation using the											
1	photon concept,	photoelectric effect, Compton effect, dc Broglie hypothesis,		25									
_	wave-particle du	ality, Born's interpretation of the wave function, verification											
	of matter waves,	uncertainty principle, Schrödinger wave equation, particle in											
	Dox, quantum ha	Agenetic Properties of Materials											
	Introduction to th	haghelic Properties of Materia's											
	electrostatics e	lectric current and the continuity equation revision of the											
	Introduction to the 'del' operator and vector calculus, revision of the laws of electrostatics, electric current and the continuity equation, revision of the laws												
•	of magnetism.	0		~~									
2	Polarisation, per	meability and dielectric constant, polar and non-polar		20									
	dielectrics, interr	nal fields in a solid, Clausius-Mossotti equation, applications											
	of dielectrics.	.0											
	Magnetisation, p	ermeability and susceptibility, classification of magnetic											
	materials, ferrom	hagnetism, magnetic domains and hysteresis, applications.		45									
		Iotal		45									
1	Physics: Vole 1	and IL_D Halliony and P. Posnick Wiley Eastern											
L	Lectures on Phy	sice: Vols 1 II and III – P. P. Equipman, P. B. Leighton and											
2	M. Sands, Naros	Sa.											
3	Concepts of Mod	dern Physics – A. Beiser, McGraw-Hill.											
4	Solid State Phys	ics – A J. Dekker, 1957, MacMillan India.											
5	Perspectives of	Modern Physics – A. Beiser, McGraw-Hill (1969)											
		Course Outcomes (Students will be able to)											
CO1	do simple quant	um mechanics calculations.											
CO2	define various te	arms related to properties of materials such as, permeability, po	olariza	ation,	ı								
	etc.	a basis lows related to guantum machanics as well as many t	0.07	1									
CO3	state some of the	e pasic laws related to quantum mechanics as well as magneti	c and	1									
	uelectric proper	וופט טו ווומנפוומוט.											

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1.	P02	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			Р		
C01	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	2	3	2	1	2	1	3	2	3	3	3	3	0	3	2
CO3	K														
	2	3	2	1	2	0	3	3	3	0	3	3	1	3	2
Cours	K														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 4
	MAT1102	Applied Mathematics – II	L	Т	Ρ
	Semester: II	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
HSC S	Standard Mathematics, App	blied Mathematics – I (MAT1101)			
Thic ic	LIST OF COU	rses where this course will be prerequisite	oto In	tor	
11115 15	Description of r	elevance of this course in the B Tech Program		ller.	
Applie	d Mathematics is beyond	crunching numbers. It is useful for solving real-life p	roble	ems a	and
make	an impact in the world,	technology being one of those fields. The knowledge	ge ga	ained	is
require	ed for solving various math	nematical equations in several Chemica! Engineering o	cours	es si	ıch
as ME	BC, Momentum Transfer,	Reaction Engineering, Separation Processes, Therr	nody	nam	CS,
and se	everal others.	5	Do	auir	od
	Course Co	ntents (Topics and Subtopics)	Re F	lour	eu S
	Numerical Methods I:	~	-		-
	Solutions of system of lin	ear equations (Gauss-elimination, LU-			
	decomposition, and other	rs)			
1	Numerical methods for so	blving non-linear algebraic/transcendental, Newton's		15	
	Numerical solution set of	Faisi memous Inf linear algebraic equations: Jacobi, Gauss Siedel			
	and under /over relaxatio	n methods			
	Numerical Methods II:	8			
	Interpolation and extra	polation for equal and non-equal spaced data			
2	(Newtons Forward, Newt	ons backward and Lagrange)		15	
	Numerical integration (tra	apezoidal rule, Simpson's Rule)			
	Fuler's method and Tavic	or series method			
	Differential Equations I				
	Differential Equations: S	Solution of Higher order ODE with constant and			
3	variable coefficients an	d its applications to boundary and initial value		15	
	problems, Series solut	tion of differential equations, Bessel functions,			
	Differential Equations I				
	Fourier series, Laplace	Transforms and their application in differential			
4	equation (both ODEs PD	Es)		15	
	Partial Differential Equal	ons, Classification of higher order PDEs, Solution of			
	parabolic equation using	separation of variables		<u> </u>	
		Iotal		60	
	Krevszig, E.: Advanced I	Engineering Mathematics: 10 th ed.: Wiley Global Educ	catior	า (20	10)
1	(Officially Prescribed)				ŕ
2	Iyengar, S. R. K.; Jain, I	R. K. Advanced Engineering Mathematics; 4 th ed.; Al	pha	Scie	nce
	(2014)	K : Jain D. K. Numariaal Mathada far Caiantifia and	––––	incor	ina
3	Computation: 4 th Ed : Nev	κ K., Jain, R. K. Numerical Methods for Scientific and κ Age International (P) I td. (2004)	Eng	meer	ing
4	Boyce, W. E.; DiPrima R.	. C. Elementary Differential Equations; 10 th ed.; John V	Viley	& S	ons
4	(2012)	· · ·	-		
5	Brown, J. W.; Churchill	, R. V. Fourier Series and Boundary Value Proble	ems;	8 th (ed.;
	McGraw-Hill Higner Educ	cation (2011)			
	Course	Outcomes (Students will be able to)			
CO1	solve system of linear alc	ebraic equations.(K3)			
CO2	do numerical integrations	of functions.(K3)			
CO3	solve higher order ODE b	by analytical methods.(K4)			
CO4	solve initial value problem	ns using numerical methods.(K3)			
CO5	apply Fourier series and	Laplace transform techniques to solve ODE and PDE.	(K3)		

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α		~	VР		
C01	K											~	0		
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K											0			
	3	3	3	2	3	2	3	3	3	0	3 /	1	2	3	2
CO3	K										14				
	4	3	2	1	2	0	3	3	1	3	3	3	1	3	3
CO4	K										5				
	3	3	3	3	2	2	2	2	3	3	3	2	2	3	2
CO5	K									20	D-1				
	3	3	2	2	1	2	3	3	3	27	3	3	2	3	3
Cours	K									~					
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

ate Contril. dve domain; A,

	Course Code:	Course Title:	Cr	edits	= 4
	CET1507	Process Calculations	L	Т	Р
	Semester: II	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
5	Standard XII th Mathe	ematics, Chemistry, Physics			
	Li	ist of Courses where this course will be prerequisite			
This	is a basic Course.	This knowledge will be required in ALL subjects later.			
	Descri	ption of relevance of this course in the B. Tech. Program			
The co	urse introduces var	ious concepts used in Chemical Engineering to the students. Th	e kno	wled	je of
this cou	urse is required for	In ALL B. Tech. courses in the subsequent semesters including tr	ne pro		NOIK.
impact	s and others.	s situations such as process selection, economics, sustainability	, כווע		entai
Sr		0	D	مسنة	ha
No.		Course Contents (Topics and Subtopics)		Hour	s S
1	Introduction to c	hemical process calculations, Overview of single- and		~	
L	multistage operation	ons, Concept of process flow sheets		2	
2	Revision of Units a	nd Dimensions, Dimensional analysis of equations,		4	
	Mathematical tech	niques		2	
3	Material balance in	position relationship, Types of now rates		Ζ	
4	processes	i non-reacting systems. Application to single- and multistage		8	
5	Stoichiometry	C .		2	
6	Material balance in	reacting systems: Application to single- and multistage		6	
0	processes	2		0	
7	Behavior of gases	and vapors		4	
8	Introduction to Psy	chrometry, Humidity and air-conditioning calculations.		6	
9	Calculation of X-Y	diagrams based on Raoult's law.		2	
10	Applications of ma	terial balances to multiphase systems		6	
11	Basic concepts of	types of energy and calculations		2	
12	Application of ener	gy balance to non-reacting systems		6	
13	Application of ener	gy balance to reacting systems		6	
14	Fuels and combus	tion		4	
		Total		60	
		List of Text Books/ Reference Books			
1	Elementary Princi	ples of Chemical Processes, Felder, R. M. and Rousseau			
2	Chemical Process	s Principles, Hougen O. A., Watson K. M.			
3	Basic Principles a	rid Calculations in Chemical Engineering, Himmelblau,			
4	Stoichiometry, Bh	att B. I. and Vora S. M.			
		Course Outcomes (students will be able to)			
	convent units of SI	mple quantities from one set of units to another set of units.(K2) as and for compositions, energy usages, etc. in various processes	s and	nroce	200
CO2	equipment such a	is reactors, filters, dryers, etc. (K3)	Junu	pioce	,55
CO3	apply material bal	ances in multiphase systems.(K3)			
CO4	apply energy bala	nce to various systems.(K3)			_

	Mapping of Course Outcomes (Cos) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			Р		
C01	CO1 K														
	2	3	2	0	2	1	3	3	3	3	3	3	1	3	2
CO2	K														
	3	3	3	2	2	2	3	3	3	3	3	2	2	3	3
CO3	K														
	3	3	1	2	2	1	3	3	3	2	3	3	1	3	3
CO4	K														
	3	3	3	2	0	2	3	3	3	3	3	3	2	2	3

Cours	K					_									
e	3 3 2 Strong	$\frac{3}{0}$	2 ributio	2 0.2 M	2 Indora	$\frac{3}{100}$	3 Tributi	$\begin{vmatrix} 3 \\ -2 \end{vmatrix}$		<u>3</u>	<u>3</u>		ibutio		3
	K, Knov	vledge	level f	rom co	ognitive	e doma	ain; A,	Affect	ive dor	nain; P,	Psych	omotor d	omair	וו ו	
	Course	Code	:		-		Co	urse T	Title:		-	0	Cr	edits	s = 2
	PYP1	101				F	Physic	s Lab	orator	у	- C	V	L	т	Р
	Semes	ster: II				То	tal Co	ntact	Hours	: 60	0		0	0	4
			·		List	of Pre	erequi	site C	ourse	S	7				
A	Applied Phy	ysics –	· I (PY	Г1101))						5				
			List o	of Cou	rses v	vhere	this c	ourse	will b	e prere	quisite				
This	is a basic	Physic	s Labo	oratory	cours	e. This	s know	ledge	will be	require	ed in alr	nost all s	ubjec	ts lat	er on.
		Des	criptic	on of r	elevar	ice of	this c	ourse	in the	B. Tec	h. Pro	gram			
Studen	ts will be a	able to	learn	variou	IS CON	cepts I	by doi	ng exp	perimo	nts on (differen	t topics.	This I	know	ledge
will be	required in	n almo pring c	st all s	SUDJECI	s later	on. I	nis kn	owied Lin co	ge is a	uso req	uirea to	or unders	standi	ng va	arious
engine	ering. sepa	aration	proces	sses. t	hermo	dvnan	nics. h	eat tra	nsier.	etc.	5 11011		ansie	1, 100	action
Sr.	3,		I	,		-)	,						R	eaui	red
No.			Co	urse (Conter	nts (To	opics	and S	ubtopi	cs)				Hou	ſS
1	Viscosity		5												
2	Thermisto			6											
3	Thermal of			5											
4	Ultrasonic	c interf	erome	ter										6	
5	Photoeleo	ctric eff	fect				5						5		
6	Hall effec	t					õ						6		
7	Newton's	rings					<u>, </u>							5	
8	Dispersiv	e powe	er of pr	ism		-6-								8	
9	Laser diff	raction				~~~								8	
10	Resolving	g powe	r of gra	ating		5								6	
						otal								60	
1					St OT I	ext BO		Refere	nce B						
1	Physics	: Vols.	I and I	I - D.	Hallida	ay and	R. Re	snick,	Wiley	Lasterr	1	-1			
2	Lectures	s on Ph	IYSICS:	VOIS.	, II and	1 III — I	R. P. F	eynma	an, R.	B. Leigi	nton an	a			
3	M. Sanu	$\frac{S}{S}$, Naro	odorn I	Dhycio	<u>د ۸</u>	Poicor		row L	;11						
<u>з</u>	Introduct	tion to	Moder	n Onti	$\frac{3-A}{C}$				nn. • Dublia	ations					
5	Ontical E	lion lo Libro C	omenu	nicatio	$\frac{1}{2}$		JWIES			alions.					
6			nerime	nte wi	ith I AG			Siroh	i Wilo	v Easta	rn				
7	Ontoplar			Milson	and 1		- R. J.	$\frac{3101}{20}$		rontico	Lall Ind	dia			-
8	Liltracon		athode	A hne	nnligat	ione		-3, 2110 7 But		h	1 10/1 1110	uia.			
9 9	Oltrasonics: Methods and Applications – J. Bitz, Butterworth Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH														
5		001001		ny – I. OURSE	Outer	mes	stude	nts w	ill he a	ble to					
CO1	1 Apply various laws which they have studied through experiments (K3)														
CO2	Measure	transp	port pr	opertie	s like	viscos	ity, coi	nductiv	/ity, etc	c.(K4)	/				
CO3	Explain t	the app	olicatio	n of a	coustic	cavita	ation (I	<2)	-						

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A			Р		
C01	K														
	3	3	3	2	2	1	3	3	3	3	3	3	2	3	3
CO2	K														
	4	3	3	2	3	2	3	3	2	3	3	3	0	2	3
CO3	K														
	2	3	2	1	2	0	3	3	3	3	1	3	1	3	2
Cours	K	3	3	2	3	2	3	3	3	3	3	3	2	3	3

е	4														
	З,	Strong	g Conti	ributior	n; 2, M	odera	te Con	tributio	on; 1, l	Low Co	ontribut	ion; 0, N	lo Contri	bution	
	V	Know	ladaa	loval f	rom or	anitiv	dom		A ffooti	vo dor	nain. D	Dough	moto de	moin	

K, Knowledge level from cognitive domain; A, Affective dom	nain; P, Psychomoto. domain
	OV.
	N

	Course Code:	Course Title:	Cre	dits	= 2					
	CHP1132	Organic Chemistry Laboratory	L	Т	Ρ					
	Semester: I	Total Contact Hours: 60	0	0	4					
		List of Prerequisite Courses								
Stand	ard XII th Organic C	hemistry Laboratory								
	Lis	t of Courses where this course will be prorequisite								
All the	Applied Chemistry	y Practicals								
	Descrip	tion of relevance of this course in the B. Tech. Program								
The construction of orgonalized technology of the construction of	ourse is relevant for ed to basics of or cochemical propert ganic reactions le tallization and/or d	ganic separations and identification of organic compounds be ies. The laboratory training is crucial for the students to carry eading to separation of crude products followed by purif istillation or related methods.	stude ased v out icatio	ents on tl work n us	are neir -up sing					
		Course Contents (Topics and Subtopics)	Re F	quir lour:	ed s					
1	a) Principle propertie b) Principle	s of qualitative separation of organic mixtures using physical es, chemical properties and their combination s of quantitative separation of organic mixtures using		4						
	physical propertie	es, chemical properties and their combination		4						
2	 a) Separation of b) Separation of c) Separation of d) Separation of e) Separation of 	solid-solid water insoluble binary organic mixtures solid-solid partly water soluble binary organic mixtures solid-solid mixtures by fractional crystallization liquid-liquid mixtures by distillation liquid-liquid mixtures by solvent extraction		5X4 2X4 2X4 2X4 2X4 2X4						
		Total		60						
		List of Textbooks/Reference Books								
1	Arthur, Vogel. Te group Ltd, 1989	extbook of Practical Organic Chemistry, 5 th edition, publishe	ers L	ongn	nan					
2	F.G. Mann and E Longman	3.C. Saunders, Practical Organic Chemistry, 4 th edition publisl	ned b	y Ori	ent					
3 Keese, R, Martin P. B, and Trevor P. Toube. Practical Organic Synthesis: A Student's Gu John Wiley & Sons, 2006.										
	6	Course Outcomes (Students will be able to)								
CO1	work safely in the	e organic chemistry laboratory.(K3)								
CO2	separate binary of	organic mixtures by multiple techniques.(K4)								
CO3	understand basic quantitatively.(K3	c principles for separation of binary organic mixtures qualitative 3)	ely an	d						
	2									

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		А			Р		
C01	K														
	3	3	3	2	2	2	3	3	3	3	3	3	0	3	3
CO2	K														
	4	3	3	2	3	2	3	3	0	3	3	3	2	2	3
CO3	K														
	3	3	1	2	1	2	2	3	3	3	3	1	2	3	1
Cours	K														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

A Contraction of the second

	Course Code:	Course Title:	Cr	edits	= 2
	HUP1101	Communication Skills	L	Т	Р
	Semester: II	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
5	Standard XII th Englis	h 🥂			
	Li	st of Courses where this course will be prerequisite			
All c	ourses in this and s	ubsequent semesters			
	Descri	ption of relevance of this course in the B. Tech. Plogram			
This is	an important course	e for the effective functioning of an Engineer and a Technologist.	Com	nunic	ation
skills a	re required in all col	urses and professional career.	_	-	
Sr. No.		Course Contents (Topics and Subtopics)	R	equir Hour	ed s
1	Development of co	mmunication skills in oral as well as writing		10	
2	The writing skills sl writing, letter drafti	hould emphasize technical report writing, scientific paper ng, etc.		14	
3	The oral communic	cation skills should emphasize presentation skills.		10	
4	Use of audio-visua presentation	I facilities like powerpoint, LCD. for making effective oral		14	
5	Group Discussions			12	
		Total		60	
		List of Text Books/ Peference Books			
1	Elements of Style	– Strunk and White			
	1	Course Outcomes (students will be able to)			
C01	write grammar eri	or free technical reports in MS Word or equivalent software.(K3)			
CO2	make power point	t slides in MS PowerPoint or equivalent software.(K3)			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
						N		S		Α			Р		
C01	K					ñ									
	3	3	3	2	2 (2	3	3	3	3	3	1	2	3	3
CO2	K				V										
	3	3	3	2	0	2	3	1	3	3	2	3	2	3	3
Cours	Cours K														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

Semester III

	Course Code:	Course Title:	Cre	= 3							
	BST1110	Basics of Biology and Applications to Technology	L	Т	Ρ						
	Semester: III	Total Contact Hours: 45	2	1	0						
		List of Prerequisite Courses									
Standard XII ^m Biology											
List of Courses where this course will be prerequisite											
Safety studies pertaining to Chemicals, Pharmaceuticals, Polymers, cosmet.cs, Lubricants,											
Description of relevance of this course in the R. Terr. Program											
This interdisciplinary course will help a student understand basics of Human biology along with											
certain terminologies to enable them to read contemporary research pertaining to important											
technological developments. The course will help a student to understand the safety evaluation of											
materials as per regulatory guidelines											
	Course Contents (Topics and Subtopics)										
	Overview of	Basics of Human Anatomy and Physiology, the									
1	terminologies used etc. Definitions of Anatomy, Physiology, Histology, Biochemistry, Homoeostasis, Health, Disease, Toxicity, Safety, Genotoxicity, etc. Sustement that make the human hady, the estimate behind introducing the										
										subject to the technology students of Pharma foods Polymers Surface	
		coatings, Oils, Textiles, Dyes									
	Overview of the Cell Functioning as a whole unit and its organelles with										
2	their functions and its applications to technology. An overview of normal cell										
	division, cell death by apoptosis, necrosis, Cancerous growth, metabolites/										
	energy production, cellular secretions, different types of cells, cell repair,										
	Overview of	Biomaterials: Biodegradable. Biocompatible and their									
3	technological applications										
Í	Practical Applications: Design some simple experiments to evaluate toxicity										
4	using cellular experiments, organisms, animals etc. OECD guidelines.										
	Concept of Safety studies and industrial relevance. (oral, dermal, inhalation)										
5	(allergy) biocom		10								
	OECD, ISO to name a few.										
6	Irritation potentia		5								
		Total		45							
		List of Textbooks/Reference Books									
1	R. K. Goyal. Human Anatomy and Physiology, Ahmedabad, India.										
2	H. P. Rally, M. M. Dale, J. M. Killel, Malmacology Ross and Wilson's Anatomy and Physiology in Health and Illness Anne Waugh and All										
 	Online quidelines of OECD_ISO_ICH										
Course Outcomes (Students will be able to)											
CO1	understand basic concepts and terminologies of Biology.(K2)										
CO2	appreciate interd	isciplinary nature of biology and will be able to design and exe	cute	simp	le						
	experiments.(K3)										
CO3	understand abou	understand about the concept of toxicity/safety and its relevance to technology and its									
	applications in everyday life.(K2)										

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			Р		
C01	Κ														
	2	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	K														
	3	3	3	2	2	2	3	1	3	3	2	1	2	2	3
CO3	K														
	2	3	1	0	2	1	3	3	3	0	3	3	1	3	2
Cours	K	3	3	2	2	2	3	3	3	3	3	3	2	3	3
е	3														
---	----	--------	-------	---------	---------	--------	--------	----------	----------	--------	----------	-----------	-----------	--------	--
	3,	Strong	Contr	ibutior	ı; 2, M	oderat	te Con	tributio	on; 1, l	Low Co	ontribut	ion; 0, N	lo Contri	bution	

K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomoto: domain

	Course Code:	Course Title:	Cre	dits	= 3						
	GET1110	Basic Mechanical Engineering	L	Т	Ρ						
	Semester: III	Total Contact Hours: 45	2	1	0						
		List of Prerequisite Courses									
None	<u>;</u>	0									
	L	ist of Courses where this course will be Prerequisite									
Mate	erial Technology (P	CB1302), Engineering Mechanics and Strength of Materials (GET	111	7),						
Envir	onmental Science	and Technology (HUT1106)									
	Descrip	tion of relevance of this course in the B. Tech. Programme									
To ac	quaint the students	s with synthesis, properties and applications of various industrial in	orgai	nic							
chem	licals	<u></u>									
Sr.	Course Contents (Topics and subtopics)										
No.			F	lour	S						
1	Introduction to 1	Thermodynamics: First Law of Thermodynamics, Steady-flow		3							
	energy equation,	Second Law of Thermodynamics									
	Properties of S	team and Bollers: Steam formation, Types of steam, Steam									
2	Properties – Entri Stoom Boiloro: C	alpy, Simple numerical for finding enthalpy and dryness fraction		6							
	Steam Bollers: C	Jassincation, working principle of Cochran, Babcock & Wilcox,									
	L C Engines: Cl	assification Working 2-stroke A-stroke C L and S L Engines									
	with P-V diagram	s Definitions and simple numerical for determining indicated									
3	nower Brake nov	ver Mechanical efficiency Indicated thermal efficiency and		6							
	Brake thermal eff	iciency									
	Prime Movers: Classification of Prime movers. Working principle of steam, gas										
4	and water turbines, Concept of impulse and reaction steam turbines										
	Compressors:	Classification of compressors, Reciprocating compressors,									
5	Single-stage and multistage compressors, P-V diagram, Rotary compressors,										
5	Fan, Blower & C	Compressors, Centrifugal and axial compressors, Application of		4							
	compressors										
6	Pumps: Classific	cation of pumps, Reciprocating pumps, Centrifugal pumps, Axial		4							
	pumps, Gear pun	nps, Maintenance of pumps	<u> </u>								
	Nomonolaturo	OP of reingerator and neal pumps, Classification of reingerants,									
7	refrigeration cycl	Methods of increasing COP of VCPS Vanour absorption		5							
	refrigeration syste	e, methods of increasing COI of VCINS, vapour absorption									
	Renewable Ene	rgy: Role and importance of nonconventional and alternate									
8	energy sources s	uch as solar, wind, ocean, bio-mass and geothermal		4							
	Transmission of	Power: Introduction to various drives such as belt, rope, chain									
9	and gear drives, I	ntroduction to mechanical elements such as keys, couplings and		5							
	bearings in powe	r transmission (No numericals)									
	Properties and A	Applications of Engineering Materials: Metals –ferrous, cast-									
	iron, tool steels a	nd stainless steels and non-ferrous aluminium, brass, bronze									
10	Polymers – Therr	noplastic and thermosetting polymers		4							
	Ceramics – Glass	s, optical fibre, glass, cermets									
	Composites – fibi	re-reinforced composites, metal-matrix composites	<u> </u>	45							
		I ist of Text Books/ Deference Books	L	45							
1	Nag P K Engine	pering Thermodynamics: 5 th ed · McGraw Hill Education (2012)									
2	Morse Frederick	T Power Plant Engineering: 3 rd ed · Van Nostrand Painhold Inc. (1	952)								
<u> </u>	Rallanev D I Th	ermal Engineering: Engineering Thermodynamics & Energy Conve	arcin	n							
3	Techniques: 5 th e	d.: Khanna Publishers (1966)	10101								
4	Lal. J. Hvdraulic I	Machines Including Fluidics: 6 th ed.: Metropolitan Book Co. Pvt. Ltc	1. (20	16)							
5	Twidell John We	rr Tony Renewable Energy Resources: 3 rd ed : Routledge (2015)	. (_0	_~/							

6	Rai, G. D. Non-conventional Energy Sources; Khanna (1988)
8	Rattan, S. S. Theory of Machines; 5 th ed.; McGraw Hill (2019)
6 7 8	Rai, G. D. Non-conventional Energy Sources; Khanna (1989) Aora, C. P. Refrigeration and Air Conditioning: 4" exit. (McGraw Hill (2021) Rattan, S. S. Theory of Machines; 5" ed.; McGraw Hill (2019)
	0. 2 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C
	Abbrouch

	Course Outcomes (Students will be able to)											
CO1	discuss the steam formation process and its properties. (K2)											
CO2	understand basics of heat transfer, refrigeration and I. C. Engines. (K2)											
СОЗ	understand mechanism of power transfer through belt, rope and gear drives and understand the properties of common engineering materials and their applications in engineering industry. (K3)											
CO4	explain the working principles of power-absorbing devices such as pumps and compressors and explain need and importance of various renewable energy sources. (K2)											

		Μ	appin	g of C	ourse	Outco	omes	(Cos)	with P	rogra	mme O	utcome	es (Pos)		
		P01	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α	5		Р		
C01	K										1				
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K														
	2	3	1	0	2	1	3	1	3	3	3	3	1	3	2
CO3	K								- 1						
	3	3	3	2	2	2	3	3	3	3	2	3	2	2	3
CO4	K								~						
	2	3	2	1	2	0	3	3	2	3	3	3	1	3	2
Cours	K							1	-						
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

1001001 1000 14Coology 14Coology

	Course Code:	Cre	dits	= 4	
	PHT1081	SPL1: Pharmaceutical Formulation Technology – I	L	Т	Р
	Semester: III	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
Stand	ard XII Science	0			
	Lis	t of Courses where this course will be prerequisite			
SPL5:	Pharmaceutical F	ormulation Technology – II (PHT1082)			
To Ave	Descrip	tion of relevance of this course in the B. lech. Program			
10 trai	in the students with	and stabilization	ion,		
aeros			Re	auir	ed
		Course Contents (Topics and Subtopics)	H	lour	5
1	Overview of Ph	armaceutical Industry with introduction and classification of		F	
	pharmaceutical of	losage forms and routes of drug administration		5	
2	Origin and Dev	elopment of the Pharmacopoeia – IP/BP/USP, Introduction		4	
	to monographs,				
3	Solubilization tec	chniques		3	
	Monophasics (C	Jrai and Topicals) (solution, syrups, elixirs, linctus,			
1	• Preformulation	ulops, ear ulops, etc.)		5	
4	Freionnulation		5		
	Ouality Control				
	Large-scale Ma	nufacturing of Monophasics			
5	Large scale ma	nufacture and packaging with focus onequipment		3	
	• Layout design a	and unit operations			
	Biphasics - Sus	pensions			
	Preformulation				
	 Principles and 	Stabilization techniques			
6	 Formulation De 		5		
	Evaluation				
	Large scale ma	inufacture and packaging with focus onequipment			
	Layout design a	and unit operations			
	Bipnasics - Em	uisions			
	• Theories of em	ulsions			
7	Formulation			5	
	Evaluation inclu	idina stress testina		Ŭ	
	Large scale ma	nufacture and packaging with focus onequipment			
	• Layout design a	and unit operations			
	Ointments	× · · · · · · · · · · · · · · · · · · ·			
	Preformulation	0			
8	Formulation	0		5	
	Evaluation			Ŭ	
	Large scale ma	inufacture and packaging with focus on equipment			
	• Layout design a	and Onit operations			
	• Preformulation				
	Formulation				
9	Evaluation			5	
	Large scale ma	nufacture and packaging with focus on equipment			
	Layout design a	and Unit operations			
	Gels				
	Preformulation		ĺ		
10	Formulation		5		
	Evaluation	where the second s		•	
	Large scale ma	inuracture and packaging with focus on equipment			
11	Suppositories			5	
<u> </u>	Preformulation			5	
	Formulation				
	Evaluation				
	Large scale ma	nufacturing with focus onequipment			

	Layout design and Unit operations										
	Aerosols										
12	Containers and Propellants	5									
12	Formulation of aerosols	5									
	Evaluation of aerosols										
	Stability Studies										
	Introduction to International Conference on Harmonization										
	Climatic zones as per ICH										
	ICH guidelines for Stability Testing of New Drug Substances and	_									
13	Products [Q1A (R2)]	5									
	• ICH guidelines for Stability lesting: Photostability lesting of New Drug										
	Substances and Products [Q1B]										
	• ICH guidelines for Stability festing for New Dosage Forms[O10]										
		60									
	List of Toythooks/Deference Books	00									
	Dharmaceutical Docade Form And Drug Delivery Systems, Howard C. Ancel	Nicholas C									
1	Priamaceutical Dosage Form And Drug Delivery Systems, Howard C. Ansel, Popovich Lord V Alien 6 th edition 1995	Micholas G.									
	Remington - The Science And Practice Of Pharm: cv (Vol 1& 2) David B Trov	21 st edition									
2	2006 Lippincott Williams & Wilkins	, ZI Conton,									
	Tutorial Pharmacy J.W. Cooper, Colin Gunn, 4 th edition, 1950, Sir Isaac Pitman	& Sons Ltd.									
3	London	,									
1	Pharmaceutics: The Science of Dosage Form Design, Michael E. Aulton, 199	98, Churchill-									
4	Livingstone Dermatological Formulations, B. W. Barry, 198, New York, Marcel D	Dekker									
5	Pharmaceutical Production Facilities: Design & Applications, Graham C. Cole	e,1 st Edition,									
	1990, Ellis Horwood										
6	Theory & Practice Of Industrial Pharmacy, Leon Lachman ,Herbert A. Liebern	1an& Joseph									
	Kanig, 3 ^{ra} edition, 1987, Lea &Febiger, Philadelphia										
7	ICH Guidelines										
8	Introduction of Pharmaceutical Dosage Forms, Howard Ansel, 3 th edition, 1	1981, Lea &									
	Febiger	ited Ctetee									
9	Pharmacopoeias: Indian Pharmacopoeia, British Pharmacopoeia, Un	ited States									
	Phamacopoela, all editions										
	overlain principles of proferry lations and basic formulation considerations for m	ononhocio									
CO1	explain principles of preformations and basic formulation considerations for m	ionophasic									
<u> </u>	concentualize and develop monophasic liquid oral and tonical formulations (KA)										
CO2	conceptualize and develop hiphasic oral products and semisolid formulations (K4	(<u>/</u>)									
	Describe unit operations, large scale manufacturing and layout for monophasic	hinhasics									
CO4	semisolids, suppositories and aerosols.(K3)	, 5101105105,									
C05	explain stability e a uation and stabilization of products.(K2)										
	<u></u>										

		Ma	apping	g of Co	ourse	Outco	omes ((COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	FO2	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
			2					S		Α			Р		
C01	K	X.													
	2	3	3	2	2	2	3	3	3	3	1	3	2	3	3
CO2	K														
	4	3	2	2	3	3	2	3	3	2	3	2	2	3	2
CO3	K														
	4	3	1	0	2	1	3	2	2	3	3	3	1	2	3
CO4	K														
	3	3	3	2	1	1	2	3	3	3	2	0	2	1	2
CO5	K														
	2	3	2	2	3	2	3	3	2	2	3	3	2	3	3
Cours	K														
е	3	3	3	3	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

por de la constitución de la con

	Course Code:	Course Title:	Cre	dits	= 3							
	CET1704	Material Technology	L	Т	P							
	Semester: III	Total Contact Hours: 45	2	1	0							
		SV.			1							
		List of Prerequisite Courses										
laaA	ied Physics – I (F	PYT1101). Applied Physics – I (PYT1103)										
1.1.												
		List of Courses where this course will be prerequisite										
Equi	pment design, Fir	nal Year Project, Process Development and Engineering, Project Engineer	ing ar	nd								
Ecor	nomics											
		Ś										
	[Description of relevance of this course in the B. Tech. Program										
Sele	ction of Material of	of Construction for a given application, Maintenance and corrective measu	res fo	r vari	ous							
Engi	neering materials	s, Troubleshooting										
Sr.		Course Contents (Topics and subtopics)	Re	quir	ed							
NO.		teriele. Classification Eurodomentals of Exploration properties of	1	lours	<u>;</u>							
1	Engineering Ma	aterials: Classification, Fundamentals of Ergineering properties of		12								
2	materials, Phase diagrams, Study of ferrous and nonferrous materials											
<u> </u>	Composite and Smart Materials 3 Structure-Property Pelationshin: Substanic to macrosponic level Modification and											
3	control of materi	al properties		10								
4	Theory of Failu	re of Materials: Fracture, creep and fatigue		8								
	Corrosion Engi	neering: Electrochemical principles, different types of corrosion,		-								
5	Polarization, Me	chanisms of corrosion control and prevention, Preventive coatings.		8								
	Corrosion behav	vior of industrial materials		0								
6	Critoria for Sold	action of Materials in Champel Dresses industry		1								
0.	Citteria for Sele			4								
		List of Textbooks		45								
1	The Essence of	Materials for Engineers Robert W Messler .1r										
2	Materials Science	ze and Engineering, Rachavan V.										
3	Materials Science	ce and Engineering Van Vlack I. H										
4	Engineering Mat	terials and Applications. Flin R.A., Trojan P.K.										
	ggg	List of Additional Reading Material/Reference Books										
1	Material Science	e and Engg, Callister										
2	Mechanical Meta	allurgy, Diete.										
		Course Outcomes (students will be able to)										
CO1	resolve the issue	es related to mechanical failure.(K3)										
CO2	troubleshoot cor	rosion-related industrial problems.(K2)										
CO3	learn from incide	ences ('_F').(K2)										
		01										

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
		1	5					S		Α			Р		
C01	Κ		~												
	3	3	3	2	2	2	3	3	3	3	1	3	2	3	3
CO2	Κ														
	3	3	3	2	0	2	3	3	2	3	3	0	2	2	3
CO3	Κ														
	2	3	2	1	2	1	2	3	3	3	2	3	1	3	2
Course	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

	Course Code:	Course Title:	Cre	dits	= 4
	BSTITUZ	Biochemistry		<u> </u>	P
	Semester: III	Total Contact Hours: 60	3	1	0
Ctord		LIST OT Prerequisite Courses			
Standa	ard XII Biology and	t of Courses where this source will be prerequisite			
Pharm Techno	aceutical and Bio blogy and Biotech	chemical Analysis Laboratory, Pharmaceutical Biotechnology, F nology Laboratory or other relevant courses	roce	SS	
	Descrip	tion of relevance of this course in the B. Tech. Program			
To tra biologi carboh enzym involve	in the students vical systems, str hydrates, lipids, n les and their role ed in cell metabolis	with respect to the core chemistry principles involved in fu uctural and chemical biology of macromolecules, includi nucleic acid and vitamins, structure, function and kinetic p in metabolism of living cells, major catabolic as well as anabo sm and quantitative aspects of biochemical analysis of macrom	Inctio ng p prope ilic pa nolect	oning protei erties athwa ules	of ns, of ays
		Course Contents (Topics and Subtopics)	Re H	quir lours	ed S
	Carbohydrates	: Fundamentals of chemistry of carbohydrates, concept of			
	ring structures a glucose, fructose	nd straight chain structure of common carbohydrates e, galactose, lactose, maltose, sucrose, polysaccharides,		5	
1	Qualitative tests	, cellulose / colour reaction: phenyl hydrazine, alkali – oxidation ractical significance		2	
	Metabolic pathw glycolysis, gluco electron transpo	ays and energy yield for breakdown of carbohydrates: neogenesis, citric acid cycle; pentose phosphate pathway, rt chain and coupled oxidative phosphorylation		5	
	Lipids: Fatly aid	ls, waxes, phospholipids, sphingolipids, terpenoids. With		4	
2	Functions & com B-oxidation of fa	nparative distribution of lipids, lipoproteins tly acids, functions of cholesterol & significance		4	
	Rancidity, sap va	alue, iodine value & hydrogenating		4	
	Proteins and A	mino Acids: Structures, pK – isoelectric point,		5	
	essential & non-	essential amino acids, Colour reaction of amino acids			
3	Structure of prot	ein: globular, fibrous		4	
	Structural organ	ization of protein: primary, secondary, tertiary, quaternary		5	
	Elementary Idea	about chromatography & electrophoresis		2	
4	nucleotides, che DNA	mistry of nucleic acids, Structure and functions of RNA &		5	
	Types of RNA: n	nRNA, tRNA&rRNA		5	
	Enzymes: Defin	i jou function nomenclature classification mechanism of			
5	enzyme action, and regulation	specificity of enzymes, enzyme kinetics, enzyme inhibition		5	
	Vitamins and C	o-enzymes: Structures& function of Nicotinamide, nicotinic			
6	acid, riboflavin,	lipoic acid, biotin, thiamine, B6, folic acid, B12, pantothenic cid, vitamins A. D. K. and F		5	
		Total		60	
	Y	List of Textbooks/Reference Books			
1	Principles of Bio	chemistry, Lehninger AL, Nelson DL and Cox MM, 5 th ed.; Mac	Millar	า (20	08)
2	Biochemistry, St	ryer L, Berg JM and Tymoczko JL, 5 ^m ed.; Freeman & Co. (200	<u>)2)</u>		
3	Fundamentals o Sons (2002)	T BIOCNEMISTRY – VOET D. J. and Voet J. G.; Upgrade edition; J	John	Wile	/&
		Course Outcomes (Students will be able to)			
C01	apply of fundam elucidate structu	nental knowledge of chemistry to biological systems and unc ral as well as metabolic role of different macromolecules in the	lersta cell.	and a (K3)	and
CO2	apply analytical samples.(K3)	tests involved in detection of macromolecules in/derived fro	om bi	olog	ical
CO3	understand the applications for catalytic reaction	role of enzymes in cellular environment and their use their practical applications and evaluate and elucidate impac is involved in metabolic pathway.(K2)	in in tofo	dust differ	rial ent
CO4	evaluate and export other.(K4)	plain influence and interactions of different metabolic pathway of	on ea	ch	

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			P		
C01	K											0			
	3	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K											£ .			
	3	3	2	0	2	1	3	3	2	2	3 🖉	0	1	3	2
CO3	K										2				
	2	3	3	2	1	2	3	2	3	3	2	3	2	2	3
CO4	K										5				
	4	3	2	1	2	0	3	3	3	3	7-1	3	1	3	2
Cours	K									~					
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

La Contri, ve domain; A,

	Course Code:	Course Title:	Cre	dits	= 3
	BST1109	Microbiology	L	Т	Ρ
	Semester: III	Total Contact Hours: 60	2	1	0
Ctondo	ard VII Colonaa (A	List of Prerequisite Courses			
Stanua	ard XII Science (A	ny combination of Physics, Chemistry, Mathematics and Biology,)		
Variou	s Technology Cou	rses such as Medicinal Chemistry – II (PHT1056), Environmenta	l Sci	ence	
and Te	chnology (HUT11	06)		CHUC	
	Descri	ption of relevance of this course in the B. Tech. Program			
To fam	niliarize students v	vith diverse microorganisms in different industries like food, dai	ry, b	io-ba	sed
fermer	ntation, oil, pharm	aceutical industry and bioenergy, with diversity or microorganis	ms, r	nicro	bial
cell st	ructure and functi	on, microbial growth and metabolism, environmental factors a	uffect	ing t	heir
growth	and cultivate/co	ntrol growth of microbes using physical and chemical techn	ologi	Ies; \	with
microc	nanisms in dispa	plication, transcription, translation and includgenesis and investigation and include of immune system in defending investigation approach	voive	meni	. 01
microc		ses and role of infiniture system in defending invading pathogene	, R	auir	ed
		Course Contents (Topics and Subtopics)		Hour	s
	Introduction to	Microbiology and its significance (beneficial and harmful) in			
	Foods (Dairy inc	luding pre and probiotics, cheese, vitamins, beverages etc.),			
1	Pharmaceuticals	(Antibiotics, vaccine production, pathogenic organisms		5	
	elc), Olis (biore	mediation, bio-diesel from microorganism etc.), and environ-			
	etc.)				
0	Prokaryotes an	d Eukaryotes - Morphology, structure and function of		-	
2	microbial cells a	nd their components		5	
3	Major Groups o	f Microorganisms - Bacteria, Virus, Yeasts and Molds,		5	
	Rickettsia, Chlar	nydia and Algae		5	
4	Gram Characte	r and staining techniques, Isolation, preservation and		5	
	Nutrient Pequir				
5	sterilization of m	icrobiological modua: Classification of media. Methods of		5	
	sterilization, disi	nfection, sanitation, asepsis		Ū	
	Growth Studie	s (lag phase, log phase, stationary phase, death phase);			
6	concept			5	
	of generation tim	ne; Physical and chemical factors affecting growth of		5	
	microbes	and design Applications Asideshiles Description			
7	Extremophiles	and their Applications - Acidophiles, Basophiles,		5	
	Microscopy (da	rk - Luorscence, atomic force, scanning tunnel, confocal etc.):			
8	Enumeration of I	microorganisms (TPC. Yeast and molds count. MPN.		5	
	turbidometry, rar	ad methods like flow cytometry, etc.)		•	
9	Principles of In	munology		5	
		Total		45	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	List of Textbooks/Reference Books			
1	Microbiolcy by	Prescott, Harley & Klein's 7th Edition, 2008, McGraw-Hill			
<u> </u>		Perczar, 5th edition, 1993, Mcgraw-Hill			
	know the applica	tion of diverse microorganisms in different industries like food d	airv	oil	-
CO1	pharmaceutical.	bio-based fermentation and bio-energy.(K2)	uny,	on,	
000	know the cultivat	tion/control methods for diversity of microorganisms, their physio	logy	and	
CO2	metabolism.(K2)				
<u> </u>	understand the f	low of genetic information from DNA to protein and the mechanis	sms i	nvolv	/ed
	therein.(K2)				
CO4	understand the s	significance of microorganisms in diseases and basic immune sy	stem	aga	inst
1	invading pathoge	ENS.(K∠)			

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		А			P		
C01	K											~	0		
	3	3	2	1	2	1	3	3	3	3	1	3	/ 1	3	2
CO2	K											0			
	3	3	2	1	2	0	1	3	2	3	3	3	1	3	2
CO3	K											6.			
	2	3	3	2	2	2	3	2	3	1	2 🖉	3	2	2	3
CO4	K										0				
	4	3	2	0	2	1	3	3	3	3	3	3	1	0	2
Cours	K										5				
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective nomain; P, Psychomotor domain

, domain; A, Affec

PHP1081         Pr 1: Pharmaceutical Formulation Technology Laboratory - I         L         T         P           Semester: III         Total Contact Hours: 60         0         0         4           List of Prerequisite Courses           Standard XII Science           List of Courses where this course will be prerequisite           Pr 3: Pharmaceutical Technology Laboratory (Chemistry and Formulation) (PHP1044)           Description of relevance of this course in the B. Tech. Program           To train the students with respect to practical aspects of monophasic, bipliasic and topical semisolid pharmaceutical formulation development and quality control thereof.           Course Contents (Topics and Subtopics)           1         Representative examples of monophasic liquids (Preparation, packaging and evaluation)         16           2         Representative examples of suspensions (Preparation, packaging and evaluation)         8           3         Representative examples of suspensions (Preparation, packaging and evaluation)         8           4         Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)         8           5         gels etc. (Preparation, packaging and evaluation)         12           6         Representative examples of suppositories and aerosols (Preparation, packaging and evaluation) <td< th=""></td<>
Laboratory - 1         Image: Contract Hours: 60         0         0         4           List of Prerequisite Courses           Standard XII Science           List of Courses where this course will be prerequisite           Pr 3: Pharmaceutical Technology Laboratory (Chemistry and Formulation) (PH-P1044)           Description of relevance of this course in the B. Tech. Program           To train the students with respect to practical aspects of monophasic, bipliasic and topical semisolid pharmaceutical formulation development and quality control thereof.           Representative examples of monophasic liquids (Preparation, packaging and evaluation)           1           Representative examples of suspensions (Preparation, packaging and evaluation)           12           Representative examples of suspensions (Preparation, packaging and evaluation)           1           Representative examples of suspensions (Preparation, packaging and evaluation)           12           Representative examples of suspensions (Preparation, packaging and evaluation)           12           Course Contents (Topics and aerosols (Preparation, packaging and evaluation)           1           List of Textbooks//Reference Books           <td colspan="</td>
Semester: III         Total Contact Hours: 60         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0</th0<>
List of Prerequisite Courses         Standard XII Science         List of Courses where this course will be prerequisite         Pr 3: Pharmaceutical Technology Laboratory (Chemistry and Formulation) (PHP1044)         Description of relevance of this course in the B. Tech. Program         To train the students with respect to practical aspects of monophasic, biphasic and topical semisolid pharmaceutical formulation development and quality control thereof.         Representative examples of monophasic liquids (Preparation, packaging and evaluation)       Required Hours         1       Representative examples of emulsions (Preparation, packaging and evaluation)       8         2       Representative examples of suspensions (Preparation, packaging and evaluation)       8         3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       12         7       Referementative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         8       Presentative examples of suppositorie
Standard XII Science           List of Courses where this course will be prerequisite           Pr 3: Pharmaceutical Technology Laboratory (Chemistry and Formulation) (PHP1044)           Description of relevance of this course in the B. Tech. Program           To train the students with respect to practical aspects of monophasic, bipliasic and topical semisolid pharmaceutical formulation development and quality control thereof.           Representative examples of monophasic liquids (Preparation, packaging and evaluation)           Representative examples of emulsions (Preparation, packaging and evaluation)           a Representative examples of suspensions (Preparation, packaging and evaluation)           Representative examples of suspensions (Preparation, packaging and evaluation)           Totaraion, packaging and evaluation)           Total           Representative examples of suspositories and aerosols (Preparation, packaging and evaluation)           Total           Sepresentative examples of suppositories and aerosols (Preparation, packaging and evaluation)           Total           6           Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)           Total           6           Presentative examples of suppositorie
List of Courses where this course will be prerequisite         Pr 3: Pharmaceutical Technology Laboratory (Chemistry and Formulation) (PHP1044)         Description of relevance of this course in the B. Tech. Program         To train the students with respect to practical aspects of monophasic, biplasic and topical semisolid pharmaceutical formulation development and quality control thereof.         Required Hours         1       Required Hours         1       Required Hours         1       Representative examples of monophasic liquids (Preparation packaging and evaluation)       8         1       Representative examples of emulsions (Preparation, packaging and evaluation)       8         2       evaluation)       8         3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       12         5       Representative examples of suppositories and aerosols (Preparation, as packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, as packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, as packaging and evaluation)       12
Pr 3: Pharmaceutical Technology Laboratory (Chemistry and Formulation) (PHP1044)         Description of relevance of this course in the B. Tech. Program         To train the students with respect to practical aspects of monophasic, bipinasic and topical semisolid pharmaceutical formulation development and quality control thereof.         Required Hours         Required Hours         Required Hours         Representative examples of monophasic liquids (Preparation packaging and evaluation)         a Representative examples of emulsions (Preparation, packaging and evaluation)         a Representative examples of suspensions (Preparation, packaging and evaluation)         a Representative examples of suspensions (Preparation, packaging and evaluation)         a Representative examples of suspensions (Preparation, packaging and evaluation)         Total 60         Course Contents (Topics and Applications e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)         Semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)         Total 60         List of Textbooks//Reference Books         Total 60         List of Textbooks//Reference Books         Total 60         List of Textbooks//Reference Books
Description of relevance of this course in the B. Tech. Program           To train the students with respect to practical aspects of monophasic, bipliasic and topical semisolid pharmaceutical formulation development and quality control thereof.           Course Contents (Topics and Subtopics)         Required Hours           Representative examples of monophasic liquids (Preparation, packaging and evaluation)         Representative examples of emulsions (Preparation, packaging and evaluation)         8           3         Representative examples of suspensions (Preparation, packaging and evaluation)         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         9         8         9         12         12         12         12         12         12         12         12         12         14         12         12
To train the students with respect to practical aspects of monophasic, bipliasic and topical semisolid pharmaceutical formulation development and quality control thereof.         Course Contents (Topics and Subtopics)       Required Hours         1       Representative examples of monophasic liquids (Preparation, packaging and evaluation)       Representative examples of emulsions (Preparation, packaging and evaluation)       8         3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Lerge-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       8         5       Representative examples of suspensions (Preparation, packaging and evaluation)       8         6       Total       8         7       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       12         7       Narmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)       1
semisolid pharmaceutical formulation development and quality control thereof.         Required Hours           1         Course Contents (Topics and Subtopics)         Required Hours           1         Representative examples of monophasic liquids (Preparation, packaging and evaluation)         16           2         Representative examples of emulsions (Preparation, packaging and evaluation)         8           3         Representative examples of suspensions (Preparation, packaging and evaluation)         8           4         Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)         8           5         Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)         12           6         Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)         8           1         Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia         8           2         Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         1           3         Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         1           4         Transdermal Delivery of Drug A. rkydonieus Florida, CRC Press (1987)         1           5         Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)
Course Contents (Topics and Subtopics)         Required Hours           1         Representative examples of monophasic liquids (Preparation packaging and evaluation)         16           2         Representative examples of emulsions (Preparation, packaging and evaluation)         16           3         Representative examples of suspensions (Preparation, packaging and evaluation)         8           4         Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)         8           5         Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)         12           6         Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)         8           1         Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia         160           2         Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         1           3         Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4           4         Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         1           5         Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         1           6         Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         1
1       Representative examples of monophasic liquids (Preparation, packaging and evaluation)       16         2       Representative examples of emulsions (Preparation, packaging and evaluation)       8         3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       8         5       gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       gels etc. (Preparation, packaging and evaluation)       8         8       12       60         10       Total       60         11       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia       1         12       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       Drug Delivery and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7
1       evaluation)       16         2       Representative examples of emulsions (Preparation, packaging and evaluation)       8         3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       8         5       Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Determine examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia       9         7       Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)       4         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)       5         5       Transdermal Controlled System Med
2       Representative examples of emulsions (Preparation, packaging and evaluation)       8         3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       8         5       gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)       1         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)       4         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)       5         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       Drug Delivery and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekke
2       evaluation)       8         3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       8         5       Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Phackaging and evaluation)       8         8       1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia       9         9       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)       1         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)       4         4       Transdermal Delivery of Drug A Kydonieus Florida, CRC Press (1987)       5         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel D
3       Representative examples of suspensions (Preparation, packaging and evaluation)       8         4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       8         5       Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia       6         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)       5         3       Husa's Pharmaceutical Dispension Martin E. W. Easton Mack Pub. Co. (1971)       4         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)       5         5       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)       6         6       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1987)       6         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)       7         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)       6
4       Large-scale manufacture of one monophasic and one biphasic liquids (Preparation, packaging and evaluation)       8         5       Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Total       60         List of Textbooks/Reference Books         1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1987)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
4       (Preparation, packaging and evaluation)       8         5       Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Pharmaceutical Dispensing Martin E. W. Chien, New York, Marcel Dekker (1987)       7         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)       8         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)       8         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)       8         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1987)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1996)         9       Course Outcomes (Students will be able to)         9       Prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
5       Representative examples of semisolid dosage forms e.g. ointments, creams, gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       Posterentative examples of Textbooks/Reference Books       60         1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia       60         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)       70         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)       70         4       Transdermal Delivery of Drug A Kydonieus Florida, CRC Press (1987)       71         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)       76         6       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1996)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
5       gels etc. (Preparation, packaging and evaluation)       12         6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         7       List of Textbooks/Reference Books       60         1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia       7         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
6       Representative examples of suppositories and aerosols (Preparation, packaging and evaluation)       8         6       Total       60         List of Textbooks/Reference Books         1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
0       packaging and evaluation)       8         Total 60         List of Textbooks/Reference Books         1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
Total       60         List of Textbooks/Reference Books       1         Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
List of Textbooks/Reference Books         1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
1       Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia         2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
2       Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
2       Horwood (1990)         3       Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)         4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
<ul> <li>Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)</li> <li>Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)</li> <li>Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)</li> <li>The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)</li> <li>Pharmaceutical Dosage Forms Vol. I &amp; II, Liebermann, New York, Marcel Dekker (1996)</li> <li>Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)</li> <li>Course Outcomes (Students will be able to)</li> <li>prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid</li> </ul>
4       Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)         5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)
5       Transdermal Controlled System Medications Y. W. Chien, New York, Marcel Dekker (1987)         6       The Theory and Practice of Industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
6       The Theory and Practice of industrial Pharmacy, Lachman Bombay, K. M. Warghese Co. (1976)         7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
7       Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)       8         8       Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)         Course Outcomes (Students will be able to)         Course Outcomes (Students will be able to)         Prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
8         Drug Delivery Devices: Fundamentals and Applications, Tyle New York, Marcel Dekker (1988)           Course Outcomes (Students will be able to)           Prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
Course Outcomes (Students will be able to)  CO1 prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
prepare, evaluate and label Pharmacopoeial and non-Pharmacopoeial monophasic liquid
CO1   prepare, evaluate and laber Pharmacopoelar and non-Pharmacopoelar monophasic liquid
COL and formulations (1/4)
propage avaluate and label Dharmacopagial and non Dharmacopagial hiphasia
CO2   prepare, evaluate and laber Pharmacopoelal and non-Pharmacopoelal bipmasic
nrepare, availate and label Dharmacoposial and non Dharmacoposial comicalid and
CO3 prepare, evaluate and laber manhacopoetal and non-enalmacopoetal semisolid and
Propose introductions in large scale manufacturing and type of container specific to
CO4 Propose unit operations in large scale manufacturing and type of container specific to

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		А			Р		
C01	K														
	4	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	K														
	4	3	2	1	3	1	3	3	2	2	1	3	0	3	3
CO3	K														
	4	3	3	3	2	1	2	3	0	3	2	3	2	2	3
CO4	K														
	3	3	2	1	2	0	3	3	3	3	3	2	1	3	2

Cours	K														
е	4	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychometor domain

	Course Code:	Course Title [,]	Cre	dits	= 2
	PHP1084	Pr 2: Pharmaceutical and Biochemistry Analysis	L	Т	P
	Semester: III	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Organ	ic Chemistry Labo	ratory (CHP1132), Analytical Chemistry (CHT1401)			
	Lis	t of Courses where this course will be prerequisite			
Pr 4: N	Medicinal Natural F	Products Laboratory (PHP1056), Pr 6: Biotechnology Laborato	ry		
(PHP1	L055)	S****			
	Descrip	tion of relevance of this course in the B Tech. Program			
	1		1		
		Course Contents (Topics and Subtopics)	Re	quir Iour:	ed S
1	Qualitative and Wu Method (Bloc	Quantitative tests for Carbohydrates Methods: DNS, Folin- od Sugar)		8	
	Qualitative and Q	Quantitative tests for Amino acids. Proteins and			
2	Precipitation of p	roteins		8	
	Methods: Folin L	owry Method, Biuret Method			
3	Estimation of Ch	olesterol		4	
4	DSC,TGA Demo	n Spectroscopy (Alkali earn metal determinations), nstration		4	
5	NMR, Mass Spe	ctroscopy, GC-MS Demonstration		4	
6	NMR, Mass Spe	ctroscopy problem-solving from recorded spectra		4	
7	Absorption Spec	troscopy (UV/Visible)		4	
8	Fluorescence sp	ectroscopy (Quinine salt), Quenching phenomenon		4	
9	Chromatography monitoring, purity	y assessment of drugs, separation of the mixtures		4	
10	Medicaments in t capsule, ointmer	formulations**. Liquid oral, tablet, injectable, aerosol, it, eye drops, suppositories, lozenges, etc. (one each)		4	
11	Multicomponent Simultaneous e extraction metho	analysis of drugs in combination**. e.g., Using equation method, Isoabsorption point method, Solvent d, Color ⁱ metric and UV methods		8	
12	Calibration of Ab natural oils and glycerin in the ur Polarimetry** Instrument inform of specific optice	be's Refractometer, Estimation of Refractive Index of laboratory solvents, determination of the percentage of aknown by calibration curve. Mation, Optical rotation of dextrose solution, determination l rotation of ethambutol,		4	
	0,	Total		<b>60</b>	
	- A	List of Textbooks/Reference Books			
1	Latest edition of	Indian Pharmacopoeia			
2	Latest edition of	British Pharmacopoeia			
3	Latest edition of	United States Pharmacopoeia			
0.01		Course Outcomes (Students will be able to)			
<u>CO1</u>	prepare samples	tor analysis from bulk.(K3)			
<u>CO2</u>	apply chromatog	raphical concepts for separation of complex mixture.(K3)		Aul -	
CO3	techniques (K4)	iponents of a complex mixtures using spectroscopic and spect	rome	tric	
CO4	apply various and	alytical techniques for qualitative and quantitative analyses.(K3	3)		

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		P01	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A			Р		
CO1	K														
	4	3	2	1	2	1	3	3	3	3	3	3	1	3	2

CO2	K														
	4	3	2	0	3	1	3	3	1	2	3	2	1	3	3
CO3	K												Y		
	4	3	3	3	2	2	1	3	3	3	2	3	2	2	2
CO4	K											-	0		
	3	3	2	1	2	1	3	3	3	3	0	2	1	3	2
Cours	K											0			
е	4	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; F. Psychomotor domain

## Semester IV

	Course Code: GET1117	Course Title: Engineering Mechanics and Strength of Materials	Cre	dits	= 3						
			L	Т	Р						
	Semester: IV	Total Contact Hours: 45	2	1	0						
Stand	ard XII Physics and	List of Prerequisite Courses Mathematics Applied Mathematics - Land - IL Applied Physics -	1								
	Lis	t of Courses where this course will be Prerequisite									
Mate	rial Technology, Stre	ngth of Materials, Environment Science and Technology									
0	Description of releva	ance of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gran	nme							
This	subject will help stu	idents to understand use of basics of Applied Mechanics and	Stre	ength	I Of						
be c	onsidered along wi	the their quantification during design of equipments. It will	s or i also	help	in in						
under	rstanding the cond	itions of equilibrium and their application for analysing th	e pi	roble	ms,						
impor	tance of centre of gr	avity and moment of inertia in Engineering Design, study of diffe	rent	types	s of						
stress	ses and strains occ	urring in various components of the structure including in the	IN CY	/lindr	ical						
In ad	dition. the students	will be acquainted with different advance fibre polymer compos	site n	nater	ials						
used	in industry for variou	us applications and several performance- enhancing construction	n ch	emic	als.						
In sur	nmary, this is a found	dation course for a proficient Design Engineer and Technologist.			<u></u>						
Sr. No.		Course Contents (Topics and subtopics)	Re	equir Iours	ed						
1	Concepts of Force	es, their types, Resolution of forces, Composition of forces,	-	<u>ار ار ا</u>							
	Steps in Engineerir	ng Design, Different types supports and free body diagram		4							
	Equilibrium of Rig	id Bodies - Conditions of equilibrium									
2	Equilibrium of bean	ns trusses and frames		6							
	Problems on analys	sis of beams and trucs.									
	Concept of Centro	bid and Moment of Inertia (Second moment of area) its use									
2	Parallel axis theore	M		F							
3	figures	centroid and moment of mertia of single ligures, composite		5							
	Perpendicular axis theorem, Polar M.I., Radius of gyration.										
	Shear Force and	Bending Moment - Basic concept, S.F. and B.M. diagram for									
4	Problems with conc	upported beams (with or without overhang)		4							
	Stresses and Stra	ains - Tensile and compressive stresses, Strains, Modulus of									
	elasticity, Modulus	of rigidity, Bulk modulus									
F	Thermal stresses a	nd strains		c							
5	Basics of Engineer	ring Design - Steps in the engineering design. Importance of		0							
	analysis, 1-D, 2 I	) and 3-D analysis and interpretation of results. Design									
	philosophies										
6	Theory of Bending	g - Assumptions in derivation of basic equation, Basic		3							
	Problems on Shea	ar Stress - Concept. Derivation of basic formula Shear stress									
7	distribution for stan	dard shapes		3							
	Problems of Shear	stress distribution									
Q	Slope and Deflect	ion of Beams - Basic concept, Slope and Deflection of		Λ							
0	Macaulay's method	supported beams under standard loading		4							
	Thick and Thin Cy	linders - Concept of radial, longitudinal stresses, behaviour of									
9	thin cylinders			4							
	Problems on thin cy	ylindrical and spherical shells sylinders (Theony only)									
	Natural Materials.	Manmade Materials									
	Composite Materia	ls – Types of composite materials and their uses in various									
10	industrial applicatio	ns		6							
	chemicals: Plasticiz	zers and super-plasticizers: Recycling of waste – value									
	addition; Testing of	Materials and its relevance									
		Total		45							

	List of Text Books/ Reference Books								
1	Thadani, B. N. Engineering Mechanics; Asia Publishing House (1966)								
2	Popov, Egor P. Introduction to Mechanics of Solids; Macdonald (1968)								
3	Beer. Mechanics of Materials; 7 th ed.; Mc Graw-Hill India (2016)								
4	Dadhe, V. G.; Jamdar, M. G.; Walavlkar, Y. N. Fundamentals of Applied Mechanics; Sarita Prakashan (1989)								
5	Timoshenko, S.; Young, D. H.; Rao, J. V.; Pati, Sukumar. Engineering Mechanics; 5 th ed.; McGraw Hill Education (2017)								
6	Singer, Ferdinand L.; Pytel, Andrew. Strength of Materials; 4 th ed.; Harper Colins Publishers (2012)								
7	Kaw, Autar K. Mechanics of Composite Materials; 2 nd ed.; CRC Fress (2006)								
8	Shetty, M. S.; Concrete Technology: Theory and Practice; S. Chand & Co. Ltd. (2005)								
	Course Outcomes (Students will be able to)								
C01	quantify the actions and able to find reactions by applying conditions of equilibrium, find out the Centroid and Moment of Inertia for various cross sections used in engineering structures and for plane areas and be able to draw the Shear Force and Bending Moment diagram for different types of beams under simple and complex lcading.(K3)								
CO2	calculate the forces, reactions, stresses, strains in components of the bodies of a complex engineering structure.(K3)								
СОЗ	find out the Bending Stresses at different positions and Shear Stress distribution across the cross section at various points and calculate the Slope and Deflection at different points under simple and complex loading.(K3)								
CO4	know various materials used in various applications in engineering. cement composite – Concrete, Chemicals used to alter the properties of concrete.(K2)								

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		P01	PO2	PO3	PO4	PO5	POC	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
							2	S		А			Р		
C01	K					- 5	0								
	3	3	3	2	2	2	3	3	3	3	1	3	2	3	3
CO2	K					0									
	3	3	3	1	2	01	3	3	2	3	3	3	2	1	3
CO3	K				-	2									
	3	3	2	2	2	2	3	2	3	3	3	0	2	3	3
CO4	K				2										
	2	3	2	0 🚽	2	1	3	3	3	3	3	3	1	3	2
Cours	K			~											
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge isvel from cognitive domain; A, Affective domain; P, Psychomotor domain

	Course	Course Title:	Cr	edits	; = 4						
	Code: CET1105	Transport Phenomena	Ż	Т	Р						
	Semester: IV	Total Contact Hours: 60	3	1	0						
		List of Prerequisite Courses									
XII	th Standard Phy	sics and Mathematics									
		List of Courses where this course will be prerequisite									
Th ma	is is a basic co uss transfer, etc.	burse required in special subjects that deal with flow of fluids,	heat	and							
	D	escription of relevance of this course in the B. Tech. Program	n								
This Vario relat vario the l	basic course bus other conc ed to conserva bus engineering help of several	introduces concepts of momentum, heat and mass transfer t epts such as pressure, momentum, energy are introduced as tion of momentum, energy, mass are taught. Applications of th and technological situations and process equipments are exp problems.	o sti well ese blaine	udent . Lav laws ed wi	ːs. vs to th						
Sr. No.	Co	ourse Contents (Topics and subtopics)	R	equi Houi	red 's						
1	Fluid Statics a	and Applications to Engineering importance		4							
2	Applications Meters, Fluid n	of Bernoulli's Equation, Pressure-drop in pipes and Fittings, noving machinery such as pumps		10							
3	Particle Dyna	nics, Flow through fixed and fluidized Beds		4							
4	Equations of for simple Cou	<b>Continuity and Motion</b> in laminar flows and its applications ette flow and Poiseuille flow applications		6							
5	Heat Conduct	tion, Convective heat transfer and concept of heat transfer		4							
6	Design and Constructional Aspects ci Exchangers: Types of flows -         Concurrent, counter-current and cross flows, Log mean temperature         6       difference, Double-pipe and Shell and tube heat exchangers. Introduction to other heat exchangers like, PHE, finned tube heat exchangers, graphite block, etc.										
7	Heat Transfer evaporators	aspects in agitated tanks, Condensers, Reboilers and		6							
8	Fundamentals mass transfer (	<b>of Mass Transfer:</b> Molecular diffusion in fluids, concept of coefficients, and interface mass transfer		4							
9	Theories of M correlations	ass Transfer. Analogies for heat and mass transfer, Empirical		4							
10	Mass Transfe	applications in simple 1-D situations		8							
		Total		60							
		List of Text Books/ Reference Books									
	I ransport Phe	nomena, Bird R.B., Stewart W.E., Lightfoot E. N.									
2	Fluid Mechan	cs, Kundu Pijush K.									
3	Fluid Mechan	CS F. W. White									
4	Unit Operation	is or Chemical Engineering, McCabe, Smith									
		Course Outcomes (students Will be able to)									
	calculate the	on factor, pressure drop, power.(K3)									
<u>CO2</u>		and power required for pumps.(K3)	المع	ما جب الح							
CO3	heat exchange	ers.(K3)	an and		1						
CO4	calculate mas (K3)	s transfer coefficients and estimate mass transfer rates in simple	e situ	ation	3.						

		Μ	appin	g of C	ourse	Outco	omes	(Cos)	with P	rogra	mme O	utcome	es (Pos)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		А			Р		
C01	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	3	3	3	1	2	1	3	1	3	3	3	1	2	3	3

CO3	K															
	3	3	1	2	2	2	2	3	2	3	3	3	2	2	3	
CO4	K												A.7			
	3	3	3	2	0	2	3	3	3	3	2	3	0	3	3	
Cours	K	0									0		2			
е	3	Strong		2 ributio	2	2 Andora	$\frac{3}{100}$	3 stributi	$\begin{vmatrix} 3 \\ 0 \\ 0 \\ 1 \end{vmatrix}$	3	3 optribut		$\frac{2}{10 \text{ Cont}}$	3	3	
	ວ, ທ	Show	y Com Iodao	lovol fi	11, Z, IV	anitivo			0∏, ⊥, Affocti		oninibul noin: S	Deveb	an Con	domain		
	, ⊥	KIIUW				griitive		ann, A, .			iain, S,	PSych		Cradita	- 2	
				*:		Floot	rical F	Cou	rse In		laatraa	5	ŀ		- 3 D	
	-		tor: I	,		Elect			teening			105		2 1		
		semes	ster: IN			Listo	10la f Dror				45			2 1	U	
Stand	ard	XII Ph	ivsics	and M	athem	atics c	ourses	s S		11303	5					
Otaria	uiu	//////	190100	_ist of	Cours	ses w	nere ti	nis co	urse v	/ill be	orerea	uisite				
Variou	is T	echno	logy C	ourses	s and I	Profes	sional	Caree	r		-					
			Desc	riptior	of re	levand	e of t	his co	urse i	n the I	3. Tech	. Progr	am			
In this	CO	urse, s	studen	ts will	get an	insigh	t to the	e impo	rtance	of Ele	ctrical E	Energy	in Chei	mical Pla	nts.	
The s	tud	ents w	vill und	derstai	nd bas	sics of	electr	icity a	longsi	de bas	sic knov	vledge	about	Transforr	ner	
and s	ele	ection of different types of drives for a given application process. They will get basic														
knowl	edg	e of e	electro	nic de	evices	and t	neir a	oplicat	ions ir	n Pow	er supp	olies, ai	mplifier	s and ot	her	
circuit	<u>S.</u>												i			
Sr.				Со	urse C	Conter	nts (To	pics a	and Su	ibtopi	cs)			Requir	ed	
INO.		acio I	2)///С !	Kircho	ff's cu	rront o		togo la	W Sin	anlo co	rioc an	d parall	al	Hours	5	
1		asic L	tions (	star ar	n s cu nd delt:	a trans	forma	tion M	lw, Sili Iesh ai	ipie se id nod	al analy	u paran vsis Ra	sic	6		
1	e	lement	ts R I	and C	Con	cent of	selfa		tual in	ductar	ar anary ICE	, 515, Du	.510	0		
2	N	etwor	k The	orems	SUDE	er posi	tion. T	heveni	n's the	orems	5			3		
	A	.C. Fu	Indam	entals	: Equ	ations	of alte	rnating	n volta	des an	d curre	nts. cvc	le.			
	fr	equen	cy. Tir	ne per	iod, a	mplitud	ie per	ak valı	le ave	rage v	alue, R	.M.S. v	alue.			
3	A	.C. th	rough	resist	ance,	induct	ance a	and ca	apacita	ince, s	simple I	RL, RC	and	5		
	R	LC cir	cuits.	Resor	nance	in seri	es RL	C circi	uits, P	ower,	power f	actor, s	eries			
	a	nd par	allel c	ircuits		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
4	T	hree-F	Phase	Syste	ems:	Star a	nd de	lta coi	nnectio	ons, re	lations	hip bet	ween	n 5		
		ne and	i pnas		ges ar	na curr	ents, I	-ower	In thre	e pna	se circu	ITS tion nk				
5	d	ianram	n Ide	al tran	sforme	i, prin er tran	sform	or ope	n loar	, e.m. I Tran	sformer	uun, pi under	load	5		
	Т	ransfo	rmer l	09999	efficie	onev re	istonn	nn	10 1040	<i>i</i> , nan	Sionnei	unuer	ioau,	5		
6	Ir	troduc	ction to	o dc ar	d ac c	lrives	guiun	011						5		
	D	iodes	and F	Rectifi	ers: P	-N iun	ction c	liode c	haract	eristic	s. Zene	r diode	. Half			
	w	ave ar	nd full	wave	rectifie	rs, the	ir wav	eforms	s, brief	introd	uction to	o filters	,	4		
	В	i-pola	r Jun	ction	Trans	istor:	Curre	ent cor	npone	nts. N	lodes c	of opera	ation,			
8	Ir	iput a	nd ou	itput c	haract	teristic	s, Re	gions	of op	eration	, Trans	sistor a	s an	6		
	a	mplifie	er, clas	sificati	on of a	amplifi	ers									
9	Ir	ntrodu	iction	to U	ni jun	ction	transi	istor,	Chara	cterist	ics, UJ	T relax	ation	3		
	0	scillato	or 		Dee	4: <b>6</b> :	Can	trallad	root	ficatio			otion			
10	5	IIICOn-	-contr	rning_	n An	uner:		trolled	reci	incatio	n, cha	aracteri	sucs,	3		
	- 11	lethou	o or tu	ming-	л. Ар	Jiicalic	115						Total	45		
					Lis	t of Te	vthoo	ks/Re	feren		ks		Totai	45		
1	F	lectric	al Eng	ineerir	na Fun	dame	ntals h	v Vinc	ent De	ltoro						
2	E	lectror	nic dev	ices a	nd cire	cuits b	V Bovl	stead.	Nashe	elskv						
3	E	lectric	al Mac	hines	bv Na	arath.	Kotha	ri		leng						
4	E	lectric	al Mac	chines	by P.S	Bhim	ibra									
5	E	lectric	al Tecl	hnolog	y by B	. L. Th	eraja,	A. K.T	heraja	vol I, I	I, IV					
6	Т	hyristo	ors and	d their	applica	ations	by M.	Rama	murthy	/						
7	P	ower E	Electro	onics b	y P.S.	Bhimb	ra									
				Co	urse C	utcon	ies (S	tuden	ts will	be ab	le to	.)				
CO1	u	nderst	and th	e basi	c conc	epts o	fD.C	circuits	s. Solv	e basi	c electri	cal circ	uit prob	lems.(K3	)	
CO2	u	nderst	and th	e basi	c conc	epts o	f singl	e phas	e and	three	ohase A	C supp	ly and	circuits.(I	<2)	
CO3	u u	nderst	and th	e basi	c conc	epts o	t trans	torme	rs and	motor	s used a	as varic	ous indu	ustrial		
	d	rives.(	K2)													

		Μ	appin	g of C	ourse	Outco	omes	(Cos)	with P	rogra	mme O	utcome	es (Pos)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+/4+	K3	K4
								S		Α			P		
C01	K											~	0		
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K											0			
	2	3	2	0	2	1	3	3	3	3	2	3	0	3	2
CO3	K											6.			
	2	3	2	1	2	0	3	3	2	3	3 💪	3	1	3	2
CO4	K														
	2	3	0	1	2	1	2	3	3	1	3	1	1	2	2
Cours	K										5				
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

domain; A, Affec

	Course Code:	Course Title:	Cre	dits	= 4
	PHI 1051	SPL2: Chemistry of Natural Products		1	P
	Semester: IV	Iotal Contact Hours: 60	3	1	0
Organ	ic Chomictry I (C	CHT1127) Organic Chemistry II (CHT1128)			
Olyan		t of Courses where this course will be prerequisite			
SPI 6	Medicinal Natural	Products (PHT1049) SPI 7: Medicinal Chemistry – I (PHT105	0) P	۲ 4 [.]	
Medic	inal Natural Produ	cts Laboratory (PHP1056)	•), .	• ••	
	Descrip	tion of relevance of this course in the B. Tech. Program			
The co	ourse aims to acqu	uaint the students to various classes of bioactive natural produ	icts a	and th	neir
biosyn	thetic routes. A la	rge number of natural products are used as the apeutic ager	its fo	or var	ied
indicat	tions. Understandi	ng the chemistry of natural products will help design their s	emis	synthe	etic
analog	is for improving the	eir pharmacokinetic, pharmacodynamic and toxicity profiles.		auir	
		Course Contents (Topics and Subtopics)	Re F	Hours	eu S
	General Classif	ication of Natural Products			
1	Vitamins: Class	fication, Structural chemistry and stability of fat-soluble		10	
	Vitamins	av of biochamical rola			
	Structural chem	istry and stability of water-soluble vitamins and Organic			
2	chemistry of biod	themical role. $\omega$ 3 fatty acids		10	
	Hormones (othe	r than steroids and those not covered in detail under			
2	Medicinal Chem	istry) Classification, structural chemistry, Organic Chemistry		F	
3	of biological role	, Organic chemistry of biosynthesis. Synthesis of peptides:		5	
	protecting groups	8			
4	Coupling Agent	s, solid-phase synthesis, Synthesis of some synthetic		4	
	Terneneci elec	s. Structures of poisoncus peptides			
5	Meenwein and ot	her rearrangements. Terpenes as pharmaceutical raw		Λ	
	materials	ner reurangements, reipenes as pharmaceatear raw		-	
6	Terpenoids of B	iological Importance: form neem, texanes, artimisine,		1	
0	terpinoid, iridoids	s, alkaloids, structure and biological activity		T	
7	Pyrethroids and	Retinones. Occurrence, structure and reactions, biological		3	
	activity and unique	Je teatures			
	characteristic fea	tures Pharmaceutically important flavanoinds			
8	polyphenols, ora	anic chemistry of biosynthesis, organic chemistry of		5	
	biological anti ox	idant activity. Carotenoids,			
٥	Porphyrins: Stru	ucture, general chemistry, and properties, Some examples		2	
3	to be discussed	laemoglobin, chlorophyll, and cytochromes		5	
10	Eicosanoids: C	assification, nomenclature, and chemical properties		8	
11	Alkaloids (detail	s will be covered elsewhere): only organic chemistry of		2	
	Marine Natural	ny unee classes to be covered  Products: Classification, unique structural features and			
12	hiological organ	nic chemistry of hiosynthetic nath way of any one		2	
	Antibiotics not of	covered elsewhere, structure and organic chemistry of			
13	their biological a	ctivity, importance as new lead molecules.		2	
14	Carbohydrate-d	erived Natural Products, nojirimycins, glycosides,		1	
14	biological activity	,		1	
		Total		60	
1	Chemistry of Not	LIST OT TEXTDOOKS/RETEFENCE BOOKS	1001		
<u> </u>	Insecticides of P	and Origin 1 T Arnason et al Americal Chemical	,00)		
2	Society (1989)	engin, et in anacen et al, ranonour onemical			
3	Biochemistry, D.I	E. Metzler, Academic Press (2001)			
4	Organic Chemist	ry, G. M. Loudon, Oxford University Press (2002)			
5	Introduction to FI	avanoids, B.A. Bohm, Harwood Academic Publisher (1998)			
6	Studies in Natur	al Product Chemistry: Structure and Chemistry – Series Atta	-ur F	Rahm	an;
	Elsevier	urtialas an specific tapias			
1					

	Course Outcomes (Students will be able to)
CO1	appreciate organic chemical reaction types that play a role in enzymatic transformations, biosynthesis and synthesis (K3)
CO2	understand biosynthetic pathways leading to natural products and the enzymes involved therein .(K2)
CO3	know characteristic features and typical biological activity with respect to structural features and synthetic routes.(K3)
CO4	evaluate the potential of natural products for therapeutic applications.(K4)

												<i>i</i>			
		M	appin	g of C	ourse	Outco	omes	(Cos)	with P	rogra	mme O	utcome	es (Pos)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PS01	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2÷A	K3	K6+A+	K3	K4
								S		Α	S		Р		
C01	K										7-				
	3	3	3	2	2	2	3	3	3	3	2	3	2	3	3
CO2	K									5					
	2	3	2	0	2	1	3	3	3	2	3	3	1	2	2
CO3	K								1						
	3	3	1	1	3	1	2	2	3	2	3	2	1	3	2
CO4	K							İ	~						
	4	3	2	1	2	0	3	3	2	3	3	3	0	3	2
Cours	K							- 6							
е	4	3	3	2	2	2	3	3	3	2	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code:	Course Title:	Cre	dits	= 3
	PHT1050	SPL3: Physiology and Pharmacology	L	Т	Ρ
	Semester: IV	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Standa	ard XII Biology, Ba	sics of Biology and Applications to Technology (BST1110)			
	Lis	t of Courses where this course will be prerequisite			
SPL7:	Medicinal Chemis	try – I (PHT1050), SPL10: Medicinal Chemistry – II (PHT1056)	), SPI	L14 :	
Medic	inal Chemistry – II	I (PHT1057), SPL11: Pharmaceutical Formulation Technology	– 111		
(PHT1	. <mark>083</mark> ), SPL12: Valio	dation and Regulatory Requirements (PHT1084)			
	Descrip	tion of relevance of this course in the B. Tech. Program			
Stude	nts will understand	I human Anatomy and Physiology, the common disorders and t	heir		
pathop	physiology, the dru	g categories, principles of Pharmacology and ther applications	s to		
Medic	Inal Chemistry and	i Pharmaceutical Technology	De	~	
		Course Contents (Topics and Subtopics)	Re H	lours	eu S
	Introduction to	Human Body, Organization of human body, Different			-
1	systems	······································		1	
	of human body	, 0			
2	Composition an	d Functions of blood, lymph, immunity		3	
2	General Pharm	nacology (Absorption Distribution, Metabolism Excretion		2	
3	(ADME), routes of	of administration, Mechanism of Action)		3	
4	Drugs acting	on Blood: Hematinics, Thrombolytics, Coagulants/		2	
	Anticoagulants	<u> </u>			
6	Structure and F	unction of Kidney, Drugs acting on Kidneys: Diuretics		3	
	Respiratory Sys	stem: Anatomy and Physiology		1	
8		ous System (CNS). Anatomy and Physiology,		4	
	Druge acting	on CNS: Sodativos Hypnotics Developharmacological			
q	agents	on civo. Sedatives, hyphotics, esychopharmacological		5	
	Antiepileptics. Ar	aesthetics. Nootropics. CNS stimulants		0	
10	Autonomic Ner	vous System (ANS: Anatomy and Physiology, Adrenergic		0	
10	(Sympathetic) ar	nd Cholinergic (Parasympathetic) Systems		2	
11	Drugs acting or	ANS: Chomergic agents, Anticholinergic agents,		Б	
	Adrenergics, Adr	energic blockers, Neuromuscular blockers		5	
12	Drugs acting or	Metabolic Disorders: Antidiabetics, Antihypertensives		2	
14	Analgesics (Nar	cotics/Non-narcotics)		2	
15	Miscellaneous:	Local anesthetics, Antihistaminic drugs		3	
16	Chemotherapeu	itic Agents: Synthetic, Semisynthetic and Natural		5	
17	Antimicrobial age	enis, Antiparasitic Agents		4	
1/	Anticancer Age	nts		4	
		List of Textbooks/Deference Books		45	
1	Elements of Pha	rmacology R K Goval Abmedabad India			
2	Pharmacolcay H	P Rang M M Dale 1 M Ritter			
	Ross and Wilson	i's Anatomy and Physiology in Health and Illness Anne Waug	h and	Allis	son
3	Grant 10th editio	n. 2006 Churchill Livingstone. London		. ,	,011
	2	Course Outcomes (Students will be able to)			
CO1	understand the o	rganization, placement, structures and functioning of			
001	human body as v	whole.(K2)			
CO2	understand the a	natomy and physiology of systems namely respiratory, urinary,	with	the	
	disorders affectir	ng the systems.(K2)			
CO3	analyze different	drug categories with respect to their mechanism of action on b	ody		
	systems/organs.	(K3)			
CO4	understand and a	apply general principles of Pharmacology including pharmacok	inetic	s an	a
COF	ctudy vorious ar	IILS ID UTUY AUTOTI(N4)	2005	to /1/	<u>```)</u>
	i sluuy vanous Syr	initial and initial and individual and initial and and and and and an and an and an and an and an and an an and an an and an	ayen	ເວ.(ກ	. ( )

		Ma	apping	g of Co	ourse	Outco	omes (	COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α		~	VР		
C01	K											~	0		
	2	3	3	2	1	2	3	3	3	3	3	3	2	1	3
CO2	K											0			
	2	3	2	2	3	0	3	1	3	2	3 /	1	2	3	2
CO3	K										1				
	3	3	1	0	2	1	2	2	2	3	3	3	0	3	3
CO4	K										0				
	4	3	3	2	2	2	1	3	3	1	2	2	2	2	2
CO5	K										D.				
	2	3	2	1	3	2	3	3	3	27	3	3	2	3	3
Cours	K									~					
е	3	3	3	3	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code:	Course Title:	Cre	dits	= 3
	Semester: IV	SPL4: Pharmaceutical Analysis and Green Chemistry	L 2	1	
	Semester: IV	List of Prerequisite Courses	2	<b>_</b>	U
Analvt	ical Chemistry				
7 dialyt	Lis	t of Courses where this course will be prerequisite			
SPL5: (PHP1 Cataly SPL12 Elucid (PHT1	Pharmaceutical F 044); Pr 4: Medici tic Process (PHT1 2: Validation and F ation by Spectroso 058)	ormulation Technology –II (PHT1082); Pr 3: Pharmaceutical T inal Natural Products (PHP1056); SPL8: Pharmaceutical Chen L055); SPL11: Pharmaceutical Formulation Technology – III (P Regulatory Requirements (PHT1084); Institute Elective- II: Stru copy (PHT1093); SPL13: Process Technology of Drugs and Int	echn histry HT10 ctura erme	ology and 83); I diate	/ /
	Descrip	tion of relevance of this course in the B. Tech. Program			
includi spectr analys Studie	ourse is designering Pharmacop ometric techniqu sis. In addition, the sin order to imbib	d to acquaint the students with the basics of Pharmaceut poeial monographs, analytical method validation, spectro es, chromatographic separations, structural elucidation e students are exposed to Green Chemistry Principles with ro the relevance of Green Chemistry in a technocrat's profession	ical A oscop and eleva onal li	Analy bic a ther nt C ife.	/sis and mal ase
		Course Contents (Topics and Subtopics)	Re F	iquir Iour:	ea s
1	Introduction to keeping	Pharmacopoeial Monographs, Documentation and record-		2	
2	Analytical Meth Precision, Limit Range, Robustn	od Validation (as per USP and ICH guidelines): Accuracy, of Detection (LOD), Limit of Quantification (LOQ), Linearity, ess, Ruggedness		3	
3	Introduction to Solvent Extraction equilibria, technic	Sample Preparation Methods on: Basic principles, classification, mechanism of extraction, ques and applications: Solid-Phase Extraction		4	
4	Refractometry a	and Polarimetry: Theory, instrumentation and applications		2	
5	Fourier Transfo Theory, Instrume Applications in - quantitative au pharmaceutical a	orm Infra-Red (FT-IR) and Raman Spectroscopy: Basics, entation Structural elucidation of organic compounds, qualitative and nalyses, atmospheric chemistry, forensic sciences, and material sciences, earth sciences (geology)		6	
6	Atomic Absorp Theory and Ir Plasma (ICP) AE Applications in M	tion (AAS) and Atomic Emissions Spectroscopy (AES): nstrumentation, Sample introduction, Inductively-Coupled ES Naterial and Life Sciences		3	
7	Nuclear Magne Precessional constant, Instru instruments); Inc	<b>tic Resonance (NMR) Spectroscopy:</b> ¹ H-NMR: Principle, frequency, Chemical shift, Spin-spin coupling, Coupling innentation (continuous wave (CW) versus pulsed FT reduction to ¹³ C NMR; Applications of NMR		6	
8	Mass Spectron fast-atom bomb patterns – α-fiss Introduction to spectrometry	<b>tetry:</b> Principle, methods of ionization - chemical ionization, ardment (FAB), thermospray, electrospray; Fragmentation sion, βfission, McLaffarty rearrangement, Retro Diels-Alder; quadrupole mass analyzers; applications of mass		6	
9	Hyphenated T advantages and	<b>Fechniques:</b> GC-MS, LC-MS, LC-MS/MS, interfaces, limitations		3	
10	Examples encount using ¹ H-NMR, M	mpassing structural elucidation of simple organic compounds Aass, UV-Vis and FT-IR techniques		2	
11	Introduction to of waste generat	<b>Green Chemistry:</b> Green Chemistry Principles, minimization tion and waste prevention; Case studies		5	
12	Introduction Photochemistry, free synthesis, E	to Alternative Methods of Chemical Synthesis: Microwave-Assisted Organic Synthesis (MAOS), Solvent- lectrochemistry and Sonochemistry		3	
		Total		45	
1	Practical Pharma	List of Textbooks/Reference Books aceutical Chemistry; 4 th ed Part 2; Beckett, A. H., Stenlake	, J. E	3., E	ds.;
2	The Athlone Pres	ss, London, UK (1988) Analysis; Lee, D. C., Webb, M., Eds.; Blackwell Publishing Ltd	., Ox	ford,	UK
	(2003)				

3	Analytical Chemistry; 6 th ed.; Christian, G. D., Ed.; Wiley India (P.) Ltd., New Delhi, India (2008)
4	Vogel's Textbook of Quantitative Chemical Analysis; 6 th ed.; Mendham, J., Denney, R. C., Barnes, J. D., Thomas, M., Sivasankar, B., Eds.; Dorling Kindersley (India) Pvt. Ltd. (Pearson Education Ltd.), New Delhi, India (2000)
5	Vogel's Textbook of Quantitative Chemical Analysis; 5 th ed.; Jeffer <i>y</i> , G. H., Basset, J., Mendham, J., Denney, R. C., Eds.; Dorling Kindersley (India) Pvt. Ltd. (Pearson Education Ltd.), New Delhi, India (2000)
6	Introduction to Spectroscopy; Pavia, D. L., Lampman, G. M., Kriz, G. S., Vyvyan, J. R., Eds.; Cengage Learning, Stamford, USA (2015)
7	Fundamentals of Analytical Chemistry; 9th ed.; Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R., Eds.; Cengage Learning, Boston, USA (2014)
8	William Kemp, Organic Spectroscopy: 3rd ed.: Macmillan Education, UK (1991)
9	Indian Pharmacopoeia 2018, Vol. I-IV; 8th ed.; The Indian Pharmacopoeia Commission, Gaziabad, India (2018)
10	USP 2019 – United States Pharmacopoeia 42 – National Formulary 37 (USP 42 – NF 37), Vol. 1-5; The United States Pharmacopeial Convention, USA (2019)
11	BP 2020 – British Pharmacopoeia 2020, Vol. 1-5; British Pharmacopoeia Convention, UK (2019)
12	Handbook of Green Chemistry, Vol. 11: Green Metrics; Anastas, P. T., Constable, D. J. C., Jimenez-Gonzalez, C., Eds.; Wiley-VCH, (2018)
13	ACS Green Chemistry Institute. https://www.acs.org/content/acs/en/greenchemistry/about.html
14	Green Chemistry in Industry: Green Chemical Processing.; Benvenuto, M. A., Plaumann, H., Eds.; de Gruyter, Berlin, GmbH (2018)
15	Brahmachari, G. Catalyst-free Oganic Synthesis. Green Chemistry Series 51; RSC, Cryodon, UK (2018)
16	Albini, A., Protti, S. Paradigms in Green Chemistry and Technology. SpringerBriefs in Molecular Science: Green Chemistry for Sustainability; Sharma, S. K., Ed.; Springer, London, UK (2016)
17	Green Chemistry Strategies in Drug Discovery. RSC Drug Discovery Series 46; Peterson, E. A., Manley, J. B. Eds.; RSC, Cambridge, UK (2015)
18	Worldwide Trends in Green Chemistry Education; Zuin, V. G., Mammino, L., Eds.; RSC, Cambridge, UK (2015)
	Course Outcomes (Students will be able to)
C01	describe various analytical method validation criteria as per USP and ICH along with other relevant guidelines.(K2)
CO2	understand and follow identification and quantitative analytical aspects of Active Pharmaceutical Ingredients (APIs), related substances and impurities.(K3)
CO3	suggest suitable analytic method(s) for the analysis of sample under investigation.(K4)
CO4	follow structural elucidation of simple to moderately complex organic molecules in stepwise manner.(K2)
CO5	appreciate and implement Green Chemistry Principles in Professional Life.(K3)
	10

		Ma	oping	g of C	ourse	Outco	mes (	COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			Р		
C01	K														
	2	3	3	2	2	0	3	3	3	3	3	3	2	3	3
CO2	K														
	3	3	2	2	0	3	3	3	0	2	3	2	0	3	2
CO3	K														
	4	3	2	1	2	1	2	2	2	3	3	3	1	2	3
CO4	K														
	2	3	1	2	2	2	3	1	3	2	1	3	2	3	2
CO5	K														
	3	3	2	1	3	2	3	3	3	2	3	3	2	1	3
Cours	K														
е	4	3	3	3	2	3	3	3	3	2	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

redunition of the second 
	Course Code:	Cre	dits	= 2	
	GEP1106	Electrical Engineering and Electronics Laboratory	L	Т	Ρ
	Semester: IV	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Standa	ard XII Physics an	d Mathematics courses			
	Lis	t of Courses where this course will be prerequisite			
Variou	s Technology Cou	rses and Professional career			
the state	Descrip	tion of relevance of this course in the B. Tech. Program			- 4 -
In this	course, students \	will get an insight to the importance of Electrical Energy in Che	mica	I Plai	nts.
and se	election of difference	nt types of drives for a given application process. They w	vill a	ot ha	ner
knowle	edge of electronic	e devices and their applications in Power subolies amplifie	rs ar	nd ot	her
circuits	6.		10 41		
		Course Contents (Tanics and Subtanics)	Re	quir	ed
		Course Contents (Topics and Subtop 05)	ŀ	lour	s
	Suitable no of ex	periments out of the following will be conducted -			
1	Superposition Th	neorem		5	
2	Thevenin's Theo	rem		5	
3	Series RL circuit			4	
4	Resonance in Se	eries RLC circuit		5	
5	H.W. and F.W. R			4	
7	Input and output	characteristic of non transistor in CE mode		<u> </u>	
8	Load Test on Tra			4	
9	Three phase sta	r connection		4	
10	Three phase del	ta connection		4	
11	Study of UJT rela	axation oscillator		4	
12	Design of UJT re	elaxation oscillator		4	
13	Load Test on 3 p	hase induction motor		4	
14	Study of Thermo	couple		4	
		Total		60	
		List of Textbooks/Reference Books			
1	Electrical Engine	eering Fundan entals by Vincent Deltoro			
2	Electrical Machin	as by Nograth, Kothari			
	Electrical Machin	hes by PS Rhimbra			
5	Electrical Techno	blogy by B. L. Theraia, A. K. Theraiavol I. II. IV			
6	Thyristors and th	heir applications by M. Ramamurthy			
7	Power Electronic	cs by P.S. Bhimbra			
		Course Outcomes (Students will be able to)			
CO1	understand conc	epts of basic working of D.C circuits.(K2)			
CO2	understand the h (K2)	basic applications of single phase and three phase AC supply a	and c	ircuit	S.
CO3	understand the v industrial drives.	vorking and utility of transformers and motors used as various (K2)			
CO4	understand the b	basic working and applications of electronic devices and circuit	s.(K3	3)	
	Y	¥		-	

		Ма	apping	g of Co	ourse	Outco	mes (	COs)	with P	rogra	mme O	utcome	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		А			Р		
CO1	Κ														
	2	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	Κ														
	2	3	2	1	1	1	3	3	3	3	3	3	0	2	2
CO3	K														
	2	3	2	0	2	1	3	3	3	2	2	3	1	3	2
CO4	K														
	3	3	3	2	2	2	3	3	2	3	3	3	2	3	3
Cours	Κ	3	3	2	2	2	3	3	3	3	3	3	2	3	3

е	3														
	3.	Stro	ng Cont	ributio	n; 2. N	loderat	e Con	tributio	on; 1. L	ow Co	ontributi	on: 0. I	No Contri	bution	
	ĸ	Kno	wledge	level f	rom co	ognitive	doma	in: A	Affecti	ve don	nain: P	Psvch	omoto: do	omain	
	-,				,	5		,,			, · ,	, 5.1	2		
													0		
													V		
												0			
												NY			
											2	5			
											0	2			
											2				
											9				
										-	2				
											×				
										5					
										0					
									1	No.					
									J	P					
									2						
								0	5						
								S							
								2							
							- (	<i></i>							
							1	1							
							0								
						1	0								
						a	6								
						8									
						0									
					_	1									
					X										
					2										
				1	Q.										
				0	e.										
				,O											
			1	2											
			- 8	2											
			0												
			Q												
			2												

	Course Code:	Cre	dits	= 2							
	MAP1201	Computer Applications Laboratory	L	Т	Ρ						
	Semester: IV	Total Contact Hours: 60	0	0	4						
		List of Prerequisite Courses									
HSC S	Standard Mathematics,	Applied Mathematics – I (MAT1101)									
	List of (	Courses where this course will be prerequisite		<u> </u>							
This is	s a basic Mathematics	course. This practical knowledge will be required in sev	eral s	subje	ects						
later.											
Chuda	Description	of relevance of this course in the B. Tech. Program	410 0								
Stude	nts will understand th	e basics of Python programming and get exposure to	) the	use	for						
onging	vering applications. The	a students will also explore P-programming for Pegress	ion A	/515 nalv	IUI						
Testin	n of Hypothesis using (	a standard statistical inference B Tech programme requ	ires s	stude	onts						
to ana	lvze data and develop	computer programmes to solve various problems in End	ineer	ina a	and						
Techn	ology fields.										
	Course	Contents (Topics and subtopics)	Н	lour	5						
1	Introduction to Spre	adsheet Programmes, Use of formulae and Plotting		4							
	Graphs of Function a	nd Data Plotting in Excel		4							
2	Exploring Basic Statis	tics and Hypothesis Testing with Spreadsheet		4							
3	Numerical Solution of	Linear and Non-Linear Equations in Excel		4							
4	Basic Introduction to	R and R Studio, Data Management in R		4							
5	Plotting Graphs in R,	Exploring Probability Distribution Function in R		3							
6	Hypothesis Testing in	R		4							
7	Basic Regression Ana	alysis in R		4							
8	Introduction to Python, Installation of Python and jupyter notebook through										
	Anaconda. Variables in Python, Exploring math and cmath modules										
9	List, Tuples and Dicti	onaries in Python, if else and elif statements, Creating		4							
	For loops and while loops in Putton, Lise of break and continue statements										
10	with loops Developing Python programmes using loops										
11	Writing Python Prog	amme to solve problems in basic numerical analysis									
	such root finding.	Numerical solutions of linear equations. Numerical		4							
	integration, etc.			•							
12	Use of Numpy and So	cipy to deal with vectors, matrices and their operations		4							
13	Use of Numpy and So	ciPy continued		3							
14	Plotting graphs using	matplotlib		4							
15	Use of Pandas for dat	ta processing and analysis		4							
16	Linear and multilinear	regression using Python		3							
		Total		60							
	<u> </u>	List of Textbooks/ Reference Books									
1	Carlberg, Conrad Geo	orge. Statistical analysis: Microsoft Excel 2016; Que (2018	3).	= th							
2	Langtangen, Hans H	Petter. A Primer on Scientific Programming with Pytr	ion;	5"	ed.;						
	Springer-veria Berlin	Heldelberg (2016)	o o b i	0.4	ard						
3	Linivorsity Place (201	ython Programming - Using Problem Solving Appro	acn;	Oxi	oru						
	Beazley David: Jones	7) s. Brian K. Dython Cookbook: Decines for Mastering Dyth	n 2.		ailly						
4	Media (2013)	s, Bhan K. Fython Cookbook. Recipes for Mastering Fyth	л з,		illy						
	VanderPlas Jack Pv	thon Data Science Handbook. Essential Tools for Workir	na wit	th Da	ata.						
5	1 st ed.: O'Reilly Media	(2016)	.g		Acce,						
6	Dalgaard, Peter; Intro	ductory Statistics with R; 2 nd ed.; Springer (2008)									
7	Navarro, Daniel; Lear	ning Statistics with R (2013)									
8	Dennis, Brian; The R	Student Companion; CRC Press (2012)									
9	Verzani, John; Using	R for Introductory Statistics; 2 nd ed.; CRC Press (2014)									
	Cou	rse Outcomes (Students will be able to)									
CO1	perform descriptive st	atistical analysis using Excel.(K3)									
CO2	perform basic statistic	al tests using R.(K3)									
CO3	perform linear regress	sion using R.(K3)									
CO4	write Python program	s to implement basic numerical methods.(K4)									
CO5	perform data process	ing and regression analysis using Python.(K4)									

		Μ	appin	g of C	ourse	Outco	omes	(Cos)	with P	rogra	mme O	utcome	es (Pos)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			ГР		
C01	K											0			
	3	3	3	2	2	0	3	3	3	3	3	3	2	3	3
CO2	K											£			
	3	3	3	2	1	2	3	3	3	3	3 🕻	1	2	0	3
CO3	K										0				
	3	3	1	2	2	2	2	3	0	3	2	3	2	3	3
CO4	K										5				
	4	3	3	0	3	2	3	3	3	3	3	3	0	3	3
CO5	K									~					
	4	3	3	2	3	2	3	3	2	3	3	3	2	3	3
Cours	K									0					
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

j 3 rate Con. nitive domain;

## Semester V Phroved by Acaden

	Course Code:	Course Title:	Cre	dits :	= 3						
	CET1401	Chemical Engineering Operations	L	Т	Ρ						
	Semester: V	Total Contact Hours: 45	2	1	0						
	1	List of Prerequisite Courses									
Proc	ess Calculations (C	ET1507), Transport Phenomena (CET1105)									
		List of Courses where this course will be prerequisit?									
This	is a basic course. I	t is required in many other courses that involve physical processes									
	Desc	ription of relevance of this course in the B. Tech. Programme									
the f	is a basic Chemica orthcoming courses	and throughout the professional career of students.	d in a	Imost	all						
Sr. No.		Course Contents (Topics and Subtopics)	Required Hours								
1	Distillation: Fund columns internals	damentals of flash-, batch- and continuous disullation, Distillation , Steam and azeotropic distillation	-	12 – 1	.5						
2	Liquid-Liquid Ex Staged calculatio	xtraction: Solvent selection, Construction of ternary diagrams, ns, Types of extraction equipment		6							
3	Crystallization: Phase diagram (temp/solubility relationship), Evapo-rative and cooling crystallization, Introduction to different types of crystallizers5										
4	Filtration: Mechanism of filtration, Basic equation, Constant volume, Constant pressure filtration, Rate expressions with cake and filter cloth resistances, Compressible and incompressible cakes, Introduction to various types of filters5										
5	Drying: Drying mechanism, Drying rate curves, Estimation of drying time, ypes of dryers										
6	6 Introduction to Other Aspects of Unit Operations: Content will be aimed towards understanding practical and safety aspects of unit operations and/or introducing other separation processes like. adsorption/ion exchange, membrane										
7	Industrial Case from industry or e challenges of diffe	<b>Studies:</b> Interactive discussion with experienced professionals equipment vendors with emphasis on applicability, importance and erent unit operations		3							
	<b>G</b>	Total		<b>45</b>							
		List of Text Books/ Reference Books									
1	Richardson, J.F., C technology and se	Coulson, J.M. Harker, J.H., Backhurst, J.R., 2002. Chemical enginee paration processes. Butterworth-Heinemann, Woburn, MA.	ering:	Partic	le						
2	Seader, J.D., Henl	ey, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken,	N.J.								
3	Svarovsky, L., 200	0. Solid Liquid Separation. Butterworth-Heinemann, Woburn, MA.									
4	Science/Engineeri	n, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 eng/Math, Boston.	ed. Mo	CGraw	/-HIII						
5	Green, D., Perry, F Professional, Edin	R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 e buigh.	d. Mc	Graw	·Hill						
6	Dutta, B.K., 2007. New Delhi.	Principles of Mass Transfer and Separation Process. Prentice-Hall o	of India	a Pvt.	Ltd,						
		Course Outcomes (students will be able to)									
1	perform basic sizir	g of continuous and batch distillation columns.(K3)									
2	analyze filtration da requirements, und	ata and select systems based on requirements, estimate filtration are erstand filter aids and their usage.(K4)	ea for	giver							
3	describe few indus	trial crystallization, filtration and drying equipment.(K2)			-						
4	describe the need membrane (K2)	and importance of other separation processes like adsorption, ion ex	kchan	ge an	d						
5	gain a practical pe	rspective of unit operation in chemical industries.(K3)									

		М	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	ımme C	outcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A		$\sim$	Р		
C01	K											0			
	3	3	3	2	2	1	3	3	3	3	3	0	2	3	3
CO2	K														
	4	3	3	2	3	2	3	2	3	3	2	3	2	3	3
CO3	K										S				
	2	3	2	0	2	1	3	3	2	3	3	3	1	3	2
CO4	K										5				
	2	3	2	1	2	0	3	3	3	3	1	3	1	2	2
CO5	K														
	3	3	3	2	2	2	1	3	3	1	3	3	2	3	3
Cours	K									0					
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, I.ow Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

te Con. ive domain,

	Course Code:	ourse Code: Course Title:													
	CET1212	Chemical Reaction Engineering	L	Т	Ρ										
	Semester: V	Total Contact Hours: 45	2	1	0										
	!	List of Prerequisite Courses													
Phys	sical Chemistry – I (	CHT1341), Physical Chemistry – II (CHT1342), Transport Phenomena (	CET1	105)											
		List of Courses where this course will be prerequisite													
Env	ironmental Scienc	e and Technology (HUT1106), Chemical Project Engineering and	Ecor	nomi	CS										
(CE	T1504)														
	Description of relevance of this course in the B. Tech. Program														
The c	he course is concerned with the utilization of chemical reactions on a commercial scale. This course is very														
releva	nt but not limited	to the following industries: Inorganic chemicals, organic chemicals	, pet	roleu	m &										
petroc	chemicals, Pulp &	paper, Pigments & paints, rubber, plastics, synthetic fibres, Foo	ds, E	Dyes	and										
interm	ediates, Oils, oleo	chemicals, and surfactants, Minerals, clean sing agents, Polymer	s and	d tex	tiles,										
Bioch	emicals and biotech	nology, Pharmaceuticals and drugs, Microelectronics, energy from co	nvent	tional	and										
non-co	onventional resource	es, Metals													
Sr.		Required													
INO.	Kinatian of homogo	produce reactions. Interpretation of batch reactor data. Cingle ideal	1	lours	5										
1	reactors including	Kinetics of nomogeneous reactions, interpretation of natch reactor data, Single ideal													
2	Multiple reactions	Temperature and pressure effects		5											
3	Introduction to Non	n-ideal flow RTD measurements. Models to predict conversions		5											
	Homogeneous and	Heterogeneous Catalysis, Kinetics of Solid Catalyzed Reactions.													
4	Design of gas – so	lid catalytic reactors		15											
5	Introduction to mult	tiphase reactors		5											
6	Mass Transfer with	Chemical Reactions: Regimes of operation and Model contactors		5											
	•	Total		45											
		List of Textbooks													
1	Elements of Chemi	ical Reaction Engineering – H. Scott Fogler													
	1	List of Additional Reading Material / Reference Books													
1	Heterogeneous Re	actions, Vol.I and II – L.K. Doraiswamy, M.M.Sharma													
		Course Outcomes (students will be able to)													
CO1	describe and apply	the principles of various types of reactors (K3)													
CO2	calculate rates of re	eactions based on given reaction scheme (K3)													
CO3	design various com	nponents of reactors used in industrial practice (K3)													
CO4	compare various re	eactors and select an appropriate reactor for a given situation (K4)													
					_										

		M	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme C	outcom	es (POs)		
		P01	PO2	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	К3	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
				$\overline{U}$				S		Α			Р		
C01	K														
	3	3	3	2	2	1	3	3	3	3	3	3	2	3	3
CO2	K		0												
	3	3	2	2	2	2	1	3	0	3	3	2	0	3	3
CO3	K		<												
	3	3	3	2	1	2	3	3	3	3	3	3	2	3	3
CO4	K														
	4	3	3	2	3	0	2	3	3	1	3	3	1	3	3
Cours	K														
e	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

	Course Code:	Course Title:	Cre	dits	= 4				
	PH11082	SPL5: Pharmaceutical Formulation Technology – II	L	T	P				
	Semester: V	Total Contact Hours: 60	3	1	0				
	Dharmanautical	List of Prerequisite Courses							
SPLI:	Pharmaceutical F	t of Courses where this course will be prerequisite							
SPI 12	2. Validation and E	Regulatory Requirements (PHT1084)							
	Descrip	tion of relevance of this course in the B. Tech. Program							
The co	ourse is designed	to train the students with respect to basics and application of T	echn	oloa	v of				
Solid I	Dosage Forms and	l introduce novel drug delivery systems.		5	, -				
		Course Contents (Topics and Subtopics)	Re	quir: quir:	red s				
	Tablets Introduc	ction							
1	Introduction to	tablet dosage form, rationale, advantages and limitations		5					
	Granulation tec	higues Direct compression							
2	Excipients in Ta	blets	<u> </u>	3					
	Tablets Formula	ation							
2	Unit operations	, tablet punching: physics of tablet punching,		F					
3	single punch and	I rotary tablet press, tablet tooling		5					
	Quality control	of tablets	<u> </u>						
4	Types of Tablets	S							
5	Problems in Tal	Dieting		2					
6	Large-scale Ma	nuracturing, packaging and layout design for tablets		5					
	• Introduction to t	tablet coating: rationale advantages etc							
	Preformulation	considerations for tablet coating							
7	Types of coating								
	Quality control	of coated tablets							
	<ul> <li>Large scale ma</li> </ul>	nufacture and packaging with focus onequipment							
	Layout design a	and Unit operations							
	Capsules:	cancula docado form: rationalo, advantagos oto							
	Preformulation	considerations for cansule dosage form							
	Hard gelatin g	capsules: formulation considerations, capsule manufacture							
	equipments, qua	lity control tests, packaging, Large-scale manufacture, layout							
8	design			5					
	<ul> <li>Soft gelatin cap</li> </ul>	sules, formulation considerations, capsule							
	filling equipments	s, quality control tests, packaging, Large scale							
	manufacture, lay	outdesign							
	• Large Scale IIIa	and Unit operations							
	Microencapsula	ition:							
0	Fabrication tecl	nniques		5					
9	<ul> <li>Evaluation</li> </ul>			5					
	Large scale ma	nufacture and packaging with focus on equipment							
	Oral Sustained-	release and Controlled-release Formulations							
10	Proformulation	JUSE CAICUIATIONS		5					
10	Formulation of	matrix and reservoir type systems		5					
	<ul> <li>Liquid oral sust</li> </ul>	ained release formulations							
11	Quality Control	, large scale manufacture and layout design of oral		5					
	sustained releas	e formulations		5					
	Novel Drug Deli	very Systems		_					
12	Introduction to	Iransdermal and Iransmucosal (buccal,		5					
12	Overview of Co	n, vayinai, reciai) uruy uelivery systems smatic Products							
13	Definition of o	osmetics: historical background classification of cosmetics		5					
	and primary func	tions							
	Brief overview	of types of cosmetics [Skin care, haircare, nail care, eye							
	care, dental prod	lucts]	1						
	<ul> <li>Formulation</li> </ul>								
	Large scale manufacture and packaging with focus on equipment								
-----	---------------------------------------------------------------------------------------------------------------------------------------								
	Layout design and Onit operation								
	Total 60								
	List of Textbooks/Reference Books								
1	Therapeutic Systems: Pattern-Specific Drug Delivery, Heilmann, Struttgart, G. Thiense Pub. (1978)								
2	Encyclopedia of Pharmaceutical Technology, J. Swarbrick, New York, Marcel Dekker (1993)								
3	Remington's Pharmaceutical Sciences, A. R. Gennaro Mac Pub. Co. Easton, Pennsylvania (1990)								
4	Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia.								
5	Theory & Practice of Industrial Pharmacy. L. Lachman, Herbert A. Lieberman& J. Kanig, Lea & Febiger, Philadelphia (1987)								
6	Pharmaceutical Dosage Form: Dispersed Systems (Vol.1 & 2) Herber A. Lieberman, Martin A. Rieger, G. S. Ban, Marcel Dekker Inc. (1993)								
7	Modern Pharmaceutics. Gilbert S.Banker, C.T. Rhodes, Marcel Dekker Inc. (1990)								
	Pharmaceutical Dosage forms: Parenteral Medications in Three volumes.								
	Kenneth E. Avis, Herbert A. Lieberman, Leon Lachman, Marcel Dekker Inc. (1993)								
	Course Outcomes (Students will be able to)								
C01	describe preformulation, formulation, unit operation, large-scale manufacturing, layout design of tablets.(K2)								
CO2	explain the coating polymers, technology and equipments used for coating of tablets and describe microencapsulation techniques.(K2)								
CO3	apply principles of dosage form design and evaluation for various solid oral dosage forms. (K3)								
CO4	design and evaluate the novel drug delivery systems.(K4)								
	,0								

		М	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme C	utcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
						5		S		Α			Р		
C01	K					0									
	2	3	2	1	2	$O_1$	3	3	1	3	3	0	1	3	2
CO2	K				- 19	7									
	2	3	3	2	2	0	2	3	3	3	2	3	2	2	3
CO3	K				Y										
	3	3	2	2	3	3	2	1	3	3	3	2	2	3	3
CO4	K			-9											
	4	3	3	2	3	2	3	0	3	2	3	3	3	2	3
Cours	K			25											
е	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title:	Cre	dits	= 3
	PHT1049	SPL6: Medicinal Natural Products	L	Т	Ρ
	Semester: V	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Standa	ard XII th Biology ar	nd Chemistry			
	Lis	t of Courses where this course will be prerequisite			
All Ph	ytochemistry and N	Natural Product Chemistry courses			
<b>T</b> I	Descrip	tion of relevance of this course in the B. Tech. Program		- 4 -	l
	ourse is designed	to train the students with the dasics of Medicinal Natural F	roau	ICTS 8	and
Fliytot		67	Re	auir	ed
		Course Contents (Topics and Subtopics)	F	lour	S
	Scope of the sub	ject, Source of the drug of natural origin, Classification			
1	of drug			4	
2	Organized and u	norganized drugs; study of various plant parts and		0	
2	tissues; Adultera	nts and substitutes		0	
	Preparation of dr	rug for commerce and quality control, application of			
3	spectroscopy and	d chromatography techniques for isolauon, identification		8	
	and analysis of p	hytoconstituents.			
	Phytochemistry:	Chemical constituents in the production of plants		0	
4	tanning ternenoi	protein enzymes, lipius, aikaloius, giycosides, steroius,		8	
	Biosynthesis and	proach: Building blocks and metabolic nathways for the			
5	formation of seco	ondary metabolites		4	
	Extraction and is	solation of plant drugs: conventional and modern techniques			
6	used in extraction	n and separation of phytoconstituents		4	
7	Detailed study of	f one representative from each of the above mentioned		0	
1	chemical class (1	10 drugs)		8	
8	Recent advances	s in phytopharmaceuticals (topic of current interest)		1	
		Total		45	
		List of Textbooks/Reference Books	10.00		<u> </u>
1	Dewick P.M., Me	edicinal Natural Products- A Biosynthetic Approach, 2 ¹¹ edition	1/200	)2, J	ohn
	Bruneton J Pha	rmacognosy «Phytochemistry Medicinal Plants 1999 Lavoisie	er Pu	blish	ina
2	Inc.				9
2	Harborne J. B. P	hytochemical Methods - A Guide to modern techniques of			
3	Plant analysis				
4	Ikan R., Natural I	Products- A Laboratory Guide			
5	Tyler V.E., Pharn	nacognosy			
6	Trease & Evans,	Textbook of Pharmacognosy			
7	Publishers Wallis	s, Textbook of Pharmacognosy			
8	Wagner H., Plan	t Drug Analysis- A Thin Layer Chromatography Atlas 1984, Spr	inger	-Ver	lag
	Wealth of Incia (	11 Volumes), Publications and Information Directorate		rbo	
8	Spices 1000 CE	. W. Showdon, Alias of Microscopy of Medicinal Plants, Culinal	гу не	erbs	anu
9	The Merck Index	Merck Research Laboratories			
10	Latest - dition of	Indian Pharmaconoeia			
10	Edicol E dition of	Course Outcomes (Students will be able to)			
C01	understand and	Undertake systematic identification of different plant/herbal mat	terial	.(K3)	)
0.00	understand and	undertake steps involved in the preparation of herbal drugs for	com	nerc	e.
CO2	(K3)				
	understand and	undertake Extraction of plant materials and thereafter separation	on of		
CO3	phytoconstituents	s and also undertake separation of constituents by column			
ļ	chromatography.	(K4)			
CO4	undertake evalua	ation of herbal raw material as well as formulations made from	them	.(K3	)
	describe compre	hensive requirement for setting up of extraction plant.(K3)			

		Μ	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme C	outcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α		0	Р		
C01	K											V			
	3	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ											7			
	3	3	3	2	2	2	2	3	1	3	3	1	2	2	3
CO3	K										S				
	4	3	3	0	3	2	3	3	2	3	3	2	3	3	3
CO4	K										0				
	3	3	3	3	1	3	2	3	3	3	0	3	3	2	3
CO5	K									N N	-				
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours	K									0					
е	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

ie Cori, ze domain,

	Course Code:	Course Title:	Cre	dits	= 3
	PHT1050	SPL7: Medicinal Chemistry – I	L	Т	Ρ
	Semester: V	Total Contact Hours: 45	3	1	0
		List of Prerequisite Courses			
Organ	ic Chemistry – I (C	CHT1137), Organic Chemistry – II (CHT1138), Physical Chemis	stry –	·I	
(CHT	1341), Physical Ch	emistry – II (CH I 1342)			
	LIS Medicinal Chemic	t of Courses where this course will be prerequisite		111.	
SPL0.	inal Chemistry – II		), 5P	L14.	
Wiculd	Descrip	tion of relevance of this course in the B. Tech. Program			
The co	ourse is designed	to acquaint the students with general principles of Medicinal C	hemi	strv a	and
drug d	liscovery of small r	nolecules.			
		Course Contents (Topics and Subtopics)	Re	quir	ed
		course contents (ropics and Subtopics)	F	lour	s
	A General Introd	uction to Medicinal Chemistry:			
1	Definitions and e	explanation of terms used in Medicinal Chemistry		1	
	throughput coroc	being ADME ata) nomenalature of du as			
	Historical persoa	sing ADME etc.), nomenciature of urugs			
	vears serendinity	/ natural products in drug discovery		1	
	Introduction to M	odern Drug Discovery- Rational design. Molecular modeling.			
	Genetics and DN	IA technology		2	
	Classification of	Drugs: Classification of drugs based on:		~	
	Therapeutic clas	ses, Drug targets, Mechanism of action, Chemistry, etc.		2	
2	Physicochemical	Properties and Drug Metabolism:			
	Passage of me	plecule through biological barriers: membrane transport			
	(paracellular, tra	nscellular) ,drug ionization, pKa, acids and bases used for		3	
	salt formation, pl	hysicochemical properties, log P and log D			
	Drug absorption:	drug dosage form, gastric emptying, gastric		1	
	permeability to d	rug, first pass effect			
	Drug distribution	. urug-plasma billying, bioou brain bamer, urug		1	
	Drug Elimination				
	a) drug excretion	0			
	b) drug biotransf	ormation		5	
	c) Biotransforma	tion reactions: functionalization, conjugation			
	reactions, reaction	ons leading to toxic metabolite			
	Prodrugs: conce	ept of prodrugs, examples and applications, carrier prodrugs,		2	
	bioprecursor pro	drugs			
	Drug Toxicity			1	
	Strategies for	crinancing oral bioavailability and brain penetration:		2	
2	Physicochemica Molecular target	covernation of the stability structural rigidity			
	General Associ	s champles from current largets to be used)			
	a) Types of bond	s in ligand receptor interactions role of functional groups			
	b) Types drug	-target interaction: competitive, uncompetitive, allosteric		3	
	interactions	5 1 7 1 7			
	c) Concept of dru	uggable targets			
	Enzymes as Dru	ug Targets:			
	a) definitions and	l concepts-enzyme, apoenzyme,holoenzyme, coenzyme		3	
	b) targeting hum	an enzymes in physiological conditions		•	
	C) targeting enzy	mes selective to pathogens			
	d) Types and p	onerties of recentors: GPCRs, Ligand gated ion channels			
	nuclear recento	rs. voltage gated ion channels recentors with intrinsic		3	
	enzyme activity	receptors coupled to cytosolic proteins		0	
	e) Cellular respo	nses to ligand-receptor interactions			
4	Small molecules	as drugs (examples from current drugs to be used)			
	Strategies for h	it identification: Strategies for identification of hits: natural			
	product based,	serendipity, design of analogs , systematic and random		5	
	screening, devel	opment of new leads from old drugs, introduction to concept		5	
	of chemical space	e			

5	<b>Drug Design:</b> Introduction to molecular mechanics, Ligand based (pharmacophore modeling) and receptor based drug design(protein crystallography, molecular docking), drug repurposing, fragment based drug discovery	5
6	<b>Lead Optimization:</b> lead likeness and drug likeness, determination of compound, drug biological, biochemical properties, metabolic information using internet, homologs, concepts of bioisosterism, isosteric replacements, ring transformations, conformational restrictions, homo/ heterodimer !!gands and chemical hybridization	3
7	SAR, QSAR: Concept of SAR, effects of substituents and functional groups, introduction to QSAR	2
	Total	45
	List of Textbooks/Reference Books	
1	Lemke, T. L., Zito, S. W., Roche, V. F., Williams, D. A. Essentials of Foye's Princ Medicinal Chemistry; Wolters Kluwer (2017)	ciples of
2	Lemke, T. L., Williams, D. A., Roche, V. F., Zito, S. W. Foye's Principles of Med Chemistry; 7 th ed.; Wolters Kluwer (2013)	icinal
3	Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chem J. M., Jr., Block, J. H., Eds.; 12 th ed.; Wolters Kluwer (2011)	istry; Beale,
4	Burger's Medicinal Chemistry & Drug Discovery, Vol. 1- 6; Abraham, D. J., Ed.; John Wiley & Sons - New Jersey (2003)	6 th ed.;
5	Kleeman, A., Engel, J., Kutscher, B., Reichert, D. Pharmaceutical Substances: Patents and Applications of the Most Relevant APIs; 5 th ed.; Thieme Medical Pu (2009)	Syntheses, blishers Inc.
6	Lednicer, D. The Organic Chemistry of Drug Synthesis; Vol. 1 - 7); John Wiley & (2008)	Sons, INC.
7	Silverman, R. B., Holladay, M. W. The Organic Chemistry of Drug Design and D 3 rd ed.; Elsevier (2014)	rug Action;
	Course Outcomes (Students will be able to)	
CO1	apply basic knowledge on physicochemical properties of drugs for understandir principles.(K4)	ıg design
CO2	extract SAR and MOA of drugs at the molecular level of understanding.(K3)	
CO3	apply principles of drug discovery from hit to lead to preclinical molecules.(K4)	
CO4	theoretically predict absorption, distribution, metabolism and excretion of drugs concept of prodrugs.(K4)	and related

		Μ	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	ımme C	outcom	es (POs)		
		P01	PO2	PO3	P04	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	KG	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
				0				S		Α			Р		
C01	K			25											
	4	3	2	1	2	1	3	1	3	3	1	3	1	3	2
CO2	K		0												
	3	3	3	2	2	2	1	3	3	3	3	2	2	3	3
CO3	K	1	~												
	4	3	3	1	3	2	2	3	2	0	3	3	0	3	3
CO4	K	1													
	4	3	0	3	3	3	3	2	3	3	2	3	3	2	3
Cours	K														
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title:	Cred	its = 4
	MAT1106	Design and Analysis of Experiments	L	ТР
	Semester: V	Total Contact Hours: 60	<mark>2</mark>	<mark>2 0</mark>
1100.0		List of Prerequisite Courses		
HSC S	standard Mathematik	cs, Applied Mathematics – I (MAI 1101), Computer Appl!catio	ns	
Labura	List	of Courses where this course will be prerequisite		
	List			
	Descripti	on of relevance of this course in the B. Tech. Program		
This c	ourse is required fo	r graduating technocrats to function effectively and efficientl	y in In	dustry,
Acade	mia and other Profe	essional Spheres.		<u> </u>
Sr.	C	Course Contents (Topics and subtopics)	Req	uired
NO.	Module	I (Statistical Theory of Design of Experiments)		<i>J</i> ui 5
	Fundamental Pri	nciples of Classical Design of Experiments: Strategy of		
1	Experimentation,	Typical applications of experimental design, Basic		2
	principles, Guideli	nes for designing experiments		
	Review of Prob	ability and Basic Statistical Inference: Concepts of		
	random variable	, Probability, Density function cumulative distribution		
2	median and mod	and population, measure of central tendency, mean,		4
	Statistical Distrib	utions: Normal Log Normal & Weibull distributions		
	Hypothesis testing			
	Experiments with	n a Single Factor: Analysis of Variance -		
	Fixed effect mode	I and Random effect model, Model adequacy checking,		
2	Contrasts, Orthog	onal contrasts, Regression Models and ANOVA, Violation		Q
	of normality assum	nption: Kruskal-Wallis test		0
	Randomized bloc	ck designs, Latin square designs, Balanced incomplete		
	DIOCK designs	no. Definition Estimating model parameters. Fitting		
4	response curves a	ns: Deminion, Estimating model parameters, Filling		4
	Module	e II (Data Analysis using Software (R/Python))		
	The 2 ^k Factorial d	esign, Blocking and confounding in the $2^k$ Factorial design,		
5	Focus of 2 ² and	2 ³ designs, Blocking and confounding in the 2k Factorial		8
	Design	10		
6	Plackett Burman r	methods, Central Composite Design (CCD)		4
7	Descriptive Statist	tics, Probability Distribution and Testing of Hypothesis using		6
	R Regression tech	niques Diagnostic checks ANOVA using P and		
8	implementation of	contrasts		6
0	Construction of Ba	alanced Incomplete Block Designs and data analysis using		<u> </u>
9	R 🖉	, , , , ,		6
10	Analysis of fac	torial designs using R, Understanding output and		6
	interpretation			<u> </u>
11	Factorial designs,	Data analysis and interpretation.	-	6
	-Q.	List of Textbooks/ Reference Books		JU
	Montgomery Dou	glas C. Design and Analysis of Experiments: 9th Ed : John V	Vilev &	Sons
1	Inc. (2017)		viloy a	Cono,
2	Box, G. E.; Hunte	er, J. S.; Hunter, W. G. Statistics for Experimenters: Design	i, Innov	vation,
	and Discovery; 2 nd	^d Ed.; Wiley (2005)		
3	Lawson, John. De	sign and Analysis of Experiments with R; 1 st Ed.; CRC Press	(2015)	)
4	Rasch, D.; Pilz, J Ed.; CRC Press (2	I.; Verdooren, R.; Gebhardt, A. Optimal Experimental Desig 2011)	in with	R; 1 st
5	Unpingco, J. Pytł (2019)	non for Probability, Statistics, and Machine Learning; 2 nd I	∃d.; Sp	pringer
	Anderson-Cook, (	Christine M.; Montgomery, Douglas C.; Myers, Raymond I	H. Res	sponse
6	Surface Methodol	ogy: Process and Product Optimization using Designed Exp	erimei	nts; 4 ^m
7	Eu.; Wiley (2016)	alas C. Introduction to Statistical Quality Control: 7th Ed. Wild	<u> (200</u>	101
	Lazić Živorad P	Design of Experiments in Chemical Engineering: A Practic	al Gui	ide: 1 st
8	Ed.; Wiley-VCH (2	2005)	,a Oui	ас, т

	Course Outcomes (Students will be able to)
CO1	understand basic principles of design of experiments.(K2)
CO2	perform statistical analysis of single experiments and do post hoc analysis. (K3)
CO3	conduct experiment and analyse the data using statistical methods.(K4)
CO4	choose an appropriate design given the research problem.(K5)
CO5	perform statistical analysis of different designs using R and interpret the results.(K5)

		M	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	imme C	utcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α	2		Р		
C01	K									-	2				
	2	3	2	1	2	0	3	3	3	3	3	1	1	3	2
CO2	K									0					
	3	3	3	2	2	2	3	3	3	0	3	3	2	3	3
CO3	K								~						
	4	3	2	2	3	2	3	1	3	3	2	3	2	2	3
CO4	K							1	~						
	5	3	3	3	3	3	3	3	3	3	3	0	3	3	3
CO5	K														
	5	3	1	3	3	3	3	3	2	3	3	3	3	0	3
Cours	K							5							
е	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

 $\gamma$ 

	Course Code:	Course Title:	Credits =									
	PHP1044	Pr 3: Pharmaceutical Chemistry and Formulation Technology Laboratory	L	Т	Ρ							
	Semester: V	Total Contact Hours: 120	0	0	8							
		List of Prerequisite Courses										
SPL1: (CHP1	Pharmaceutical F L132)	formulation Technology – I (PHT1081); Organic Chemistry Lab	orato	ry								
	Lis	t of Courses where this course will be prerequisite										
Pr 7: F Labora	Pharmaceutical Fo atory (PHP1055)	rmulation Technology Laboratory – II (PHT1082); Pr 8: Proces	s Tec	hnol	ogy							
	Descrip	tion of relevance of this course in the B. Tech. Program										
The co Pharm the stu compo	ourse is designed naceutical Science udents will practise ounds in the Pharr	to impart necessary skills to budding technocrats in the majors and Technology, i.e., Chemistry and Formulation. In the Che e Green Chemistry approaches while preparing the commonly naceutical Industry. In the Formulation area, the students will b	er seo emist used be tra	tions ry ar orga ined	of ea, inic on							
the for	mulation aspects	of solid oral dosage forms, including sustained-release drug pr	oduct	S								
		Course Contents (Topics an d Subtopics)	Re F	quir lour:	ed S							
	-	Chemistry										
1	Preparation of or involving simple	ganic compounds in common use in pharmaceutical industry transformations (10 X 4 Hrs)		40								
2	Few examples o	f synthesis using green approaches		10								
3	Application of sy	nthetic methods reported in recent literature		10								
	<u> </u>	Formulation										
5	Representative e packaging and e	examples of granules ready for compression (Preparation, valuation)		8								
6	Representative examples of tablets (Preparation, packaging and evaluation) 20											
7	Representative e packaging and e	examples and demonstration of tablet coating (Preparation, valuation)		8								
8	Representative e evaluation)	examples of capsules (Preparation, packaging and		8								
9	Dissolution testir Conventional m	ng: arketed formulations (including Sustained-release formu-		8								
	lations) represen	ting- soluble drug, poorly soluble drug (selection of medium)										
10	Representative e evaluation)	examples of microencapsulation (Preparation, packaging and		8								
		Total		<b>120</b>								
		List of Textbooks/Reference Books										
1	Arthur, Vogel. Te (1989)	exthook of Practical Organic Chemistry, 5 th edition, Longman	n Gro	oup I	_td.							
2	Green Methods	of Preparation published by Department of Science and Techno	ology									
3	Latest editions o	Indian, British and United States Pharmacopoeia										
4	Pharmaceuticai	Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekk	er (19	96)								
5	Drug Delivery D (1988)	Devices: Fundamentals and Applications, Tyle New York, Ma	arcel	Dek	ker							
6	The Theory and (1976)	Practice of Industrial Pharmacy, Lachman Bombay, K. M. W	/argh	ese	Co.							
7	Husa's Pharmac	eutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)										
		Course Outcomes (Students will be able to)										
C01	plan and develop	o organic synthetic routes for small organic compounds.(K4)										
CO2	develop a set of	separation and purification and structural characterization skills	s.(K5	)								
СОЗ	prepare, evaluate oral dosage form	e and label pharmacopoeial and non pharmacopoeial solid is.(K5)										
CO4	perform dissoluti (K4)	on testing for conventional and non-conventional solid oral dos	age	orm	5.							

		М	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	ımme C	outcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α		-	VР		
C01	K											~	0		
	4	3	2	1	2	1	3	1	1	3	3	3	1	3	2
CO2	K											0			
	5	3	3	2	2	1	3	3	3	3	3 🕴	3	3	3	1
CO3	K										1				
	5	3	3	2	0	2	3	3	2	3	3	3	2	2	3
CO4	K										0				
	4	3	3	3	2	3	3	0	3	3	2	2	3	3	3
Cours	K										D				
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

d Contributio. e domain; A, Affe

	Course Code:		Cre	dits	= 2				
	PHP1056	Pr 4: Medicinal Natural Produc	cts Laboratory	L	Т	Ρ			
	Semester: V	Total Contact Hours	: 60	0	0	4			
		List of Prerequisite Courses	- <u></u>						
Analyt	ical Chemistry (CH	T1401), SPL4: Pharmaceutical Analysi	s and Green Chemistry	/ (PH	T105	52)			
	Lis	of Courses where this course will b	e prerequisite						
SPL6:	Medicinal Natural	Products (PHT1049)	0						
	Descrip	ion of relevance of this course in the	B. Tech. Program						
The c	ourse is designed	to train the students on the extraction	n, isolation and chara	cteriz	atior	۱ of 🏻			
Medic	inal Natural Produ	its.	22						
		Course Contents (Topics and Subtop	pics)	Re	equir Iour:	ed s			
	Standardization	f plant drugs using following methods -	2						
1	Morphology, mic study of drugs	oscopic quantitative microscopy, details	s microscopic		15				
2	Physical constants like specific gravity, swelling factor, ash values, extractive values, refractive index, optical rotation, etc.								
3	Values, refractive index, optical rotation, etc.         Chemical methods identification tests for various classes o phytoconstituents, extraction and isolation of active principles such as alkalis glycosides, tannins, carbohydrates resin, essential oils, fats etc. from natura drugs (4-5 drugs) and evaluation of isolated material by chromatography and								
			Total		60				
	<u>.</u>	List of Textbooks/Peierence Bo	ooks						
1	Latest editions Pharmacopoeia,	of Indian Pharmacopoeia, British and others	Pharmacopoeia, U	nited	Sta	ıtes			
		Course Outcomes (Students will be a	ble to)						
CO1	standardize the r	nedicinal plants using morphological an	d microscopic analyse	s.(K3	)				
CO2	characterize the	nedicinal plants using various analytica	l techniques.(K4)						
CO3	identify the phyto	constituents in medicinal plants using v	arious chemical tests.(	K4)					
CO4	isolate phytocons further character	tituents from the natural materials using ze using speciroscopic and spectromet	g chromatographic ana ric techniques.(K5)	lyses	and				
		8	· · · · ·						

		Μ	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	ımme C	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A			S		
C01	K			9	10										
	3	3	1	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K			0											
	4	3	3	2	3	2	2	1	2	3	0	3	2	3	3
CO3	K			÷											
	4	3	3	3	0	3	3	2	3	1	3	2	3	2	2
CO4	K		0												
	5	3	3	2	2	2	3	3	2	2	3	3	1	3	3
Cours	K		$\leq$												
е	5	3	3	2	3	2	3	3	3	3	3	3	2	3	3

## Semester VI Whoved by Acade

	Course Code:	Course Title:	Cre	dits	= 4			
	PHT1055	SPL8: Pharmaceutical Chemistry and Catalytic Process	L	Т	Ρ			
	Semester: VI	Total Contact Hours: 60	3	1	0			
Desia		List of Prerequisite Courses						
Basic	understanding of r	netal complexes and co-ordination chemistry; Physical chemis	try of	onio				
chemi	es anu isouriernis, stry · Rasic knowle	edge of enzymes and protein structure	rorg	anic				
onerni	Lis	t of Courses where this course will be prerequisite						
All cou	urses involving che	emical processes						
	Descrip	tion of relevance of this course in the B. Tech. Program						
The co	ourse is designed ance in optimizatio	to train the students in the basics of various catalytic process on of the chemical processes.	ses a	ind th	neir			
		Course Contents (Topics and Subtopics)	Re H	quir Iour	ed s			
		A. Pharmaceutical Chemistry						
1	Importance of Or concept of retros bonds	rganic synthesis, linear vs telescopic synthetic strategies, synthetic analysis; construction of simple carbon-hetro		2				
2	Understanding of strategies of buil selectivity issues	of molecular complexity, identification of building blocks and ding molecules by joining the blocks, chemo		2				
3	Building block ba analysis of large synthetic strateg	ased carbon-hetero bond disconnection based retrosynthetic r drug and natural product molecules and ies		4				
4	Heterocyclic ring	construction analysis with illustrative examples		4				
5	Retrosynthetic approaches stud	analysis of different drug molecules with combined ies as above		4				
6	C-C bond discon reagents, analys	nections and selection of synthons and corresponding is of synthesis of simple drug molecules		4				
7	Organometallic chemistry based strategies in retrosynthesis and 4							
8	Wittig, Aldol, Mic strategies	hael, organopalladium, metathesis based retrosynthetic	4					
9	Asymmetric trans	sformations and retrosynthesis		_2_				
	Our arrition of Disc	B. Catalytic Process						
10	research. Import	rmace itical lechnology and current trends in process ance of catalytic process in organic synthesis and processes		2				
11	energy profile dia	agrams and kinetics. Specific acid and specific base catalysis		4				
12	General acid and	a base catalysis, nomogeneous catalysis and		4				
13	Heterogeneous o catalysts - outline catalysis	Latalysts and catalysis, types of catalysts, characterization of e, kinetics, catalyst poisoning, Supported catalysts and		4				
14	Biocatalysis, bio details studies or	catalytic systems, Enzyme catalyzed reactions, principles, n Lipases and catalyzed reactions		4				
15	Immobilized bioc chemistry, merits	catalytic systems and different approaches of immobilization s and demerits		4				
16	Manufacture of c	hiral drugs through catalytic processes		3				
17	Phase-transfer c	atalysis		_2_				
18	suspension of sc	and understanding, implication on catalytic processes, lids particles		3				
		List of Textbooks/Deference Books		00				
	Modern Physica	Organic Chemistry: F.V. Anslyn, D.A. Dougherty: University	Boc	ık Pr	ess			
1	(2006)							
2	Biotechnology, V	ol 4, H. J. Rahm, G. Reed; Weinheim Verlag Chemie (1985)						
3	Principles of Pro	cess Research and Chemical Development in the Pharmaceut	ical I	ndus	try;			
	O. Repic; Wiely a	& Sons Inc. (1998)						
4	Frecent review al							

	Course Outcomes (Students will be able to)
CO1	comprehend fundamental knowledge of catalysis and its characterization.(K4)
CO2	appreciate the role of biocatalytic processes and issues concerned with APIs.(i.3)
CO3	design synthetic pathways for heterocycles by logical disconnection route.(K5)
CO4	map organic molecules with respect to functional group clusters, building-block
C04	identification.(K4)
COF	logical disconnection of molecules at strategic bonds and identification of synthons with
005	known chemistry and Logical design of synthesis of drug and biological molecules.(K5)

		Μ	appin	g of C	ourse	Outco	omes	(COs)	with <b>F</b>	Progra	umme C	utcom	es (POs)	)	
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	'K2+A	K3	K6+A+	K3	K4
								S		A	5		S		
CO1	K									5					
	4	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K									C					
	3	3	2	2	2	2	0	3	2	2	3	3	1	3	3
CO3	K								~						
	5	3	2	3	3	3	3	2	3	3	0	2	3	3	2
CO4	K							1							
	4	3	3	2	1	2	3	3	2	1	3	1	2	2	3
CO5	K							1	1						
	5	3	3	2	3	2	3	3	2	3	3	2	2	3	3
Cours	K							2							
е	6	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course	Code						urco -	Titlo				Cre	dite	= 4		
	PHT1	0000C	•		SP		arma	centic	al Riot	echno	VDOI			T	P		
	Somoct	tor: VI			51	т	atal C	ontact			logy	h	2	1			
	Semest	ler: vi			Liet				HOUIS	5: 60		<del></del>	3		U		
Standay		001/			LISU		requi	sile C	Juises	>		×					
Stanual		ogy	Liete			uhara	thic o	<u></u>	will b		<u>auloito</u>	/					
	t Training (	וחוח		nd oth		vnere		ourse		e prere	quisite						
III-Pialii	t fraining (		076) a		eriele	vanit	Juises	5	in the	D Too							
To fami	liorizo otud	Des lonte	vith or		f bioto	obpole		d their		<b>B. Ie</b>	n. Pro	yram Dooro with	a toob	aiau	in		
hiotoph	nalogy inv		with ai	eas o	n Diole		Jyy ari		appin i mior		i nealu	icare, will		nque			
plant/m	ammalian (	colle f	or proc	lai, e		u anu armao	i engi		i iiici Want c	ompou	nde of i	nductrial i	mnort		S UI		
about t	he structu	ral fa	or proc aturas	and	functio	annau ne of	imm	ing icit	stan u	convor	nus ur i nonte la	nd their	involva		nt in		
develor	ment of i	mmur	ne resi	nonse	the	,113 01 1150 0	f imm		sical te	compor		analytical	tools	and	d he		
principle	es governir	าต งลด	cinatio	on.	, 110	400 0		unolog	giodi ti	Johningu	00 40	analytica	10010	un			
pintelpit		.9	-		-								Re	auir	ed		
			C	ourse	Conte	ents (1	<b>Topics</b>	and S	Subtop	ics)			H	S			
	Introducti	ion to	) Pha	rmace	utical	Biote	chno	oav a	and its	role ir	health	ncare and					
1	diagnostic	S				2.00		logj t		1010 11	i noull			8			
	Fermenta	tion 1	echno	oloav:				$\sim$						6			
	Introductio	on to f	ermen	tation				( )						•			
								$\sim$									
	Types of	ferm	entatio	on, m	icroor	anisn	ns in	ferme	entatio	n, stra	in imp	rovement.		6			
2	Fermenter	rs and	l types	; Stag	jes of	ferme	ntation	; typic	al fern	nentatic	n types	s – batch,					
	continuous	s, fed-	batch;	factor	's affeo	cting fe	erment	ation,									
	Typical fer	rmente	er desi	gns ar	nd exp	lanatic	on of d	esign o	charac	teristics	5.						
						-	5										
	Examples	of ind	lustrial	produ	cts	,0	»										
3	Enzyme F	erme	ntatio	n and	Immo	biliza	tion							3			
	Basics of Immunology																
4	Immune system, humoral and cell mediated immunity													5			
	Antibodies, antigen-antibody reactions												5				
	Active and	1 Pass	sive im	munity	0									4			
5	Plant and	Anim	nal Tis	sue C	unture									4			
	Technique	es and	applic	ations	<u> </u>									4			
6	Pharmaco	ogenc	omics	-6	e							<b>T</b> - 4 - 1		3			
				-			/ T					Iota		60			
1	DK Cunto		onto o	L.	IST OT			<b>cerere</b>		JOKS	(2015)						
1	PK Gupta	, Elem	ients o	DIOLE		)gy, ∠" ibu im	° ea, ⊦	astogi		ations	(2015)	m (2012)					
	Owen JA,	Punt	$J, \exists R$		SA. KL			ogy. No	ew YOI	K. WH	-reema	<u>II (2013)</u>	00000	mon	t " In		
3	Blant Coll	Ului	L. and			. Piiiii ro nn	р <u>s</u> . La	Spring	or Po	linues, (	Jolborg	(1005)	anage	nen	ι. Π		
4	Walch Ca	, HISSL		Organ	l bioto	chnold	$\frac{3-20}{20}$	Spring	<u>yer ber</u>		ione le	, (1995) hp Wilov	e Son	<u>    ()</u>	007)		
4	Stanbury	Dotor		llan M	hitake	r and	l Stan	hon 1	<u>มาแล</u>	Drincin	los of	formontati	a Juli	<u>5, (2</u> 200			
5	Elsevier (2013)										,1110	iogy.					
			C	ourse	Outco	mes	Stude	nts w	ill he a	ble to	)						
	explain an	d utili	ze vari		ncent	s of hi	otechr		in aca	deme a	nd rese	arch in dia	aanost	ic			
CO1	theranout	c and	allied	indust	rially r	elevan	t fields	s of mo	lecula	r biolog	v and b	iotechnolo	nav (K:	3)			
	explicate and employ various concents of fermentation and different fermentative strat									ategie	s. ba	ased					
	on natural enriched and engineered microorganisms or their components as well a										s desic	n a					
CO2	simple cor	ntainm	nent sy	stem (	Biorea	actor/fe	ermen	ter) for	produ	cing co	mpound	ds of indu	strial	,			
	importanc	e.(K4)	)					,	•	U	•						
	explicate a	and ex	ploit v	arious	comp	onents	s of im	mune	system	n and m	echani	sms involv	/ed in i	imm	une		
CO3	system de	velop	ment a	and res	sponsi	venes	s as w	ell as v	arious/	immur	nologica	l techniqu	ies to d	deve	lop		
	vaccines a	and va	ccine	formul	ations	.(K3)					-	-			-		
	elucidate a	and ap	oply co	ommor	n cell c	ulture	techni	ques,	e.g. ca	llus cul	ture, mi	cropropaç	gation,				
CO4	embryoge	nesis	in plar	nts and	l in ma	ımmal	ian cel	ls to p	roduce	compo	ounds o	f industria	l, spec	ifica	lly		
	therapeuti	c impo	ortance	e.(K4)													
CO5	explain ho	w ind	ividual	genet	ic varia	ations	affect	respor	nses to	drug a	nd form	ulations t	o be a	ole t	0		
	develop 'p	erson	alized	medio	cines.(	K3)											
	Ma	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme C	outcom	es (POs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	P	302		
	K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	ł	<u>4</u>		

								S		Α			S		
C01	K														
	3	3	3	2	2	3	3	3	3	3	3	3	1	3	3
CO2	K												V		
	3	3	3	1	0	2	3	3	1	3	3	3	2	2	3
CO3	K											~			
	3	3	3	2	3	2	3	2	3	3	3	2	2	3	2
CO4	K											$\sim$			
	3	3	3	2	2	2	2	3	3	2	0	3	2	2	3
CO5	K										X	1			
	4	3	2	2	3	2	3	3	3	3	3	2	2	3	3
Cours	K										5				
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code: Course Title:									
	Somostor: VI	Total Contact Hours: 45	L 2	1						
	Semester: VI	List of Prerequisite Courses	2	<u> </u>	0					
Organ – I (Pł	ic Chemistry – I ( HT1060), Physiolo	CHT1137), Organic Chemistry – II (CHT1138), SPL7: Medicina gy and Pharmacology (PHT1050)	al Che	mist	ŗy					
	Lis	t of Courses where this course will be prerequisite								
SPL14	4: Medicinal Chem	istry – III (PHT1057)								
	Descrip	tion of relevance of this course in the B. Tech. Program	m of	Acti						
Synthe Marke	esis and Structur ted Formulations (	e-Activity Relationship (SAR), New Drug Approvals, Drug of the following therapeutic categories of drugs:	Withd	Irawa	on, als,					
		Course Contents (Topics and Subtopics)	Re H	quire ours	ed S					
		Part I								
	Antibacterial Ag Antibiotics: β-lactam antibio Monobactams	gents: tics including Penicillins, Cephalosporins, Carbapenems,								
1	Marcolides and H Aminoglcosides Miscellaneous in	Cetolides cluding Chloramphenicol, Vancomycin, Bacitracin and Newer		9						
	Agents Synthetic Antibac Sulfonamides an other miscellane	cterials: d DHFR inhibitors, Quinclones, Oxazolidinediones and ous agents								
2	Antiparasitic Age Antiamoebics, Al Miscellaneous Leishmaniasis, S		3							
3	Antifungal Agent Azoles, Polyene Miscellaneous a	s: antibiotics gents including Allylamines, Tolnaftate, Griseofulvin, etc.		3						
4	Antimycobacteria Antitubercular a avium complex (	al Agents: gents, Anuleprotic agents, Drugs against <i>Mycobacterium</i> MAC), Newer Antitubercular targets		3						
5	Anticancer Agen Alkylating agents miscellaneous. Organoplatinum Antibiotics, Antir and purine an ag Mitosis inhibitors	ts: agents hetabolites including DNA polymerase inhibitors, Pyrimidine jonists and miscellaneous agents and Emerging Anticancer and Cancer Stem Cell (CSC)		5						
6	Antiviral Agents: General aspects Amantidine and Interferons (IFNs Neuraminidase i Antiretroviral dru Drugs against Er	, Nucleic acid synthesis inhibitors its analogs, and its inducers nhibitors gs including NRTI, NNRTI and protease inhibitors merging Viral Infections, e.g., Coronaviruses		5						
		Part II								
7	Introduction to D Cholinergic rec Antagonists and	rugs Acting on Cholinergic Nervous System: eptors, Acetylcholine, Cholinergic agonists, Cholinergic Cholinesterase Inhibitors v of Alzheimer's Disease		3						
8	Introduction to D Adrenergic rece Adrenergic Antag Mixed Adrenergi	rugs Acting on Adrenergic Nervous System: otors, Norepinephrine and Epinephrine, Adrenergic agonists, gonists and Cholinesterase Inhibitors c agonists and antagonists		3						

9	Introduction to Drugs Acting on Central Nervous System: General anesthetics Sedatives and Hypnotics Anticonvulsants Antidepressants Antipsychotics Hallucinogens, Analeptics and Psychedelics Anxiolytics Central stimulants Miscellaneous agents – Antiparkinsonian agents, Antiemetics, Irritable Bowel Syndrome	7					
10	Introduction to Centrally-Acting Analgesics: Opioid or Narcotic analgesics: μ-Agonists, other analgesics Mixed agonist/antagonist analgesics μ-Antagonists Antidiarrheal agents Cough suppressants Antitussives	4					
	Total	45					
	List of Textbooks/Reference Books						
1	Lemke, T. L., Zito, S. W., Roche, V. F., Williams, D. A. Essentials of Foye's Princ Medicinal Chemistry; Wolters Kluwer (2017)	ciples of					
2	Lemke, T. L., Williams, D. A., Roche, V. F., Zito, S. W. Foye's Principles of Medicinal Chemistry; 7 th ed.; Wolters Kluwer (2013)						
3	Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chem J. M., Jr., Block, J. H., Eds.; 12 th ed.; Wolters Kluwer (2011)	istry; Beale,					
4	Burger's Medicinal Chemistry & Drug Discovery, Vol. 1- 6; Abraham, D. J., Ed.; John Wiley & Sons - New Jersey (2003)	6 th ed.;					
5	Kleeman, A., Engel, J., Kutscher, B., Reichert, D. Pharmaceutical Substances: Patents and Applications of the Most Relevant APIs; 5 th ed.; Thieme Medical Pu (2009)	Syntheses, Iblishers Inc.					
6	Lednicer, D. The Organic Chemistry of Drug Synthesis; Vol. 1 - 7); John Wiley & (2008)	& Sons, INC.					
7	Silverman, R. B., Holladay, M. W. The Organic Chemistry of Drug Design and D 3 rd ed.; Elsevier (2014)	Drug Action;					
8	Warren, S., Wyatt, P. Organic Synthesis: The Disconnection Approach; 2 nd ed.; (2008)	Wiley;					
	Course Outcomes (Students will be able to)						
CO1	understand and appreciate the molecular design principles by studying Structur Relationship (SAR) and molecular mechanism of action.(K2)	e-Activity					
CO2	follow the unmet medical need for newer agents for treating various infectious of such as COVID-19 and multidrug-resistant microbial infections.(K3)	liseases					
CO3	understand the discovery and development of central nervous system drugs inc for neurodegenerative diseases (K2)	cluding those					
CO4	study the synthetic approaches for various APIs and New Chemical Entities (NG	CEs).(K4)					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A			S		
C01	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	2	3	3	2	3	2	0	3	2	3	1	3	3	2	3
CO3	K														
	3	3	2	3	1	3	2	3	2	3	3	2	2	3	3
CO4	K														
	4	3	3	2	2	2	3	3	3	3	3	3	0	2	3
Cours	K														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

7

		0				
	Course Code:	Course Title:	Cre	dits	= 3	
	HUT1103	Industrial Psychology and Human Resource	L	Т	Ρ	
		Management		-		
	Semester: VI	Iotal Contact Hours: 45	2	1	0	
Nono		List of Prerequisite Courses				
None	Lie	t of Courses where this source will be precervisite				
Tochn	LIS ology Courses in t	tor Courses where this course will be pretequisite				
Techn		tion of relevance of this course in the P Josh Brogram				
This c	ourse equine stude	ants with human resource management sulls to be able to fun	ction			
effecti	velv in their profes	sional careers	cuon			
cheoti			Re	auir	ed	
		Course Contents (Topics and Subtopics)	- F	lour	5	
1	Introduction and	Overview	<u> </u>	2		
	Management The	eories				
2	Taylor, Fayol, We	eber, Hawthorne; Basic types of structures; Span of Control,		4		
	Delegation, Auth	ority, Responsibility				
2	Recruitment	G		2		
3	Philosophies, Dif	ferent methods of attracting candidates		3		
1	Selection	S		2		
4	Application blank	s, Interviews, Induction		2		
	Performance Ma	nagement				
5	Goal setting pro	cess, Performance appraisal methods, Appraisal interviews,		3		
	Rating errors					
-	Training & Devel	opment	-			
6	Identifying traini	ng needs, Training methods (on the job and off the job		3		
	techniques), Eva	luation of training				
7	Change Manage	ment		~		
1	Olmosk change	e, meones of change management, Hurdles to change,	3			
	Knowledge Man					
8	Innovation Imno	rtance and benefits of Knowledge Management, Framework		3		
	Motivation Theor					
9	Classification of	motives Various theories (Maslow Herzberg ERG Vroom		4		
	Equity and Nohri	a's 4 drive model)		7		
	Leadership Theo	Ties		-		
10	Blake Mouton mo	odel, Hersey Blanchard Model, Michigan Model		3		
11	Organizational C	ulture		~		
ΤT	Types of cultures	, Understanding and influencing cultures		3		
	Conflict Manager	nent				
12	Stages of confl	ict, Types of conflict and sources of conflicts, Conflict		3		
	resolution					
13	Power & Politics			3		
10	Bases of power,	Politicking strategies		Ŭ		
14	Personality			3		
	Theories of perso	onality, Behaviour and personality styles		-		
15	Perception	Development of the Development of the Development		3		
	Persception vers	us sensation, Perceptual process, Perceptual errors		45		
		list of Toythooks/Deference Peaks		45		
1	Innovation and E	LISE UL TEXEBUOKS/RETERENCE BOOKS				
1 2	Ecconticle of are	nicepieneuisnip, Peter Diucker				
<u> </u>	Organizational P	anizational Denaviour, Stephen RODDINS				
<u> </u>	Soloct URD coco	enavioui, Lutitatio				
	Innovation and E	ntrenreneurshin Peter Drucker				
5		Course Outcomes (Students will be able to )				
CO1	evolain the funda	mental concents of industrial nevenology and human resource	<u> </u>			

	management.(K2)	
CO2	analyze practical solutions.(K4)	
CO3	provide applicable solutions.(K3)	7

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	F011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+,\	K3	K6+A+	K3	K4
								S		А	2		Р		
C01	K										16				
	2	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	K										5				
	4	3	3	1	3	2	3	2	3	3	3	1	2	3	3
CO3	K									2					
	3	3	3	2	2	2	3	3	3	2	3	3	2	1	3
Cours	K								1						
e	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution: 1, Low Contribution; 0, No Contribution

K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

, e Co. .ve doma.

	Course Code:	Course Title:	Cre	dits	= 3							
	HUT1106         Environmental Science and Technology           Semester: VI         Total Contact Hours: 45											
	Semester: VI	Total Contact Hours: 45	2	1	0							
		List of Prerequisite Courses										
Variou	is Technology Cou	rses in previous semesters										
	LIS	t of Courses where this course will be prerequisite										
variou	is lechnology Cou	rses in the forthcoming semesters										
		ul for the future Chemical Engineers and Technelogists for a		cina -	and							
annred	ciating impact of cl	hemical processes and technologies on the Environment. The	sses: s etud	siriy i Ionte	will							
be exi	posed to the nitty-	aritties of the impact of design principles on the Environment.	ent. T	horo	uah							
unders	standing of these	technology aspects is going to help in innovative solutions	with	posi	tive							
impact	t on the environme	ent.										
		Course Contents (Tonics and Subtonics)	Re	equir	ed							
			ŀ	Hour	S							
1	Introduction to a	all prevailing international standards of Health, Safety, and		2								
<b>1</b>	Environment (H	se); Environmental laws and regulations; Standards (air ator) ISO14000+		3								
2	Environmental in	nact assessment Life cycle assessment (LCA)	+	3								
3	Pollution prevent	ion in chemical manufacturing effluent valorization	+	2								
	Air pollution A	ir pollutants: sources (specific pollutants) effects and	+									
4	dispersion mode	elling, air pollution, air quality, pollutants minimisation and		4								
	control, fugitive e	emissions (source and control), Noise pollution										
5	Wastewater treat	tment; Groundwater and surface water pollution, removal of		Λ								
	specific water co	ntaminants; Solid waste; Hazardous waste		4								
_	Inherent safety; I	Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso,		_								
6	Italy; Pasadena	, Texas; Texas City, Texas; Jacksonville, Florida; Port		5								
	Wentworth, Geor	'gia)										
/	IOXICOIOGY; INdus	strial nyglene	+	2								
0	Eires and explos	ions: Concept, to prevent fires and explosions	+	2								
10	Chemical reactiv	ity	+	2								
11	Reliefs and relief	s sizing. Hazard identification. Risk assessment	+	4								
12	Safety procedure	es and designs	+	4								
13	Some case histo	ries	1	4								
		Total		45								
	•	List of Textbooks/Reference Books										
1	Environmental S	tudies by R. Rajagopalan, Oxford University Press.										
2	Essentials of Env	Aronmental Studies by Kurian Joseph & Nagendran, Pearson										
3	Education Renew	vable Energy by Godfrey Boyle, Oxford Publications										
4	Perspective of E	nvironmental Studies, by Kaushik and Kaushik, New Age										
5	International Env	uronmental Studies by Anandita Basak, Pearson Education										
6	Textbook of Envi	ronmental Studies by Dave and Katewa, Cengage Learning										
/ 0	Environmental S	ludies by Benny Joseph, Tala McGraw Hill roomootol ctudios by Frach Books Bharucha, University Bross										
0	Course Outcomes (Students will be able to)											
	calculate BOD / (	COD for a given composition of effluent stream, estimation of	niokir	netics								
C01	(K3)		JIOI	101100	•							
000	calculate adiabat	tic lapse rate and determine conditions for suitability of atmost	heric	;								
CO2	dispersion, effect	tive stack height, chimney design.(K3)										
CO3	calculate concen	trative of pollutant at any point in the neighbourhood of emissi	on gi	ven								
	atmospheric con	ditions like wind, dispersion, environmental factors, etc.(K3)										
CO4	calculate size/tim	ne/power required for primary clarifier, secondary treatment, te	rtiary	,								
	treatment, sizing	ot different types of Biological treatments etc.(K3)										
CO5	identity hazards	In a given process and assess the same and provide solutions	TOr									
	Uperating safety.	(N4 <i>)</i>										

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6∵-A+	K3	K4
								S		A			S		
C01	K											2	0		
	3	3	3	2	2	2	3	3	2	3	3	3	2	3	3
CO2	K											0			
	3	3	3	2	2	0	3	3	3	3	3	3	1	3	3
CO3	K											7			
	3	3	3	0	2	2	3	1	3	3	1	3	2	2	3
CO4	K										S				
	3	3	1	2	2	2	3	3	3	3	3	0	2	3	3
CO5	K										0				
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K									V					
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

έ con. .e domain;

	Course Code:	Course Title:	Cre	dits	= 3								
	PHP1077	Seminar	L	Т	Ρ								
	Semester: VI	Total Contact Hours: 90	0	0	6								
		List of Prerequisite Courses											
All the	previous Pharma	ceutical Sciences and Technology courses											
	Lis	t of Courses where this course will be prerequisite											
All the	B. Tech. (Pharm.	Chem. Tech.) courses in this semester and the subsequent se	mest	ers.									
	Descrip	tion of relevance of this course in the B. Tech. Program											
The co	ourse is intended	to develop student's ability to read, understand any given top	oic re	lated	l to								
dyestu	ff technology, collect literature, write a scientific report on that topic based on the provided												
guidel	nes and present the scientific merits and demerits of the matter. Students shall prepare												
critical	reviews of selected topics in Chemical Technology and allien subjects and submit in the												
form o	f standard typed r	eports. Students shall also make oral presentations of the revi	ews.										
		Course Contents (Topics and Subtopics)	Re	equir Iour:	ed s								
1	Any topic relate	d to Pharmaceutical Sciences and Tcchnology as well as		90									
-	Allied Sciences			50									
		Total		90									
		List of Textbooks/Reference Books											
1	All relevant rese	arch papers, review articles, patents, conference proceedings	, etc	. rela	ted								
-	to the topic												
		Course Outcomes (Students will be able to)											
_C01	develop a protoc	ol for literature survey about a certain topic (K4)											
CO2	evaluate the liter	atures and interpret the scientific content (K5)											
CO3	apply the concep	ot of dyestuff technology on a selected topic (K3)											
CO4	develop skills for	presenting a scientific topic in dyestuff technology (K6)											
CO5	develop skills for	writing a scientific document (K6)											

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	P05	PO6	P07	<b>PO8</b>	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
						Ø		S		Α			S		
C01	K					0									
	4	3	3	1	3	2	3	3	3	3	3	3	2	3	3
CO2	K				0										
	5	3	2	3	3	3	0	3	3	3	3	2	3	3	3
CO3	K			1											
	3	3	3	2	2	2	3	3	2	3	3	3	1	3	3
CO4	K			~~~~											
	6	3	1	3	3	0	3	3	3	1	3	0	3	3	3
CO5	K			25											
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours	K		0,												
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title:	Cre	dits	= 2
	PHP1056	Pr 5: Pharmaceutical Chemistry Laboratory	L	Т	Ρ
	Semester: VI	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Organ	ic Chemistry Labo	ratory (CHP1132), Organic Chemistry – I (CHT1137), Organic	c Che	emis	try
– IĪ (C	HT1138)				-
	Ĺis	t of Courses where this course will be prerequisite			
All Pha	armaceutical Cher	nistry and Medicinal Chemistry Courses			
	Descrip	tion of relevance of this course in the B. Tech. Program			
To trai	n the students in a	standard laboratory practices with respect to safety, understar	nd qu	alita	tive
analys	is of organic mole	cules.			
		Course Contents (Topics and Subtopics)	Re F	quir Iour:	ed s
	Functional group	b transformation: Minimum one exercise to be given for each			
	of the following	types of transformations, if possible leading to synthesis of			
	drugs or drug int	ermediates -			
1	Techniques in or	ganic synthesis		8	
2	Esterification	L		4	
3	Hydrolysis	12		4	
4	Amide formation	(acetylation, benzoylation)		4	
5	Diazotization and	d coupling		4	
6	Bromination			4	
7	Nitration and Sul	Ifonation in aromatic rings		8	
8	Simple oxidation	and reduction reactions		8	
9	Synthesis of Het	erocycles (e.g., Hydantoin, Benzimidazole )		8	
10	Aliphatic substitu	ition reactions		4	
11	Clasien/Aldol co	ndensation		4	
		Total		60	
		List of Textbooks/Reference Books			
1	Arthur, Vogel. T group Ltd. (1989	extbook of practical organic chemistry, 5thedition, publishe )	ers L	ongn	nan
2	J. Leonard, trvor edition, Stanley	[•] P. Toube, B. Lygo, G Advanced Practical Organic Chemistry. Thornes (1990)	Proc	tor, 2	2nd
3	Keese, R, Martir John Wiley &Sor	n P. B, and Trevor P. Toube. Practical organic synthesis: a stuns (2006)	dent'	s gui	de.
		Course Outcomes (Students will be able to)			
CO1	work safely in the	e organic chemistry laboratory.(K3)			
CO2	implement techn	iques for synthetic reactions.(K4)			
CO3	design and carry	out experiments for simple organic transformations.(K5)			
CO4	understand and	apply reaction mechanisms and their practical implications. (K3	)		

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
		1	5					S		А			Р		
C01	K	4	-												
	3	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	K														
	4	3	3	2	3	0	3	3	1	3	3	3	3	3	3
CO3	K														
	5	3	3	3	1	3	3	3	3	3	2	0	1	3	3
CO4	K														
	3	3	3	3	3	3	1	3	3	3	1	3	3	3	3
Cours	K														
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

poloned to the state of the sta

	Course Code:	Course Title:	Cre	dits	= 2
	PHP1055	Pr 6: Biotechnology Laboratory	L	Т	Ρ
	Semester: VI	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Bioche	emistry ( <mark>BST1102</mark> )	0			
	Lis	t of Courses where this course will be prerequisite			
Projec	t – I ( <mark>PHP1074</mark> ) al	nd Project – II (PHP1075)			
	Descrip	tion of relevance of this course in the B. Tech. Program			
The c	ourse is designed	I to introduce the students to various biotechnology techniq	ues	such	as
isolatio	on of nucleic ac	ids, enzyme immobolization, etc., which are practiced in	dustr	ially	for
manuf	acturing of special	ty chemicals, macromolecular drugs and other useful products			
		Course Contents (Topics and Subtopics)	Re F	quir lour	ed s
1	Isolation of nucle	ic acids and quantitation		8	
2	Enzyme immobil	ization and estimation		12	
3	Study of enzyme	kinetics		8	
4	Fermentation of	biomolecules		8	
5	Bioconversions	, ~~		8	
5	Isolation and pu broth	urification of biomolecules from crude source/fermentation		8	
6	Demonstration: A RT-PCR, etc.	Advanced molecular biology techniques like electrophoresis,		8	
		Total		60	
		List of Textbooks/Reference Books			
1	Glick and Paterr DNA, 3 rd edition,	nak, Molecular Biotechnology: Principles and Applications of I ASM Press (2003)	Reco	mbir	nant
2	R. W. Old, S. E engineering, 5 th e	B. Primrose, Principles of gene manipulation : An introduction edition, Blackwell Scientific (1994)	n to	gen	etic
3	T. A. Brown, Ger (2015)	ne Cloning and DNA Analysis: An Introduction, 7th edition, Wi	ey-B	lack	well
		Course Outcomes (Students will be able to)			
CO1	study kinetics of	the diverse enzymes for their application in research.(K3)			
CO2	perform microbia	I fermentation and recover and purify bioproducts.(K4)			
CO3	apply nucleic aci (K4)	d isolation techniques for advanced studies in research and oth	ner a	reas	
		NT.			

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		P01	PO2	<b>PO</b> 3	P04	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
				0				S		Α			Р		
C01	K			0											
	3	3	3	2	1	2	3	3	3	3	3	3	1	3	3
CO2	K		10												
	4	3	3	2	3	2	3	3	1	3	2	3	2	3	3
CO3	K		5												
	4	3	3	3	3	3	0	2	3	3	3	2	3	3	3
Cours	K														
е	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

## Semester Noroleon Altonor [×]VII

	Course Code:	Course Title:	Cre	dits	= 3
	CE11/03	L	Т	Ρ	
	Semester: VII	Total Contact Hours: 45	2	1	0
Moto	rial and Energy Dal	List of Prerequisite Courses	agina	oring	
Oper	ations, Chemical Read	tion Engineering	ngine	enng	J
	List	of Courses where this course will be prerequisite			
Cher	nical Engineering Labo	ratory, Projects			
Droo	Description	of relevance of this course in the B. Tech. Program	nlon	t Ma	ot
of th envir	e core chemical engin onment, process is c ation from the designe	eering courses focus on the steady state operation. In ontinuously subjected to various disurbances which d d steady state. This course specifically prepares student	the releviated as to a	eal li es tl asse	ife ne ss
the in	npact of such disturban	ces and equip them with the tools available to tackle these	e situa	ation	s.
Sr. No.	Cou	rse Contents (Topics and Subtopics)	Re F	quir Iour	ed s
1	Instrumentation: Pri Flow and compositio digital control, DCS), Control valve characte	nciples of measurement; Pressure, Temperature, Level, n measuring devices; Introduction to controllers (PLC, Introduction to control valves, Types of control valves, eristics		9	
2	Introduction to Systems, First, secon Definition of terms s process with practical	tem Dynamics, Concept of dynamic response, Linear and and higher order system, Systems with dead-time, uch as transfer function, Time constant, Gain of the examples Response of processes to standard inputs		9	
3	Introduction to Proc open loop control, F zeros of the transfer f Basic control actions process response: Of	<b>cess Control:</b> Set point, disturbance, closed loop and Feedback and feed-forward configurations, Poles and unctions (ON/OFF, P, I and D), Effects of controller action on fset, closed-loop gain, controller gain effect of controller		6	
4	Stability Analysis of	feedback systems, Notion of stability, Criteria for stability		6	
5	Control System Desi controlled, manipulate outputs Controller selection f	ign: Introduction to controller design Identification of and disturbance variables, Pairing of inputs and or pressure, flow, temperature, level and composition		9	
6	Multiple Loop and control, Ratio conuc control, Inferential cor	<b>Traditional Advanced Control Systems:</b> Cascade , Feed-forward control, Selective control, Split-range atrol		6	
	, O	Total		<b>45</b>	
1	Chomical Drawcos Ca	List of Text Books/ Reference Books		_	
1	Dreeses Liedeling Si	mulation, and Control for Chamical Engineera, Lunden WL	ous	כ.	
3	Process Dynamics an	nd Control, Seborg, D. E. and Mellichamp, D. A. and Edgar	 , T. F.	and	
4	Process Control: Mod	eling, Design, and Simulation, Bequette, B. W.			
5	Process Control Instru	umentation Technology, Johnson, C. D.			
	Cours	e Outcomes (Students will be able to)			
1	specify the required in	astrumentation and control elements for a particular process	s (K?	3)	
2	develop input-output	ransfer function models for dynamics of processes (K4)		·)	
3	characterize the dyna	mics and stability of processes based on mathematical an	alysis	; (K5	)
4	design and tune proc	ess controllers (K6)			
5	specify the required in	nstrumentation and control elements for a particular proces	s (K3	3)	

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		А		~	VР		
C01	K											~	0		
	3	3	3	2	2	2	3	3	0	3	3	3	2	3	3
CO2	K											0			
	4	3	3	2	0	2	3	3	3	3	3 /	0	2	3	2
CO3	K										14				
	5	3	2	3	3	1	3	1	3	3	16	3	3	3	3
CO4	K										5				
	6	3	3	1	3	3	2	3	3	2	3	3	1	2	3
CO5	K									-	D-1				
	3	3	1	2	2	2	3	3	3	3	3	3	2	3	3
Cours	K									~					
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

le conir, le domain; l

	Course Code:	Course Title:	Credits = 3
	PHT1083	SPL11: Pharmaceutical Formulation	L T P
		Technology – III	2 1 0
	Semester: VII	Total Contact Hours: 45	$\sim$
		List of Prerequisite Courses	0
Phari	maceutical Formul	ation Technology – II (PHT1082)	1
	List	of Courses where this course will be prerequisite	·
Proje	ect – II (PHP1075)		
, , , , , , , , , , , , , , , , , , ,	Descripti	on of relevance of this course in the B. Tech. Program	
The	course is design	ed to train the students with respect to basics and a	application of
techr	nology of sterile p	harmaceuticals, ophthalmic products, blood products ar	d substitutes
and s	sutures and ligatur	es.	
	C	ourse Contents (Topics and Subtopics)	Required
			Hours
	Sterile Pharmac	ceuticals	
1	Introduction to	sterile dosage forms, routes of parenteral administration	4
<b>1</b>	Preformulation	considerations for sterile dosage forms' small-volume	4
	parenterals, lar	ge volume parenterals	
2	Facility Design	for parenteral manufacture with focus on air systems	F
2	HEPA filters, env	ironmental classes for manufacture of parenterals	5
3	Methods of steril	ization	2
4	Water for Injecti	ion: Monograph IP, methods of preparation, quality	2
4	control tests, sto	rage	3
	<b>Containers and</b>	Closures for Parenteral Formulations:	
5	<ul> <li>Glass and plast</li> </ul>	tic as a container material; ampoules, vials, bottles,	5
	rubber closure	s manufacturing, sterilization, quality control	
	Small-volume P	arenterals:	
	<ul> <li>Formulation (dist</li> </ul>	scuss various dosage forms like solutions,	
6	suspensions, ei	mulsions, dry powders)	F
0	<ul> <li>Quality control</li> </ul>		5
	<ul> <li>Large scale ma</li> </ul>	nufacture and packaging with focus on equipment	
	<ul> <li>Layout design a</li> </ul>	and Unit operations	
7	Freeze-Drying:	Introduction, principle and equipment	2
	Large-Volume P	Parenterals:	
	<ul> <li>Formulation (dis</li> </ul>	scuss various dosage forms like solutions,	
8	suspensions, ei	mulsions, dry powders)	4
Ŭ	Quality control		·
	• Large scale ma	nufacture and packaging with focus on equipment	
	Layout design a	and Unit operations	
	Ophthalmics:	Outris deserve forme	
	Introduction to	Opninalmic dosage form	
	Analomy of eye	e, raciors anecting ophinalmic drug absorption	
	Preiornulation     Decade forme:	discuss various desage forms like solutions	
0	• Dosage Ionns	tmonte dels films inserte langes etc wirt advantages	F
9	suspensions, on	unients, yeis, illins, insens, ienses etc. w.i.t auvaniages	5
	and colutions, e	arcof	
		of ophthalmics	
	• Quality John of	or optimations	
	• Large Scale IIIa	and Unit operations	
	Pland Products	and Glandular Products:	
	Blood products	and Stanutial Fronticis.	
	Introduction ad	lvantages and limitations	
	Collections and	storage techniques for whole blood	
	Methods of blog	od and plasma fractionation into individual components	
10	Ouality control		5
	Plasma substitut	es	Ŭ
	Introduction ad	Ivantages and limitations	
	Methods of pres	paration	
	Ouality control	p	
	Insulin and ins	ulin products	

	Sutures and Ligatures         • Introduction, advantages and limitations         Difference between sutures and ligatures
11	Types of material used for sutures and ligatures e.g. absorbable and non-absorbable     Methods of preparation     Output sented
	Large scale manufacture and packaging with focus on equipment
	Total 45
	List of Textbooks/Reference Books
1	Therapeutic Systems: Pattern-Specific Drug Delivery, Heilmann, Struttgart, G. Thiense Pub. (1978)
2	Encyclopedia of Pharmaceutical Technology, J. Swarbrick, New York, Marcel Dekker (1993)
3	Remington's Pharmaceutical Sciences, A. R. Gennaro Mac Pub. Co. Easton, Pennsylvania (1990)
4	Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia.
5	Theory & Practice of Industrial Pharmacy. L. Lachman, Herbert A. Lieberman& J. Kanig, Lea & Febiger, Philadelphia (1987)
6	Pharmaceutical Dosage Form: Dispersed Systems (Vol.1 & 2) Herber A. Lieberman, Martin A. Rieger, G. S. Ban, Marcel Dekker Inc. (1993)
7	Modern Pharmaceutics. Gilbert S.Banker, C.T. Rhodes, Marcel Dekker Inc. (1990)
8	Pharmaceutics: The Science of Dosage Form Design. Michael E.Aulton, Churchill-Livingstone (1998)
9	Pharmaceutical Dosage forms: Parenteral Medications in Three volumes, Kenneth E. Avis, Herbert A. Lieberman, Leon Lachman, Marcel Dekker Inc. (1993)
	Course Outcomes (Students will be able to)
CO1	apply concepts related to preformulation, formulation, evaluation, packaging, large scale manufacturing and facility design of parenteral products.(K3)
CO2	apply the principles of dosage form design to various formulations of different dosage forms, their evaluation and packaging.(K4)
CO3	evaluate importance of facility requirements, stringent testing norms and extreme care during manufacturing to ensure safety and efficacy of the parenteral dosage forms. (K4)
	4

		Ma	apping	g of C	ourse	Outco	omes (	COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	P04	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
				0				S		Α			S		
CO1	K		3	0											
	3	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	K		10												
	4	3	2	3	3	1	3	3	2	3	3	3	1	3	3
CO3	K	-	$\sim$												
	4	3	3	2	3	3	2	0	3	3	1	0	3	2	3
Cours	K	X													
е	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course	Credits = 3										
	Code:	SPL12: Validation and Regulatory Requirements	- L	Т	P							
	Semester:	Total Contact Hours: 45	2	1	0							
	VII		0									
		List of Prerequisite Courses	1									
Pharm	aceutical Formul	ation Technology – II (PHT1082)	×									
	List	of Courses where this course will be prerequisite										
Project	$\frac{(-11)(PHP1075)}{Paparinti}$	SPL13: Process Technology of Drugs and Intermediales	(PHI)	1058	)							
The co	Descripti Jurse is designe	d to train the students in understanding the minimules	hehin		bod							
Manufa	acturing Practice	s (GMP), scientific and risk-based product development	t appr	oach	es,							
and va	Dogui											
	course Contents (Topics and Subtopics)	H	ours	;u ;								
	Good Manufac	cturing Practices (GMP) and Facility Design										
1	• GMP:	Personnel, Facility, Environmental and manufacturing		2								
		surance		3								
	Quality as     Ouality au	dits										
2	Regulations g	overning Pharmaceutical Product Development:		<u> </u>								
2	New Drugs and	I Clinical Trial Rules, 2019		2								
	Pilot Plant Sca	ale-up:										
	<ul> <li>Introduction</li> </ul>			_								
3	Pilot Plant :	Scale-up Techniques – Group responsibilities, Facilities,		5								
	General col     General col	nsiderations as (solid liquid semisolid dosage forms)										
	Ouality by Des	sign (ObD):										
	QbD elemer	nts										
1	<ul> <li>Design of ex</li> </ul>		5									
-	Example		5									
	Semisolids, Parenteral proparations using ObD approach											
	Validation:											
	Introduction	to validation, process validation and scope										
	<ul> <li>Priority order</li> </ul>	er for pharmaceutical validation										
5	<ul> <li>Types of va</li> </ul>	lidation (prospective, retrospective. concurrent and		5								
	revalidation	n)										
	Steps in va	lidation										
6		n velidation of Processes Equipments and Products		5								
7	Documentatio	n for Pharmaceuticals		5								
	Introduction to	Regulatory Aspects of Pharmaceuticals		<u> </u>								
	Introduction	to regulatory aspects of pharmaceuticals, need,										
	advantages and	d										
0	limitation:	major regulatory bodice worldwide		F								
Ö	Rationale for	regulatory harmonization and introduction of ICH		Э								
	Introduction to	Common Technical Document (CTD) Modules										
	<ul> <li>Comparison</li> </ul>	of Indian and European guidelines w.r.t. USFDA										
	guidelines											
	Regulatory F	Procedures for Pharmaceutical Product Market										
	Approval as p	er USFDA Guidelines:										
9	(1) and $(b)(2)$	Abbreviated New Drug Application (ANDA) [505(b)]		5								
	Review and	Abbieviated New Drug Application (ANDA) 505 (j) ming,										
	Approval proce	SS										
	Legal Acts											
10	Drugs and	Cosmetics Act, 1940 and Drugs and Cosmetics Rules,		5								
	1945	Control Order (DBCO)		-								
	• Drug Price			45								
	<u> </u>	List of Textbooks/Reference Books	1									

1	Beotra's Law of Drugs Medicins and Cosmetics K. K. Singh, L. R. Bugga for the Law Book Co. Pvt. Ltd., Allahabad
2	Modern Pharmaceutics, G. S. Banker, New York, Marcel Dekker (1990)
3	Fundamentals of Pharmacy, Blome H. E., Philadelphia, Fea and Febiger (1985)
4	Pharmaceutical Production Facilities: Design and Applications, G. C. Cole, New York, Ellis, Horwood (1990)
5	Drug Delivery Devices: Fundamentals and Applications. Tyle, New York, Marcel Dekker (1988)
6	Microbial Quality Assurance in Pharmaceuticals Cosmetics and Toileuies, S. F. Bloomfield, Chichester, Ellis, Horwood (1998)
7	Encyclopedia of Pharmaceutical Technology, J. Swarbrick, New York, Marcel Dekker (1993)
8	Remington's Pharmaceutical Sciences, A. R. Gennaro Mac Fub. Co. Easton, Pennsylvania (1990)
9	Pharmaceutical Product Development: Insights into Pharmaceutical Processes, Management and Regulatory Affairs, Patravale V, Rustomjee M, Dsouza J., CRC Press (2016)
10	Latest Editions of Indian Pharmacopoeia (IP), British Pharmacopoeia (BP), United States Pharmacopoeia (USP), Japanese Pharmacopoeia (JP), European Pharmacopoeia (Ph. Eur.)
11	Oral Mucosal Drug Delivery, Rathbone, New York, Marcel Dekker (1996)
12	Good Laboratory Practice Regulations, A. F. Hirsch, New York, Marcel Dekker (1989)
13	Good Laboratory Practice Regulations, Weinberg, New York, Marcel Dekker (1995)
	Course Outcomes (Students will be able to)
CO1	explain regulatory concepts such as QbD, GMP and many others.(K2)
CO2	comprehend product and process validation and documentation required for the same.(K3)
CO3	analyze the regulatory pathways for new drug application and generic product development for various products.(K3)
CO4	comprehend relevant regulations and laws governing the pharmaceutical manufacturing.(K4)

						0.									
		Ma	apping	g of C	ourse	Outco	omes (	COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	P04	P05	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
					57			S		A			S		
CO1	K			-	1										
	2	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	K			-0											
	3	3	2	3	3	0	3	3	2	2	3	0	3	2	3
CO3	K			22											
	3	3	3	1	2	3	2	2	3	1	3	3	3	3	3
CO4	K		0	Ē.											
	4	3	2	3	3	2	1	3	3	3	2	3	0	3	3
Cours	K		0												
е	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title:	Cre	dits	<b>= 6</b>									
	PHP1078	In-Plant Training	L	Т	Ρ									
	Semester: VII	Total Contact Hours: 45	0	0	0									
		List of Prerequisite Courses												
None		0												
	Lis	t of Courses where this course will be prerequisite												
Projec	t – I (PHP1074), F	Project – II (PHP1075)												
	Descrip	tion of relevance of this course in the B. Tech. Program												
The c develo indust	ourse is designed op skills for commu rial environment, a	I to – 1. develop a systematic thinking about an industrial unication, networking, personal grooming & professional condu and 3. develop the attitude for individual and teamwork.	prob Ict wi	lem; ithin	2. an									
	Course Contents (Topics and Subtopics) Required Weeks													
1	Each Student wil Engineering /Sto services/ Engine assigned/choser Oral presentation along with indust	I be involved in R & D/manufacturing (Q.\QC/Plant res and Purchase)/marketing/finance/consultancy/Technical ering/Projects, etc., as deemed necessary by the industry. n & written report of the in-plant training will be evaluated ry feedback.		12										
	Ŭ	Total		12										
	<u>.</u>	Course Outcomes (Students will be able to)												
C01	Apply the concept	ot of project & production management in further planning (K3)												
CO2	Develop critical thinking regarding the various operations involved in dyestuff technology and allied industry (K4)													
CO3	Solve certain ind	ustrial challenges in dyestuff technology and allied field (K6)												
CO4	Present and com	municate an industrial problem effectively (K6)												
CO5	Write a scientific report on the training (K6)													

				- 1		1.0	0	- /							
		Ma	apping	g of C	ourse	Outco	mes (	(COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	К6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
					- 0	2		S		A			S		
CO1	K				10	· · · ·									
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K				X										
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	2
CO3	K			6											
	6	3	3	3	3	3	3	2	3	1	3	2	3	3	3
CO4	K			0											
	6	3	3	2	3	3	3	3	0	3	3	3	3	2	3
CO5	K		~												
	6	3	3	3	3	1	3	3	3	3	2	3	3	3	3
Cours	K		0												
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

	Course Code: Course Title:										
	HUT1203	Industrial Management	L   1	ГР							
	Semester: VII	Total Contact Hours: 60	3 1	L 0							
		List of Prerequisite Courses									
None		0									
	Lis	t of Courses where this course will be prerequisite									
None		0									
	Descrip	tion of relevance of this course in the B. Tech. Program									
This c	ourse is required for	or effective and holistic functioning of students in their profession	onal ca	reer.							
		Course Contents (Topics and Subtopics)	Requ Ho	ured urs							
1	Greiner's Model	of Organization Life Cycle	3	3							
	Organic and med	chanistic structures									
	Marketing Manag	gement	_	,							
2	Introduction, Po	irter's value chain, Porter's five forces. Porter's generic	1	, 							
	Strategies										
3	Droduction to th	le 4PS OF Marketing	1	1							
	Product, Price, P	Departience Management									
1	Concept of pro	operations Management	1	n							
4	reengineering K	anhan 11T Doka Voko system Maintenance practices	Т	0							
	Quality Manager	nont									
5	The concent of a	mality Quality control, acceptance sampling and SOC	F	5							
	Deing's 14 noints	s TOM Insights into ISO-9000 ISO -14000 ISO-50000		,							
	Financial Manag	ement									
6	Accounting system, Balance-sheet evaluation, Fund-flow analysis, Financial										
	ratios an insight, Costing										
	Materials Management										
7	Value analysis,	Purchasing and vendor development, Warehousing and	Z	Ļ							
	inventory control	methods									
	Maintenance Ma	nagement									
8	Classifications, E	Equipment and plant reliability and availability, Management	Z	Ļ							
	of shut downs ar	nd turnarounds									
		Total	6	0							
		List of Textbooks/Reference Books									
1	Industrial Manag	ement 1, Jhamb L. C. and Jhamb S.									
2	Industrial Manag	ement, Spriegel U.S.									
3	Operations Mana	agement for Competitive Advantage, Richard B. Chase, F. Rob	ert Jaco	obs,							
	Nicholas Acquila	no		-							
4	World Class Mar	nutacturing - A strategic Perspective, B.S. Sanay, K.B.C. Saxen	a, Ashi	sn							
-	Kumar Managamant Fir										
5	Fecontials of Ma	narce, Valariasay Multiny									
7	Bringiples of Mar	Hayement, Nooniz									
1 Q	Quality Planaing	and Analysis Juran									
<u>0</u>	Einancia Manag	ement Presenne Chandre									
10	Financia' Manag	ement R M Srivastava									
11	Select HRR case	es and articles for review									
<u>⊢ ≖                                   </u>		Course Outcomes (Students will be able to )									
	explain the funds	amental concepts of Marketing management and the various as	spects								
C01	therein (K2)	anonal concepte of marketing management and the validae at	peolo								
CO2	understand the fi	undamental concepts of Finance and analyse the balance shee	et.(K4)								
	understand vario	bus productivity techniques that when combined with engineering	na								
CO3	knowledge can b	e applied successfully in the industry.(K2)	3								
004	study real life pra	actical problems , constraints and will be able to think in terms of	of vario	JS							
C04	alternative solution	ons.(K3)									

		Ма	apping	g of Co	ourse	Outco	mes (	COs)	with P	rogra	mme O	utcome	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α		-	VР		
C01	K											~	2		
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ											0			
	4	3	3	2	3	2	1	3	3	3	3 /	3	2	3	3
CO3	K										1				
	2	3	2	0	2	1	3	3	2	3	3	0	1	3	2
CO4	Κ										5				
	3	3	3	2	0	2	3	3	3	3	3	3	2	2	3
Cours	K									24	01				
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

domain; A, Affe

	Course Code:	Course Title:	Credits										
	CEP1714	Chemical Engineering Laboratory	L	Т	Ρ								
	Semester: VII	Total Contact Hours: 60	0	0	4								
		List of Prerequisite Courses											
Proces (CET1	ss Calculations ( <mark>C</mark> .401), Chemical R	ET1507), Transport Phenomena (CET1105), Chemica' Engineerir eaction Engineering (CET1212)	ng Ope	eratic	ins								
	L	ist of Courses where this course will be prerequisite											
Other	B. Tech. courses i	n this and the last semester											
	Description of relevance of this course in the B. Tech. Program												
This co in the equipr dynam	This course provides students the first-hand experience of verifying various theoretical concepts learnt in theory courses. It also exposes them to practical versions of typical chemical engineering equipments and servers as a bridge between theory and practice. This particular lab focuses on fluid dynamics, distillation, filtration, drying and sedimentation.												
Sr. No.	Course Contents (Topics and Subtopics) Required Hours												
1	4 - 6 Experiments on fluid dynamics and heat transfer 24												
2	3 - 5 Experimen	ts on Chemical Engineering Operations		16									
3	2 – 4 Experimer	nts on Reaction Engineering		12									
4	1 – 3 Experimer	nts on process dynamics and control		8									
		Total		60									
		List of Text Books/ Reference Books											
1	McCabe W.L., S	Smith J.C., and Harriott P. Unit Operations in Chemical Engineering	g (201	4)									
2	Bird R.B., Stewa	art W.E., and Lightfoot, E.N. Transport Phenomena (2007)											
3	Coulson J.M., R Chemical engine	ichardson J.F., and Sinnott, R.K. Coulson & Richardson's Chemic eering design (1996)	al Eng	jinee	ring:								
4	Green D. and P	erry R. Perry's Chemical Engineers' Handbook, Eighth Edition (20	07)										
		Course Outcomes (students will be able to)											
CO1	learn how to exp	perimentally verify various theoretical principles.(K3)											
CO2	visualize practic	al implementation of chemical engineering equipments.(K4)											
CO3	develop experim	nental skills.(K4)											

		Ma	apping	g of Co	ourse	Outco	mes (	COs)	with P	rogra	mme O	utcome	es (POs)		
		PO1	PO2	PO3	P04	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
				~	-			S		А			Р		
C01	K			20											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K		Ċ	5											
	4	3	3	2	1	2	3	3	0	3	3	3	2	2	3
CO3	K		ð												
	4	3	3	2	3	2	2	3	3	3	3	2	2	3	2
Cours	K		7												
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
	Course Code:	Course Title: Pr 7: Medicinal Chemistry	Cred	its =	2										
--------	--------------------------------------------------------------------	-------------------------------------------------------	----------	-------	----------	--	--	--	--	--					
	PHP1054	Laboratory	L	Т	Р										
	Semester: VII	Total contact hours: 60	0	0	4										
		List of Prerequisite Courses													
	Pharmaceutical Analy	zsis, Organic chemistry													
		N													
	List of C	Courses where this course will be prerequisite													
	Process Technology	2S													
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													
	Description of rel	evance of this course in the B. Tech. Pharm. Prog	ram												
To tra	ain the students in basi	c medicinal chemistry laboratory practices and struc	ture a	ctivi	ty										
relati	onships including the	use of molecular modelling software													
Sr.	Cours	se Contents (Topics and subtopics)	R	eqd	,										
No.		~	hours												
1	Multistep synthesis of	f APIs (3 examples)	5*4												
2	Synthesis of analogs of	eg. carboxylic acid derivatives	2*4												
2	Experimental determ	nination of pKa and comparison with software	2*	4											
3	generated data	- 6													
4	Experimental determination of log P values and comparison with 2*4														
4	software generated data														
-	Experimental determ	ination of simple in-vitro activity of series of	4												
Э	structurally related con	mpounnds													
6	Structure property rel	ationship from experimental data	4												
7	Demonstration of pha	rmacophore development and QSAR	4												
8	Demonstration of stru	icture based drug design	4												
	21	Tot	60												
	ai	List of Text Books/ Reference Books													
1	Furniss, Brian S. Vog	cel's textbook of practical organic chemistry, Pearso	n Ed	ucat	ion										
	I Leonard tryor D To	whe B Lygo C Advanced Practical Organic Chemi	ctru	Droc	tor										
2	2nd edition Stanley	Thornes 1990	5ti y. 1	TUC	.01,										
	Keese R Martin D	B and Trevor P Toube Practical organic synthesis		hinde	nt's										
3	quide John Willy & Song 2006														
	Cou	rse Outcomes (students will be able to)													
CO	Work safely in the org	ganic chemistry laboratory and synthesize drugs usin	g mu	tiple	<u>.</u>										
1	steps (K4)		0	1											
CO	Compare physicocher	nical properties using experiments and software(K4)													
2															
CO	Predict SARs (K4)														
3															
CO	Understand basic drug	g design software and its applications (K3)													
4															

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			S		
CO1	K														
	4	3	0	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K	3	3	3	3	2	3	3	3	3	1	2	3	2	2

	4														
CO3	K												h-		
	4	3	3	3	1	3	3	2	3	0	3	3	0	3	3
CO4	K												V		
	3	3	3	2	3	3	3	1	3	3	3	3	2	3	3
Cours	K											- V			
е	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title:	Cre	dits	= 2					
	PHP1074	Project – I	L	Т	Ρ					
	Semester: VII	Total Contact Hours: 60	0	0	4					
	•	List of Prerequisite Courses								
Semin	ar (PHP1077)	4								
	Lis	t of Courses where this course will be prerequisite								
Projec	t – II (PHP1075)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
	Descrip	tion of relevance of this course in the B. Tech. Program								
The co to Pha for fine	to Pharmaceutical Sciences and Technology. The course presents an opportunity to the students for fine-tuning their scientific communication skills, oral as well as written.									
	Course Contents (Topics and Subtopics) Required Hours									
1	The Teachers will communicate various research topics of potential interest to the Pharmaceutical Sciences and Technology field to all the students based on the interest and facilities available. Each student, based on his/her interest and merit, selects the research topic and is allotted a supervisor. The work involves detailed review of the literature, formulation of research project, hypothesis, objectives, methodology, possible expected outcomes, planning for experimentation, experimental trials, data generation and analysis. Finally, the student will compile the report as per the communicated format and then present in front of the Evaluators.									
		Total		60						
		List of Textbooks/Reference Books								
1	Relevant research articles, patents, review articles, conference proceeding, book chapters and books									
	1	Course Outcomes (Students will be able to)								
C01	Develop critical	hinking to identify the research gap for the project (K5)								
CO2	Formulate a scie	ntific question and approach to solve it (K6)								
CO3	Plan the experim	ental methodology for the project (K5)								
CO4	Develop skills to	communicate the research plan effectively (K6)								
CO5	Develop skills for	r writing a scientific document on the research work (K6)								

		1.4.	nning			Outor			with D	roaro					
		1VI	ahhiuć	j or Co	Juise	Outco	mes (CUS)		rogra	inine O	ucome	:S (PUS)		
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			S		
CO1	K														
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K														
	6	3	3	3	3	3	3	3	3	3	3	2	3	3	1
CO3	K														
	5	3	2	3	3	3	3	3	1	3	3	3	3	3	3
CO4	K														
	6	3	3	3	3	3	2	3	3	3	0	3	3	2	3
CO5	K														
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Cours	k	(
е		i Ctro	3	3	3	3	3	3 Contri	3	3	3	3		3 Coutribu	3 Ition	3
	з, : К.	Knc	ny c wle	dae le	vel fro	2, 1000 m coa	nitive (domair	n: A. Af	fective	doma	in: P. P	svchor	contribu notor dom	nain	
	,	i ti i c		age ie	voi no	in eeg		aoman	.,,,,,,		donie	, . , .	e y en en			
													\sim			
													0			
													7			
												5	/			
												2				
												9				
											0	-				
											2					
										(õ					
										X						
										\bigcirc						
									8	÷ .						
									S.							
								-	2							
								G	<i>}</i>							
								õ								
							- 2	S.								
							S									
							Ser.									
						2	7									
						_0										
						X										
					-0	3										
					2											
				1	บั											
				õ	5											
				5												
			ŝ	2												
			2	< .												
			2													

Page 111 of 133

Semester A Constant of the second secon

CET1504 Chemical Project Engineering and Economics L T P Semester: VIII Total Contact Hours: 45 2 1 0 All Chemical and General Engineering Courses in previous semesters.		Course Code:	Course Title:	Cr	edit	s = 3
Semester: VIII Total Contact Hours: 45 2 1 0 List of Prerequisite Courses All Chemical and General Engineering Courses in previous semesters. List of Courses where this course will be prerequisite Project – II (PHP1075) and Professional career Course Contents (Topics and Subtopics) Required Hours This course is required for the future professional career. This course is required the Green Field Projects and global nature of the projects Impact of currency fluctuations on Project justification and cash flows Concepts of Quality by Design inniculang typical design deliverables Uncerstanding constructability, operability and maintability during all stages of project execution Required Hours Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 Project Financing, debt.equity ratio, promoters, contributors, shareholders contribution, location index and their use in estimation Introduction to rooncept of interest, time value of money, selection of various alternative equipment or system based on this concept, Indian norms, and their submate of working results of project. Working capital concept and its relevance to project 7 Estimate of working results of proposed project. Capacity utilization, Gross profit, operating profit, profit before its, Corporate tax, dividend, Net cash accruats. Project evaluation: Genetis, Types of contract. Lump- sum Turnkey (LSTK), Eng, Procuremen		CET1504	Chemical Project Engineering and Economics	L	T	Ρ
List of Prerequisite Courses All Chemical and General Engineering Courses in previous semesters. List of Courses where this course will be prerequisite Project – II (PHP1075) and Protessional career Description of relevance of this course in the B Tech.Program This course is required for the future professional career. Required Hours Sr. No Course Contents (Topics and Subtopics) Required Hours 1 'Quality by Design including typical design deliverables Understanding constructability, operability and maintainability during all stages of project execution Meaning of Project Engineering, various stages of project execution Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. Elements of cost of production, monitoring of the same in a plant 8 2 Meaning of Administrative expenses, sales expenses, etc. Introduction to various components of project cost and their estimation Introductin to various cost indices 8 4 System based on this concept, Indian norms, EM calculatons 7 5 evaluation: Concept of miletan informs EM calculators 7 6 Project Concept of interest, time value of money 7 4 system based on this concept, Indian norms, EM calculatons 7 5 evaluation: Contract. Lump, su		Semester: VIII	Total Contact Hours: 45	2	1	0
All Chemical and General Engineering Courses in previous semesters. List of Courses where this course will be prerequisite Project – II (PHP1075) and Professional career Description of relevance of this course in the B Tech.Program This course is required for the future professional career. Sr. No Course Contents (Topics and Subtopins) Required Hours Imroduction to the Green Field Projects and global nature of the projects impact of currency fluctuations on Project justification and cash flows Concepts of Quality by Design including typical design deliverables Uncerstanding constructability, operability and maintainability during all stages of project execution Meaning of Project Engineering, various stages of project cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 1 Meaning of Administrative expenses, sales expenses, etc. Introducton to concept of inflation, location index and their use in adimating plant and machinery cost Various cost indices 8 2 Project Financing, debt:equity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money selection of various alternative equipment or system based on this concept, Indian norms, EMI calculations 7 4 Project Financing, debt:equity ratio, promoters, contributors, construct 7 5 evaluation: Cumulative cash flow analysis Break-Even analysis, incremental analysis, various ratios analysis, Discrounted cash flow			List of Prerequisite Courses			
List of Courses where this course will be prerequisite Project – II (PHP1075) and Professional career Description of relevance of this course in the B Tech.Program This course is required for the future professional career. Required Mours Sr. No. Course Contents (Topics and Subtopics) Required Mours Introduction to the Green Field Projects and global nature of the projects Hours Hours 1 'Quality by Design' including typical design deliverables Unperstanding constructability, operability and maintanability during all stages of project execution 6 Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 Meaning of Administrative expenses, sales expenses, etc. 8 Introduction to various components of project cost and their estimation Introduction to concept of inflation, location index and their use in estimating plant and machinery cost various satemative equipment or system based on this concept, Indian norms, RM claculations 7 Depreciation concept, Indian norms, RM claculations Project Conception index and their use in estimate of working results of project evaluation. Chrons Erel Keyn analysis, incremental analysis, rarous ratios analysis, Discounted cash flow analysis 7 Project Financing, debt equity ratio,	All C	hemical and Gener	al Engineering Courses in previous semesters.			
Project – II (PHP1075) and Professional career Description of relevance of this course in the B Tech.Program This course is required for the future professional career. Sr. No Course Contents (Topics and Subtopics) Required Hours 1 'Quality by Design' including typical design deliverables Understanding constructability, operability and maintainability during all stages of project execution 6 2 Project Engineering, various stages of project implementation 8 Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 2 Meaning of Administrative expenses, sales expenses, etc. 8 1 'Project Financing, debt.equity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money 7 2 Concept of interest, time value of money. 7 2 Concept, Indian norms, EMI calculations 9 3 operating profit, profit before tax, Corporat tax, divident, Net cash accruals. Project evaluation: Councept, Indian norms, EMI calculations, encret evaluation, Construction details. Contract: Meaning, contents, Topies of project cash of working results of proposed project. Capacity utilization, Gross profit, operating profit, profit before tax, Corporat tax, divide		List	of Courses where this course will be prerequisite			
Description of relevance of this course in the B Tech.Program This course is required for the future professional career. Required Sr. No Course Contents (Topics and Subtopics) Required Hours Introduction to the Green Field Projects and global nature of the projects impact of currency fluctuations on Project justification and cash flows Concepts of 'Quality by Design' including typical design deliverables Understanding constructability, derability and maintainability during all stages of project execution Meaning of Project Engineering, various stages of project execution Reletionship between Price of a Product and Project Cost and cost of production, EV Analysis. Elements of cost of production, monitoring of the same in a plant 8 Meaning of Administrative expenses, sales expenses, etc. 8 Introduction to various components of project cost and their estimation Introduction to concept of inflation, location index and their use in estimating plant and machinery cost Various cost indices 7 Project Financing. debt.equity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money. Selection of various alternative equipment or system based on this concept, Indian norms, EM calculations 7 Depreciation concept, Indian norms, EM calculations 7 7 Settimate of working results of project costary utilization, Gross profit, operating profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project evalu	Proje	ect – II (PHP1075) a	and Professional career			
This course is required for the future professional career. Required Sr. No. Course Contents (Topics and Subtopics) Required Hours Introduction to the Green Field Projects and global nature of the projects Impact of currency fluctuations on Project justification and cash flows Concepts of 'Quality by Design' including typical design deliverables Understanding constructability, operability and maintainability during all stages of project execution 6 Meaning of Project Engineering, various stages of project execution 8 Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 1 Meaning of Administrative expenses, sales expenses, etc. 8 Introduction to various components of project cost and their estimation Introduction to concept of inflation, location index and their use in estimating plant and machinery cost Various cost indices 7 Various cost indices Project Financing, debtequity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money 7 2 Generating profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project evaluation: Cumulative cash how analysis Break-Even analysis, incremental analysis, various ratios analysis, Discounded cash flow analysis 7 5 operating profit, profit before tax, Corporate tax, divi		Description	of relevance of this course in the B Tech.Program			
Sr. No Course Contents (Topics and Subtopics) Required Hours Introduction to the Green Field Projects and global nature of the projects Impact of currency fluctuations on Project justification and cash flows Concepts of 'Quality by Design including typical design deliverables Uncerstanding constructability, operability and maintainability during all stages of project execution Meaning of Project Engineering, various stages of project execution Meaning of Project Engineering, various stages of project cost and cost of production, EV Analysis. 6 2 Meaning of Administrative expenses, sales expenses, etc. Introduction to various components of project cost and their estimation Introduction to concept of inflaton, location index and their use in estimating plant and machinery cost Various cost indices 8 2 Project Financing, debt:equity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money Concept of interest, time value of money. Selection of various alternative equipment or system based on this concept, Indian norms, EMI calculations Depreciation concept, Indian norms, and their utility in estimate of working results of project. Working results of proposed project. Capacity utilization, Gross profit, operating profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project evaluation: Cumulative cash now analysis Break-Even analysis, incremental analysis, various ratios analysis, Discounted cash flow analysis 7 6 Project Conception 10 Commissioning: milestones, Project execution as conglomeration of technical and nontechnical activities, contractual details. Contract: Meaning, contents, Types of contract. tump- sum Turnkey (LSTK), Eng. Procurem	This	course is required f	for the future professional career.			
Introduction to the Green Field Projects and global nature 0, the projects Impact of currency fluctuations on Project justification and cash flows Concepts of 'Quality by Design' including typical design deliverables Understanding constructability, operability and maintainability during all stages of project execution 6 Meaning of Project Engineering, various stages of project implementation 8 Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 Meaning of Administrative expenses, sales expenses, etc. 8 Introduction to various components of project cost and their estimation Introduction to concept of inflation, location index and their use in estimating plant and machinery cost Various cost indices 8 Project Financing, debtequity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money 7 System based on this concept, Indian norms, BMI calculations 7 Depreciation concept, Indian norms, and their utility in estimate of working results of project execution as conglomeration of various alternative equipment or system based on this concept and its relevance to project. 7 Settimate of working results of proposed project. Capacity utilization, Gross profit, operating profit, profit before tax, Corporate tax, dividend, Net cash acruals. Project evacutins. Evaposet into and constructing EPO, Eng, Procurement a	Sr. No.		Course Contents (Topics and Subtopics)	R	lequ Hoι	ired ırs
Impact of currency fluctuations on Project justification and cesh flows Concepts of 6 1 'Quality by Design' including typical design deliverables Uncerstanding constructability, operability and maintainability during all stages of project execution 6 Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 Meaning of Administrative expenses, sales expenses, setc. 8 Introduction to various components of project cost and their estimation Introduction to concept of inflation, location index and their use in estimating plant and machinery cost Various cost indices 7 Various cost indices 7 2 Concept of interest, time value of money 7 3 Concept of interest, time value of money 7 4 System based on this concept, Indian norms, BMI calculations 7 5 estimate of working results of proposed project. Capacity utilization, Gross profit, orgenting profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project 7 5 evaluation: Cumulative cash how analysis Break-Even analysis, incremental analysis, various ratios analysis, Discounted cash flow analysis 7 6 Project Conception to Commissioning: milestones, Project execution as conglomeration of tec		Introduction to t	he Green Field Projects and global nature of the projects			
Meaning of Project Engineering, various stages of project (mprementation) Relationship between Price of a Product and Project Cost and cost of production, EV Analysis. 8 Elements of cost of production, monitoring of the same in a plant 8 2 Meaning of Administrative expenses, sales expenses, etc. Introduction to various components of project cost and their estimation Introduction to concept of inflation, location index and their use in estimating plant and machinery cost Various cost indices 8 Project Financing, debt:equity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money system based on this concept, Indian norms, EMI calculations 7 Depreciation concept, Indian norms, EMI calculations 7 project. Working capital concept and its relevance to project 7 estimate of working results of proposed project. Capacity utilization, Gross profit, operating profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project 7 evaluation: Cumulative cash flow analysis 8 7 Project Conception to Commissioning: milestones, Project execution as conglomeration of technical and nontechnical activities, contractual details. Contract: 7 4 Project Conception to Commissioning: milestones, Project execution as conglomeration of technical and notechnical activities, contractual details. Contract: 7 4 Project Conception to Commissioning: milestones, Project execution as conglomeration o	1	Impact of currenc 'Quality by Design operability and ma	y fluctuations on Project justification and cash flows Concepts of n' including typical design deliverables Understanding constructability, aintainability during all stages of project execution		6	
Fetadonship between Price of a Product and Project Cost and cost of production, EV Analysis. Elements of cost of production, monitoring of the same in a plant Meaning of Administrative expenses, sales expenses, etc. Introduction to various components of project cost and their estimation Introduction to concept of inflation, location index and their use in estimating plant and machinery cost Various cost indices Project Financing, debt.equity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money 7 System based on this concept, Indian norms, EM calculations 7 Depreciation concept, Indian norms, EM calculations 7 operating profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project evaluation: Cumulative cash now analysis Break-Even analysis, incremental analysis, various ratios analysis, Discounted cash flow analysis 7 Project Conception to Commissioning: milestones, Project execution as conglomeration of technical and nontechnical activities, contractual details. Contract: 7 Meaning, contents, Types of contract. Lump- sum Turnkey (LSTK),Eng, Procurement and Construction, PCO,Eng, Procurement and Construction Management (EPCM),Mergers and Acquisitions 4 9 PERT, CPM, Ser-charts and network diagrams 4 1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 2 2 Plant Designand Economics for Chemical Engineers.Peters M.S.,Timmer		Meaning of Project	ct Engineering, various stages of project implementation			
Project Financing, debt:equity ratio, promoters, contributors, shareholders contribution, source of finance, time value of money 7 4 Concept of interest, time value of money selection of various alternative equipment or system based on this concept, Indian norms, EMI calculations 7 5 Depreciation concept, Indian norms and their utility in estimate of working results of project. Working capital concept and its relevance to project 7 5 Estimate of working results of proposed project. Capacity utilization, Gross profit, operating profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project evaluation: Cumulative cash flow analysis Break-Even analysis, incremental analysis, various ratios analysis, Discounted cash flow analysis 7 6 Project Conception to Commissioning: milestones, Project execution as conglomeration of technical and nontechnical activities, contractual details. Contract: 7 7 Meaning, ontents, Types of contract. Lump- sum Turnkey (LSTK),Eng, Procurement and Construction (EPCM).Mergers and Acquisitions 4 8 Reading of balance sheets and evaluation of techno-commercial project 3 9 PERT, CPM, Bar-charts and network diagrams 4 1 Chemical Project Economics, Mahajani/V.AndMokashi SM. 2 2 Plant Designand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 3 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P.	2	EV Analysis. Elements of cost Meaning of Admir Introduction to va concept of inflatio Various cost indic	of production, monitoring of the same in a plant histrative expenses, sales expenses, etc. irious components of project cost and their estimation Introduction to in, location index and their use in estimating plant and machinery cost res		8	
Estimate of working results of proposed project. Capacity utilization, Gross profit, operating profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project evaluation: Cumulative cash now analysis Break-Even analysis, incremental analysis, various ratios analysis, Discounted cash flow analysis 7 6 Process Selection, Site Selection, Feasibility Report 4 Project Conception to Commissioning: milestones, Project execution as conglomeration of technical and nontechnical activities, contractual details. Contract: Meaning, contents, Types of contract. Lump- sum Turnkey (LSTK),Eng, Procurement and Construction(EPC),Eng, Procurement and Construction Management (EPCM).Mergers and Acquisitions 3 8 Reading of balance sheets and evaluation of techno-commercial project reports 3 9 PERT, CPM, Ser-charts and network diagrams 4 1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 2 2 Plant Dysignand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 3 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 CO2 calculate cash-flow from a given project.(K3) CO4	4	Project Finance contribution, sour Concept of interes system based on Depreciation con project. Working of	Fing , debt:equity ratio, promoters, contributors, shareholders ce of finance, time value of money st, time value of money selection of various alternative equipment or this concept, Indian norms, EMI calculations cept, Indian norms and their utility in estimate of working results of capital concept and its relevance to project		7	
6 Process Selection, Site Selection, Feasibility Report 4 Project Conception to Commissioning: milestones, Project execution as conglomeration of technical and nontechnical activities, contractual details. Contract: Meaning, contents, Types of contract. Lump- sum Turnkey (LSTK),Eng, Procurement and Construction (EPC),Eng, Procurement and Construction Management (EPCM).Mergers and Acquisitions 6 8 Reading of balance sheets and evaluation of techno-commercial project reports 3 9 PERT, CPM, 5ar-charts and network diagrams 4 1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 2 2 Plant Dysignand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 3 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)	5	Estimate of work operating profit, p evaluation: Cumu various ratios and	king results of proposed project. Capacity utilization, Gross profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project alative cash how analysis Break-Even analysis, incremental analysis, alysis, Discounted cash flow analysis		7	
Project Conception to Commissioning: milestones, Project execution as conglomeration of technical and nontechnical activities, contractual details. Contract: Meaning, contents, Types of contract. Lump- sum Turnkey (LSTK),Eng, Procurement and Construction (EPC),Eng, Procurement and Construction Management (EPCM).Mergers and Acquisitions 6 8 Reading of balance sheets and evaluation of techno-commercial project reports 3 9 PERT, CPM, Bar-charts and network diagrams 4 Total 45 List of Text Books/ Reference Books 1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 4 2 Plant Designand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 3 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)	6	Process Selectior	n, Site Selection, Feasibility Report		4	
8 Reading of balance sheets and evaluation of techno-commercial project reports 3 9 PERT, CPM, 5ar-charts and network diagrams 4 Total 45 List of Text Books/ Reference Books 1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 4 2 Plant Designand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 4 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. 6 Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) 6 CO2 calculate cost of equipment used in a plant total project cost.(K3) 6 CO3 calculate cash-flow from a given project.(K3) 6 CO4 select a site for the project from given alternatives.(K4) 5	7	Project Concept conglomeration of Meaning, content and Construction (EPCM).Mergers	otion to Commissioning: milestones, Project execution as of technical and nontechnical activities, contractual details. Contract: is, Types of contract. Lump- sum Turnkey (LSTK),Eng, Procurement on (EPC),Eng, Procurement and Construction Management and Acquisitions		6	
9 PERT, CPM, Bar-charts and network diagrams 4 Total 45 List of Text Books/ Reference Books 1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 4 2 Plant Designand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 3 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. 6 CO1 calculate working capital requirement for a given project.(K3) 6 CO2 calculate cost of equipment used in a plant total project cost.(K3) 6 CO3 calculate cash-flow from a given project.(K3) 6 CO4 select a site for the project from given alternatives.(K4) 6	8	Reading of balanc reports	e sheets and evaluation of techno-commercial project		3	
Total 45 Total 45 List of Text Books/ Reference Books 1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 9 2 Plant Designand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 9 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. 1 Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) 1 CO2 calculate cost of equipment used in a plant total project cost.(K3) 1 CO3 calculate cash-flow from a given project.(K3) 1 CO4 select a site for the project from given alternatives.(K4) 1	9	PERT, CPM, Bar-c	harts and network diagrams		4	
List of Text Books/ Reference Books 1 Chemical Project Economics,MahajaniV.V.andMokashi SM. 2 Plant Designand Economics for Chemical Engineers,Peters M.S.,TimmerhausK.D. 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)		5	Total		4	5
1 Chemical Project Economics, MahajaniV.V.andMokashi SM. 2 Plant Designand Economics for Chemical Engineers, Peters M.S., TimmerhausK.D. 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)		2	List of Text Books/ Reference Books			
2 Plant Designand Economics for Chemical Engineers,Peters M.S.,TimmerhausK.D. 3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)	1	Chemical Project	Economics, MahajaniV.V.andMokashi SM.			
3 Process Plant and Equipment Cost Estimation, Kharbanda O.P. Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)	2	Plant Designand	Economics for Chemical Engineers, Peters M.S., TimmerhausK.D.			
Course Outcomes (students will be able to) CO1 calculate working capital requirement for a given project.(K3) CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)	3	Process Plant and	a Equipment Cost Estimation, Knarbanda O.P.			
CO1 calculate working capital requirement for a given project.(K3) CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)	CO1		urse Outcomes (students will be able to)			
CO2 calculate cost of equipment used in a plant total project cost.(K3) CO3 calculate cash-flow from a given project.(K3) CO4 select a site for the project from given alternatives.(K4)			capital requirement for a given project. (K3)			
CO4 select a site for the project from given alternatives.(K4)	CO_2	calculate cost of e	equipment used in a plant total project cost.(K3)			
	CO_4	select a site for th	e project from given alternatives (K1)			
CO5 list out various milestones related to project concept to commissioning (K2)	C04	list out various mi	lestones related to project concent to commissioning (K2)			

		Ма	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α		-	VР		
C01	K											~	0		
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K											0			
	3	3	3	2	2	2	3	3	3	3	3 🕴	2	2	2	3
CO3	K										1				
	3	3	3	1	0	2	3	1	3	3	3	3	2	3	2
CO4	K										0				
	4	3	3	2	3	2	2	3	3	3	<u></u> 3	3	2	3	3
CO5	K									1	D-1				
	2	3	2	1	2	1	3	3	3	3	0	3	1	3	2
Cours	K									~					
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

domain; .

	Course Code:	Course Title:	Cre	dits	= 4
	PHT1058	SPL13: Process Technology of Drugs and	L	Т	Ρ
		Intermediates			
	Semester: VII	Total Contact Hours: 60	3	1	0
0.0000	into of our onio and	List of Prerequisite Courses			
	epts of organic and	physical chemistry should be clear, Concepts of mass transfe	r and a cho	nea	[
compl	eted: Concept of a	Lementary chemical reaction engineering and in-plant training	j snu	Julu L	е
Compi	lie	t of Courses where this course will be prerequised			
Profes	sional Career	t of Courses where this course will be prerequisite			
110100	Descrip	tion of relevance of this course in the B. Tech. Program			
To trai	n the students with	respect to process development, basic requirements for safe	plan	e	
desigr	and unit operatio	ns. Scale up of process.	I		
		Course Contents (Topics and Subtopics)	Re F	quir Iour	ed s
	Concept of Fine	Chemicals and Bulk Drugs and their salient features			
1	Research and D	evelopment strategies in Pharmaceutical Industry		7	
	Flow Sheets – Ty	/pes, Flow symbols, Line symbols			
	Concept of All-	purpose and Multipurpose Plants		-	
2	Plant Design, Eff	luent treatment, Solvent recovery for fine chemicals and		6	
	BUIK Drugs	amiaal Draaaaa Lifa ayala			
3	Introduction, Ci	remical Process Life-cycle		6	
	Development Te	achniques for Safe Process Design			
4	Unit operations r	oosing particular hazards during development		7	
	Strategies for C	hemical Hazards Assessment. Hazards of gas and vapor			
-	generation, Iden	tification of highly-energetic materials, Small-scale screening		-	
5	tests	, , , , , , , , , , , , , , , , , , ,		1	
	Case Studies	4			
	Introduction to	the Purpose of Chemical Development, Discovering the			
6	best synthetic ro	ute		7	
	Selecting the bes	st route for scale-up, Choice of raw materials, reagents, etc.		•	
	Case Studies	nreach to Chamical Development. Effect of process			
7	variables on viel	and quality of products		7	
'	Quality Control in	Process Analysis as an aid to ontimization		1	
	Designing a Ro	hust Process and preventing scale-up problems. Solvent			
8	effects. Work-up	and product isolation. Selecting the parameters to vary.		7	
	Planning for scal	e-up			
0	Design of Envir	onment-friendly Processes, Effluent minimization and		6	
9	control, Statistica	a niethods of optimizations		0	
		Total		60	
ļ		List of Textbooks/Reference Books			<u> </u>
1	Mahmound M. Tools)" Academic	"Pollution Prevention Through Process Integration (System Press (1997)	natic	Des	ign
2	Neal G. Andreso	n, Practical Process Research and Development, Academic Pr	ess ((200))
3	A. Cybulski, F Publication, (200	ine Chemicals Manufacture- Technology and Engineer 0)	ing	Else	vier
4	Chemical Proces	s Quantitative Risk Analysis. AIChE Publication (2000)			
5	Gopal Rao, M. a	and Sittig, M., Dryden's Outlines of Chemical Technology, 3 A	filiat	ed E	ast
Ľ _	West Press Pvt.	Ltd. (2001)		 =	
6	Austin, G.T., "S Company (1984)	breve's Chemical Process Industries", 5 ^{ar} edition, McGra	wН	III B	ook
		Course Outcomes (Students will be able to)			
CO1	understand the p	rinciples of process design along with presentation and selecti	on of	i i	
	different routes.(K2)			
CO2	tollow the impact	of regulatory statutes on process development.(K3)	<u></u>		
CO3	analyze the impo	prtance of process variables and their influence in scale-up.(K4) 	1- //	
<u>CO4</u>	acquire the know	vieuge of Green Chemistry, hazards, effluents and statistical me	etnoc	1S.(K	3)

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		A			P		
CO1	Κ											0)		
	2	3	3	3	3	3	3	3	3	3	3	1	3	3	3
CO2	Κ											0			
	3	3	3	2	1	2	3	3	2	3	2	3	3	3	3
CO3	Κ											7			
	4	3	1	3	3	3	3	3	2	3	3	3	2	2	3
CO4	Κ										2				
	3	3	3	3	2	3	0	3	3	3	3	2	0	3	3
Cours	Κ										0				
е	3	3	3	3	3	3	3	3	3	3 🐂	3	3	3	3	3

	Course Code: PHT1057	Course Title: SPI 14: Medicinal Chemistry - III	2	Cre	dits	= 3 P					
	Semester: VIII	Total Contact Hours: 45	0	2	1	0					
	I	List of Prerequisite Courses	\sim	1		<u> </u>					
Organ – II (Pł	ic Chemistry (CH HT1056), Physiolo Li	T1132), SPL5: Medicinal Chemistry – I (PHT1054), S gy and Pharmacology (PHT1023) st of Courses where this course will be Prerequi	SPL6: Medicin	nal Cł	nemi	stry					
The co	ourse will be usefu	l in their professional career									
De	escription of rele	vance of this course in the B. Tech. (Pharm. Che	m. Tech.) Pro	gran	nme						
To acq and St Formu	uaint the students ructure-Activity Re lations of the follo	with Nomenclature, Classification, Molecular Mecha elationship (SAR), New Drug Approvals, Drug Withdr wing therapeutic categories of drugs:	anism of Actio awals, Marke	n, Sy ted	nthe	sis					
Sr. No.		Course Contents (Topics and subtopics)		Re F	equir Iour:	ed s					
	a) Non-Steroida	I Anti-inflammatory Agents:			5						
1	b) Antihistamin H ₁ -Receptor anta antagonists, Ove	ic Agents: agonists - Classical antagonists and Nonsedative H ₁ erview of H ₄ -receptor antagonists as Antiasth-matic a	- agents		4						
	H ₂ -Receptor antagonists, Proton Pump Inhibitors (PPIs), Miscella-neous agents 3 and Emerging approaches										
	Drug Acting on Cardiovascular and Metabolic Disorders 6										
	b) Diuretics: Osmotic diuretics, Carbonic anhydrase inhibitors, Thiazideand and thiazide-like										
c) Antihypertensive Agents: Angiotensin-Converting Enzyme (ACE) Inhibitors, Angiotensin II Receptor Type											
2	2 d) Antihyperlipidemic Agents: Hydroxymethylglutaryl-CoA (HviG-CoA) Reductase Inhibitors, Cholesterol- reducing agents, Others, Emerging targets in the management of dyslinidaemia										
	e) Drugs affecti i) Anticoagulants thrombin inhibito ii) Thrombolytics	ng Primary and Secondary Hemostatis :: Oral anticoagulants, Heparin and related products, rs, Direct Factor Xa inhibitors	Direct		3						
	Drugs Acting o a) Antidiabetic Insulin and analo management of	n Hormonal Systems Drugs: ogs, Oral hypoglycemic agents and Emerging Approa Type 2 diabetes, e.g., Glucagon-like peptide (GLP-1	aches in the) analogs		3						
3	b) Steroid Ho:n Adrenocorticoids	nones: s, Steroidal Anti-inflammatory agents			3						
	c) Sex steroids and antagonists Androgens, Estrogens and Progestins, Oral contraceptives, Anabolic steroids 3 and Other agents										
	d) Drugs for Hy Thyroid Hormon Radioisotopes fo	po- and Hyperthyroidism es, Thyroid Replacement Therapy, Anti-thyroid agen or Thyroid cancer	ts,		2						
4	Miscelleneous	Classes of Drugs			5						
			Total		45						
1	Lemke, TI Zit	LIST OT LEXT BOOKS/ Reference Books	ove's Princinl	es of							
	Lemke, T. I. Wi	lliams, D. A., Roche, V. F., Zito, S. W. Fove's Princin	les of Medicir	nal							
2	Chemistry; 7 th eo Wilson and Gisv	d.; Wolters Kluwer (2013) old's Textbook of Organic Medicinal and Pharmaceu	tical Chemistr	y; Be	ale,	J.					
3	M., Jr., Block, J.	H., Eds.; 12 th ed.; Wolters Kluwer (2011)									
4	Burger's Medicir Wiley & Sons - N	nal Chemistry & Drug Discovery, Vol. 1- 6; Abraham, New Jersey (2003)	D. J., Ed.; 6 ^{tr}	' ed.;	Johr	1					

5	Kleeman, A., Engel, J., Kutscher, B., Reichert, D. Pharmaceutical Substances: Syntheses, Patents and Applications of the Most Relevant APIs; 5 th ed.; Thieme Medical Publishers Inc. (2009)
6	Lednicer, D. The Organic Chemistry of Drug Synthesis; Vol. 1 - 7); John Wiley & Sons, INC. (2008)
7	Silverman, R. B., Holladay, M. W. The Organic Chemistry of Drug Design and Drug Action; 3 rd ed.; Elsevier (2014)
8	Warren, S., Wyatt, P. Organic Synthesis: The Disconnection Approach, 2 nd ed.; Wiley (2008)
	Course Outcomes (Students will be able to)
C01	draw and understand the 2D and 3D structures of small-molecule drugs and write their IUPAC names.(K2)
CO2	understand and explain the molecular mechanism of action of drugs and biologics, with particular emphasis on the emerging trends and newer targets for varied therapeutic indications.(K3)
CO3	decipher the structure-activity relationship (SAR), metabolism, therapeutic indications, drug- drug interactions, adverse effects of drugs and/or biologics.(K3)
CO4	evaluate the logic behind the design of synthetic routes for small-molecule drugs and related compounds such as metabolites, impurities and prodrugs.(K4)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			Р		
CO1	K							2							
	2	3	3	3	3	3	3	3	0	3	3	3	3	3	3
CO2	K						0								
	3	3	3	2	3	3	1,	3	3	3	2	3	2	3	2
CO3	K						-								
	3	3	3	3	2	2	3	3	3	3	3	3	1	2	3
CO4	K					0									
	4	3	3	3	2	3	3	3	3	3	2	2	3	3	2
Cours	K					Ø									
е	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Abbroved br

Page 118 of 133

Course Code: Course Title:	Cre	dits	= 3										
PHT1060 SPL15: Chemistry and Technology of Fine Chemicals	L	Т	Ρ										
Semester: VIII Total Contact Hours: 45	2	1	0										
List of Prerequisite Courses													
SPL4: Pharmaceutical Analysis and Green Chemistry (PHT1052), Physical Chemistry	– II												
(CHT1342)													
List of Courses where this course will be prerequisite													
Professional career													
Description of relevance of this course in the B. Tech. Program													
The course is designed to provide the learner a foundation for understanding of bo	th Ba	asic a	and										
Applied Chemistry. It gives the learner a bridge between industrial Chemistry and Pure Chemistry. This course helps to develop a strong thinking process amongst the learners both in technical and													
applied chemistry which will prepare them for employment and advanced study													
	Re	auir	ed										
Course Contents (Topics and Subtopics)	L L	lour	S										
1 The Chemical Industry: A Brief History, Fine vs Bulk Vs specialty Chemicals		1											
Production of Fine Chemicals													
Introduction, Role of Catalysis, Atom Economy, Alternative Reagents and													
Catalysts, Novel Reaction Routes, Selectivity, Solvents, Conventional													
Solvents, Alternative Solvent, Production Plants, Multiproduct and		1 4											
2 Multipurpose Plants (MMPS), Dedicated Continuous Plants, Balch Reactor Selection, Beasters for Liquid and Cas Liquid Systems, Beasters for Cas		14											
2 Multipurpose Plants (MMPs), Dedicated Continuous Plants, Batch Reactor Selection, Reactors for Liquid and Gas–Liquid Systems, Reactors for Gas– Liquid–Solid Systems, Batch Reactor Scale-up Effects, Temperature Control													
Selection, Reactors for Liquid and Gas–Liquid Systems, Reactors for Gas– Liquid–Solid Systems, Batch Reactor Scale-up Effects, Temperature Control, Summary of the Scale-up of Batch Reactors, Safety Aspects of Fine													
Chemicals, Thermal Risks, Safety and Process Development,													
Understanding Fine Chemicals: Selected Fine Chemical Technologies with													
3 examples: Alkylation, Halogenation, Oxidation, Reduction, Esterification,		21											
Nitration, and Hydrogenation													
4 Process Intensification and Process Development: Introduction and		9											
important aspects of it													
Iotal		45											
LIST OF TEXTDOOKS/REFERENCE BOOKS	o Chi	of L	:fth										
1 Edition McGraw-Hill Book Co. Inc. New York (1952)	I-CIII	еі, г	'IIUI										
Chemical Process Technology SECOND EDITION 14COB & MOULUIN MICH		ΙΔΚΚ	FF										
2 ANNELIES E. VAN DIEPEN			. – –										
3 Fine Chemicals: The Industry and the Business, 2 nd ed., Peter Pollak, Wiley													
Course Outcomes (Students will be able to)													
explain the very basics of small scale industry right from its setting to the variou	ls op	eratio	ons										
and processes used in different chemical manufacturing processes.(K2)													
CO2 differentiate between heavy and fine chemicals and state their various applicat	ions i	n											
Industry and daily life.(K3)													
cos explore the process of manufacture of variety of the chemicals.(K4)	plac	nina											
CO4 demonstrate the process of preparation of solutions and adapt a method of the	pian	ning											
2													

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			Р		
CO1	Κ														
	2	3	2	3	3	3	3	3	3	3	3	3	3	3	3
CO2	Κ														
	3	3	3	2	1	2	3	3	2	3	2	0	2	2	3
CO3	Κ														
	4	3	3	3	3	3	2	3	3	3	3	3	3	3	3
CO4	Κ														
	3	3	3	0	2	3	3	3	3	3	1	2	3	3	2
Cours	Κ														
е	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

١.

		0 ^v			
	Course Code:	Course Title:	Cre	dits	= 3
		Pre-approved Open Electives from MOOCs / NPTEL	L	Т	Ρ
	Semester: VIII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
	Lis	t of Courses where this course will be prerequisite			
	-				
	Descrip	tion of relevance of this course in the B. Tech. Program			
	1				
		Course Contents (Topics and Subtopics)	Re	equir lours	ed s
1				-	
2				-	
3				-	
4		0		-	
5				-	
		Total		45	
	i	List of Textbooks/Reterence Books			
1	As prescribed by	the Course Instructor(s)			
		Course Outcomes (Students will be able to)			
CO1	As prescribed by	the Course Instructor(s)			
CO2	As prescribed by	the Course Instructor(s)			
CO3	As prescribed by	the Course Instructor(s)			
CO4	As prescribed by	the Course Instructor(s)			

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PO1
	1	2	3	4	5	6	7	8	9	0	1	2	3
C01	-	-	-	-	8	-	-	-	-	-	-	-	-
CO2	-	-	-	- 5	7-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	6	-	-	-	-	-	-	-	-	-
		402	"Drovova	(Day									

	Course Code:	Course Title:	Cre	dits	= 4
	PHP1075	Project – II	L	Т	Ρ
	Semester: VIII	Total Contact Hours: 120	0	0	8
		List of Prerequisite Courses			
Projec	t – I (PHP1074)	0			
	Lis	t of Courses where this course will be prerequisite			
Releva	ant courses in prev	vious courses (Sem. I to Sem. VII)			
	Descrip	tion of relevance of this course in the B. Tech. Program			
The co proble the res preser	ourse is designed t m in Pharmaceutic search are present ntation.	to develop skills necessary for executing and solving a unique cal Sciences and Technology field. After the laboratory work, th ted in a coherent manner, which may result in a patent, publica	resea le fina ltion a	arch dings and/c	of or
		Course Contents (Topics and Subtopics)	Re	equir Iours	ed S
1	The topic of the should be explo experiments. Stu chosen research	e research with clearly defined Objectives and Hypotheses red systematically, in a scientifically planned rational set of idents should have actual experimental data collected on the topic.		80	
2	Oral presentation actual laboratory towards fulfilling report.	n of the proposed research work with data generated during y work along with computational studies, if any, targeted the objectives. The outcome is submitted in the form of a		40	
		Total		120	
		List of Textbooks/Reference Books			
1	Relevant review	articles, research papers, patents, book chapter, books, etc.			
	1	Course Outcomes (Students will be able to)			
C01	Perform experim	ents & troubleshoot to generate reliable data (K5)			
CO2	Apply different st	atistical tools for scientific data analysis (K4)			
CO3	Evaluate critically	y the experimental data and draw meaningful inferences (K5)			
CO4	Develop skills to	communicate the research outcome effectively (K6)			
CO5	Develop skills for	r writing a complete document on the project work (K6)			
		(7)			

		Ма	appinę	g of C	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
					V			S		A			Р		
CO1	K			-											
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K														
	4	3	3	2.	3	2	3	3	3	2	3	3	2	3	3
CO3	K			25											
	5	3	3	3	3	3	0	3	3	3	3	3	3	3	3
CO4	K		.0												
	6	3	3	3	3	3	3	1	3	3	3	3	2	3	3
CO5	K		2												
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours	K	N N													
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title:	Cre	dits	= 4								
	PHP1055	Pr 8: Process Technology Laboratory	L	Т	Ρ								
	Semester: VIII	Total Contact Hours: 120	0	0	8								
		List of Prerequisite Courses											
Gener	al exposure to Ch	emistry Laboratory and experience in handling chemicals; Ba	ackgr	ounc	l of								
Analys	sis and Organic	reactions; Background of process modification; Micro	biolo	gy a	and								
Biotec	hnology												
	Lis	t of Courses where this course will be prerequisite											
Profes	sional career	7											
	Description of relevance of this course in the B. Tech. Program												
The co	e course is designed to train the students with respect to scale-up, process development as well												
as the	study of safe and	green processes.											
		Course Contents (Topics and Subtopics)	Re	quir Iour	ed s								
	Synthesis of dru			-									
1	Synthesis of drugs involving two or more steps with a) with analysis of raw materials and product synthesis and b) in-process control and reaction 70												
	monitoring												
2	Any innovative	modifications in the process of drug synthesized (Two		20									
2	Examples); No re	epetition of the same from previous years		20									
3	Scale-up and Gr	een Chemistry route for synthesis (Two examples)		20									
4	Bioconversions			10									
		Total		120									
		List of Textbooks/Reterence Books											
1	Arthur, Vogel. Te 1989.	extbook of Practical Organic Chemistry, 5 th edition, Longmar	Gro	up L	.td.,								
2	F. G. Mann and I	3. C. Saunders, Practical Organic Chemistry, 4th edition, Orient	Long	gmar	ı								
2	Keese, R, Martin	P. B, and Trevor P. Toube. Practical Organic Synthesis: A Stu	dent's	s Gui	de.								
S	John Wiley & So	ns, 2006.											
		Course Outcomes (Students will be able to)											
CO1	hone in their pro	cess development skills (K3).											
CO2	explore the innov	vation component in process development activities.(K4)											
CO3	understand and	follow bioconversions.(K2)											
		8											

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
					1			S		Α			Р		
CO1	K				2										
	3	3	2	1	2	1	3	3	3	3	3	3	2	3	3
CO2	K			0											
	4	3	2	0	2	1	3	3	3	1	3	3	1	3	3
CO3	K		é	2											
	2	3	1	1	2	1	3	2	3	3	3	3	0	3	2
Cours	K		0												
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

Annexure A

Institute Electives Offered by DPST

Semester VI (PHT1095 or PHT1097)

	Course Code:	Course Title: Intellectual Property Diritte	Cre	dits	= 3
	PHT1095	Course Thie. Intellectual Property Rights	L	Т	Ρ
	Semester: VI	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Nil		6			
	Lis	t of Courses where this course will be Prerequisite			
Nil		∇			
D	escription of releva	ance of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gram	me	
To trai	n the students with I	respect to basics of Intellectual Property Rights (IPR)	J		
Sr. No.		Course Contents (Topics and Subtopics)	Re H	quir lours	ed S
1	Introduction to Inte and evolution	ellectual Property: overview describing definition, need		2	
2	IPR related laws:	Biodiversity		2	
3	Introduction to WI	PO and Treaties under WiPO		6	
Δ	Type of Intellectu	ial Property: Copyright		Δ	
	Introduction, Proc	ess of filing, rights achieved		-	
5	Type of Intellectu	ial Property: Trademarks		4	
	Type of Intellectu	al Property: Geographical Indications			
6	Introduction. Proc	ess of filing, rights achieved		3	
	Type of Intellectu	al Property: Industrial Design			
	Introduction, Proc	ess of filing, rights achieved		3	
8	Type of Intellectu	al Property, Trade Secret		3	
	Introduction, Proc	ess of filing, rights achieved		0	
	I ype of Intellectu	ial Property: patent			
	Patent and traditic	nal knowledge			
9	Indian natent Act	inal kilowieuge		6	
	Process of filing	~Q '			
	Rights achieved				
10	Patentability w.r.i.	regional requirements		2	
11	Patent filing under	Paris Convention Treaty (PCT)		5	
12	Role of IPR in Pha	armaceuticals		5	
	C	Total		45	
	0	List of Text Books/Reference Books			
1	All documentation	from World Intellectual Property Organization			
2	Indian Fatent Act	(www. ipindia.nic.in)			
2	Pharmaceutical P	roduct Development: Insights into Pharmaceutical Processes, M	anag	emer	nt
3	and Regulatory Af	fairs, Patravale V, Rustomjee M, Dsouza J. 2016, CRC press			
		Course Outcomes (Students will be able to)			
C01	explain various type	bes of Intellectual Property Rights.(K2)			
CO2	explain the import	ance of Intellectual Property Rights in relevance to pharmaceutic	al		
	Inventions.(K2)	sized prestings during professional activities for success the IDD.	(12.4)		
<u> </u>	implement the des	sireu practises during protessional activities for preserving IPRs.	<u>(K4)</u>		
CO4	related to the read	yze reactions naving unterent functionalities, deduce and solve p tions as well as apply them, if need by (KA)	9 au	IIIS	
	Telaleu lu lite teau	LIONS as well as apply them, if need be.(K4)			

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			S		
C01	Κ											0	0		
	2	3	3	2	3	2	0	3	3	3	3	3	2	3	3
CO2	Κ											0			
	2	3	3	3	1	3	3	3	2	3	3	0	3	3	3
CO3	Κ											7			
	4	3	2	2	3	3	3	2	3	2	3	2	2	1	3
CO4	K										2				
	4	3	3	3	3	2	3	3	3	3	3	3	3	3	3
Cours	K										0				
е	4	3	3	3	3	3	3	3	3	3 🛰	3	3	3	3	3

Jontribu, Jontri 3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

	Course Code:	Course Title: Applied Melecular Biology	Cre	dits	= 3
	PHT1097	Course The: Applied Molecular Biology	L	Т	Ρ
	Semester: VI	Total Contact Hours: 45	2	1	0
	•	List of Prerequisite Courses			
Molecu	ular Biology and Bio	technology			
	Lis	t of Courses where this course will be Prerequisite			
Nil		20			
De	escription of releva	ance of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gran	me	
To Intr	oduce students to a	dvanced genetic techniques employed to design molecular diag	nostic	; kits	
and pr	otein therapeutics a	nd to familiarize students with the procedures involved in genetic	c eng	inee	ring
of plan	its and animals		_		
Sr.		Course Contents (Topics and Subtopics)	Re	quir	ed
NO.	Molecular diagnos	stics: Immunological diagnostic procedures, nucleic acid		-	2
1	diagnostic system	s, molecular diagnosis of genetic disease		5	
2	Protein therape	utics: Biopharmaceuticals, enzymes, monoclonal and		5	
2	recombinant antib	odies			
3	Nucleic acids as the	nerapeutic agents		5	
4	vaccines: Subur	nit vaccines, peptide vaccines, DNA vaccines, attenuated		5	
	Synthesis of com	mercial products by recombinant microorganisms; Enzymes,			
5	antibiotics, biopoly	mers; synthetic biology routes for biopharmaceuticals		5	
6	Large-scale produ	ction of proteins from recombinant microorganisms		5	
	Bioremediation a	nd biomass utilization: Microbial degradation of xenobiotics,			
7	genetic engineerir	ng of biodegradative pathways, utilization of starch, sugars and		5	
0	Cellulose	ng of plants		5	
<u>0</u>	Transgenic anima			5 5	
	Transgenie anima	Total		45	
		List of Text Books/Reference Books			
1	Molecular Biotech	nology: Principles and Applications of Recombinant DNA, by Gli	ck an	d	
2	Principles of gene	manipulation : an introduction to genetic engineering / R.W. Old	, S.B		
	Primrose, 5 th edition	on, 1994, Blackwell Scientific.			
3	Gene Cloning and	DNA Analysis: An Introduction, T A Brown, 7 th edition, 2015, Wil	ey-Bl	ackv	/ell
	deceribe the proof	Course Outcomes (Students will be able to)			
	design strategies	curres involved in designing molecular diagnostic Kits.(KZ)	et co		· /1)
		a of microbial metabolic processos to corre out constinuitant microbial no	SI Ce	115.(ř	.4)
CO3	microbes to degra	de recalcitrant material.(K4)	ng U		
CO4	apply different pro	tocols available for genetic engineering of plants and animals.(K	3)		
	~				

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	P02	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
		V						S		A			S		
C01	K														
	2	3	3	2	3	3	3	3	3	3	3	3	2	2	3
CO2	K														
	4	3	3	3	3	2	1	3	3	0	3	2	3	3	3
CO3	K														
	4	3	2	2	3	2	3	3	2	3	3	3	1	3	2
CO4	K														
	3	3	3	3	3	3	3	3	3	3	1	2	3	2	3
Cours	K														
e	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Annexure B

Institute Electives Offered by DPST

Semester VII (PHT1092 or PHT1093)

	Course Code: Course Title:								
	PHT1092	Pharmaceutical Packaging Technology	L	Т	Ρ				
	Semester: VII	Total Contact Hours: 45	2	1	0				
		List of Prerequisite Courses							
Pharm	aceutical Formulati	on Technology - II							
	Lis	t of Courses where this course will be Prerequisite							
Nil		T .							
De	escription of releva	ance of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gran	nme					
To trai	n the students with	respect to basics of packaging technology.							
Sr. No		Course Contents (Topics and Subtopics)	Re	quir	ed				
140.	Introduction to Pa	ckaging, Classification of Packaging, Essential Requirements,	-	iours	>				
1	Functions of Pack Properties of Idea recycling symbols Classification of P in the pharmaceut Requirements	aging, Importance / significance of Pharma Packaging, I Package, Packaging formats in Pharma Industry, Packaging , FDA Definitions, Introduction to Packaging materials, ackaging materials, Approach to package design, New Trends ical packaging, Packaging Regulations And Legal		5					
2	Introduction to pla Plastics, Resin ic containers		4						
3	Introduction to gla pharmaceutical pr Properties of glass Glass containers.	ss, Selection of glass as packaging materials for the oducts, Advantages and disadvantages of glass containers, s, Production of glass, Types of glass, Manufacturing of Testing of glass containers		4					
4	Introduction to m Stainless steel	etals, Aluminium and Aluminium foil, Collapsible Tubes, Tin,	4						
5	Introduction to blis Types of Blisters, Problems/ Defects Barrier Laminates resistant strip pac Dose Strip Packas	ster package, Blister design parameters, Materials, Formation, Advantages and disadvantages of Blister Packaging, Types of s, Elister Packing Machine, Other packages, Strip Packs- High s, Strip Packaging Process, Properties of Materials, Child- kage, Strip Sealing Machine, Strip Packing Machinery, Multi- ging		4					
6	Introduction to And Paperboard, Woo	cillary Materials used in Packaging, Adhesives, Paper, d. fibreboard . Packaging inserts . leaflets		4					
7	Introduction to na contempo ary clo Functions, Closu Liners, Closure L Material, Options tapes, Strapping N Solutions, Liner D	tural and synthetic rubber, Types of closures, Classification of osures by their utility, Special-purpose Closure, Closure re Materials, Types of Plastic Closures, Sealing Systems, iner Functions, Classification of Liners, Selection of Lining for Closure Liners, Innerseals, Linerless Closures, Types of Materials, Evaluating Closure Liners, Standard Liners, Tacseal, escription		4					
8	Introduction, Com Board, Advantage Dimensions, Type CFB	ponents of Corrugated fibre board, Types of Corrugated s & Disadvantages, Manufacturing, Box Structure, Box s of Box, Applications of C.F.B., New developments in		4					
9	Sterilization of Pa Introduction, Phar Factors that affe Sterilization Meth Incubation and ex Evaluation of Ster and In Process Me	ackaging Materials maceutical Importance of Sterilization, Physical and Chemical ect sterilization, Terms commonly used, Classification of ods, Sterilization of Packaging Materials, Tests for Sterility, xamination of sterility tests, Interpretation of the test results, rilization Method, Process of Microbial Destruction, Evaluation ponitoring of Sterilization Procedures		4					

10	Packaging of Parenterals, Ophthalmics, And Aerosols Introduction, Packaging of Sterile Pharmaceuticals, Packaging Components, Inspection of Filled Injectable Products, Storage and Labelling, Packaging of Ophthalmics, Selection of Packaging Materials, Packaging of Aerosols	4
11	 Testing of packaging material Defects in Packages: Introduction, Defects in Packaging Material Package Testing and Testing of Containers & Closures: Introduction, Testing of containers and closures Stability of Packages: Introduction, Legislation, Regulation, Pharmaceutical Stability Testing in Climatic Cabinets, Pharmaceutical Stability Testing Conditions, Photo-Stability Testing, Review of Pharmaceutical Product Stability, Packaging and the ICH Guidelines 	4
	Total	45
	List of Text Books/Reference Books	
1	D. A. Dean, Roy Evans, Ian Hall. Pharmaceutical packaging technology. Tylor and	Francis.
2	Edward J. Bauer, Pharmaceutical Packaging Handbook. Bausch And Lomb, Roche York, USA	ester, New
3	Wilmer A. Jenkins, Kenton R. Osborn. Packaging Drugs And Pharmaceuticals.	
4	Salvatore J. Turco, Sterile dosage forms: their preparation and Clinical application	
5	Remington: The Science and Practice of Pharmacy	
6	Michael E. Aulton, Kevin Tylor (Ed.). Aulton's Pharmaceutics: The design and Man Medicine	ufacture of
7	Gilbert Banker and Christopher Rhodes. Modern Pharmaceutics	
8	Leon Lachman; Lieberman Herbert A.; Kanıg, Joseph L. The theory And Practice of Industrial Pharmacy.	
	Course Outcomes (Students will be able to)	
CO1	classify packaging materials and describe FDA regulations, properties of packagin (K3)	g materials.
CO2	apply concepts related to primary packaging materials, containers and closures an testing.(K3)	nd their
CO3	explain secondary packaging materials and their testing.(K3)	
CO4	describe ancillary materials, unit dose and multi dose packing, Packaging of Parer Ophthalmics, and Aerosols. ((3)	nterals,

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
				-				S		A			S		
CO1	K			0											
CO2	K		~												
	3	3	3	1	3	3	2	3	3	2	0	3	2	2	1
CO3	K		0												
	3	3	3	3	3	3	1	3	2	3	3	2	3	0	3
CO4	K	-	<												
	3	3	2	3	3	0	3	3	3	3	3	3	3	3	3
Cours	K														
е	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code: Course Title: Structural Analysis by Spectroscopy											
	PHT1093	Course Thie: Structural Analysis by Spectroscopy	L	Т	Ρ							
	Semester: VII	Total Contact Hours: 45	2	1	0							
	-	List of Prerequisite Courses										
Basic	knowledge of absor	ption spectroscopy, Mass spectrometry, Undergone courses in Ir	nstrun	nenta	al							
Method	ds of Analysis.	to Commence the state of the Development										
N I'I	LIS	t of Courses where this course will be Prerequisite										
NII	and the second second	(this second is the D. Tash (Dhama Ohama Tash) Dra										
De To trair	escription of relevant	ance of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gram	ime								
spectro	ometric methods su	ch as 1 H-, 13 C-NMR, FT-IR, UV/Vis, Raman, etc.	anu									
Sr.		Ocurres Contents (Tenies and Cultonies)	Re	quir	ed							
No.		Course Contents (Topics and Subtopics)	н	ours	\$							
1	UV-VIS spectrosc	opy and identification of chromophore		5								
2	IR spectroscopy -	correlation of absorption frequencies and functional groups.		5								
	General analysis of Broton NMB sport	of IR spectrum										
3	to structure. H-H (Coupling and J values. On the basis of chemical shift, coupling		5								
Ū	constants, IR and	UV information elucidation of structure of simple molecules		•								
4	Mass spectrometr	y, fragmentation, isotope mass		5								
5	Problem-solving u	sing the above spectroscopic and spectrometric methods		5								
6	¹³ C-NMR, Chemic	al Shift correlation, C-H coupling, NOE, DEPT, other		5								
0	techniques to identify p,s,t, and quaternary carbon 5											
7	Problem-solving u	sing all the spectroscopic techniques studied above		5								
8	Multidimentional I	NMR COESY, NOESY, and other and structure information		5	ĺ							
0	generation. With I	lustrative examples; ³⁻ P, ¹⁵ N, and ¹⁹ F NMR introduction										
9	Problem-solving	Total		5								
		List of Text Books/Reference Books		43								
1	Application of abs	orption spectroscopy of organic Compounds, John R. Dyer, Prer	ntice I	Hall,								
2	Organic Spectroso	copy, W. Kenip.										
2	Spectroscopic Ide	ntification of Organic Compounds by R. M. Silverstein, G. C. Bas	sslrer	Mor	ill							
3	T. C.; John Wiley a	and Sons, 1991.										
4	There are many W	/ebsites where structural problem are discussed. Teacher to ider	ntify ti	me t	0							
	time and guide the	Course Outcomes (Students will be able to)										
CO1	revise basic princi	plas of absorption spectroscopy to equip for advanced application	ns (k	(2)								
CO2	to interpret UV an	d IR spectra for identification of functional groups in organic mole	ecules	<u></u>) s.(K4)							
	identify proton loc.	ation at various chemical environments, origin of coupling and co	ouplin	a	/							
CO3	constants. Applica	tion in structural elucidation, exposure to concept of multidiment	sional	NMI	R							
	and its value in structure analysis.(K3)											
CO4	understand the pri	Inciple of mass spectrometry, fragmentation pattern and combini	ng fra	igme	nts							
C05	hone their structur	uciure.(N2) ral elucidation skills by combining information from different sour	res (l	(1)								
		a choldadon chilo by combining mornation non different sour	000.(1	<u>, , , , , , , , , , , , , , , , , , , </u>								

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			S		
CO1	K														
	2	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	4	3	3	2	0	3	3	3	3	3	3	3	1	3	3
CO3	K														
	3	3	3	3	3	3	3	2	0	3	3	2	3	2	3
CO4	K														
	2	3	3	1	3	2	2	3	3	2	1	3	3	3	2
CO5	K														
	4	3	2	3	3	3	3	3	3	3	3	3	2	3	3
Cours	K	3	3	3	3	3	3	3	3	3	3	3	3	3	3

е	4														
	З,	Strong	Contri	ibution	; 2, Mo	oderate	e Cont	ributio	n; 1, L	ow Co	ontributio	on; 0, N	o Contrib	ution	
	Κ,	Knowle	edge le	evel fro	om co <u>c</u>	Initive	domai	n; A, A	ffectiv	e dom	ain; P, F	sychor	motor don	nain	
			-										V		
												~)		
												CV.			
												0			
											1	1			
											16				
											6	<i>.</i>			
											5				
											0				
										1	2.1				
										V	1.0				
										5					
										0					
									6						
									17						
									\leq						
								-							
								18							
								2							
								5							
							- 2	5							
							67								
							\sim								
						×	0								
						2	-								
						nº.									
						~									
					0	5									
					- Ĝ	r									
					Y										
				1	· ·										
					3										
				~											
				0											
			1	0											
			õ	5											
			2												
			Q												
			5												
		Y													

Annexure C

Programme Electives for DPST

Semester VIII (PHT1099 or PHT1061)

	Course Code: PHT1099	Course Title: Drug Synthesis Approaches	Cre L	dits T	= 3 P								
	Semester: VIII	Total Contact Hours: 45	2	1	0								
		List of Prerequisite Courses											
Organi	c Chemistry – I (C⊢	IT1137), Organic Chemistry – II (CHT1138)											
	Lis	t of Courses where this course will be Prerequisite											
Profes	sion career	V.											
De	escription of releva	ance of this course in the B. Tech. Pharm. Chem. Tech.) Pro	aram	me									
To trair	n the students with r	respect to organic, catalytic and bio atalytic techniques for the sy	/nthes	sis c	of								
drug a	nd intermediate; rou	ites for chiral synthesis/chiral separation, use of protecting group	os in										
synthe	sis and derivatization	on of natural products.	-										
Sr. No.		Course Contents (Topics and Subtopics)	Re H	quir our:	·ed s								
	Retrosynthetic Ap	proaches											
	Recap of basic co	ncepts of retrosynthetic analysis	3										
	Building blocks in drug synthesis												
1	Cabon-heteroaton	n bond disconnections, with examples		3									
1	Carbon-carbon bo	nd disconnections, with examples		4									
	Synthesis of drug drugs (involving th	molecules by multiple approaches in the following classes of iree or more steps):											
	a. Anti-infect	ive (Two molecules)		2									
	b. CNS drug	s (Two molecules)		2									
	c. CVS drug	s (Two molecules)		2									
	d. Anti-diabe	tic drugs (Two molecules)		2									
	e. Anti-histar	minics (Tv/o molecules)		2									
	f. Anticance	r compounds (Two molecules)		2									
	g. NSAIDs (Two molecules)		2									
	h. Miscellane	eous Drugs (Two molecules)		2									
2	Asymmetric synth	esis, resolution of enantiomers applicable to drug synthesis		4									
3	Derivatization of n	atural products		4									
4	Biocatalysis			2									
5	Catalytic synthesis	Sin annousia annotharain		3									
6	Protecting groups	In organic synthesis		4									
		List of Taxt Books/Beference Books		45									
1	Warren S and Wy	ratt P. Organic Synthesis- The Disconnection Approach. 2nd edit	tion [.] .	lohr	1								
2	Louden M. Organ	ic Chemistry 5th edition Roberts and Company Publishers 200	9										
3	Carey E., Organic	Chemistry, 9 th edition, McGraw-Hill Education, 2013	5										
4	Corev E. J., Logic	of Chemical Synthesis. Wiley-Blackwell: Revised ed., 1995											
F	Iyer RP and Dega	ni M.S, Synthesis of Drugs: A synthon Approach Vol-1, 2nd Ed. S	Sevak										
2	publications Pvt. L	td											
		Course Outcomes (Students will be able to)											
C01	apply organic synt	hesis principles for drug and intermediate synthesis.(K3)											
CO2	predict methods a	nd routes for chiral synthesis/chiral separation.(K3)											
CO3	apply catalytic and	I biocatalytic techniques for the synthesis of drugs and intermedi	ates.((K3)									
CO4	understand how to	o derivatize natural products.(K2)											
CO5	apply the use of p	rotecting groups in synthesis.(K3)											

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			P		
CO1	K											0)		
	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K											0			
	3	3	3	2	0	2	3	3	3	2	3	3	2	3	3
CO3	K											7			
	3	3	3	3	3	3	2	2	3	3	1	3	2	0	3
CO4	K										2				
	2	3	3	2	3	3	2	3	3	3	3	2	3	3	3
CO5	K										0				
	3	3	3	3	3	1	3	3	3	0	3	3	3	2	3
Cours	K									V	-				
е	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Jontribu. Jonain; A, J

	Course Code:	Credits =					
	PHT1061		L	<u>T</u>	P		
	Semester: VIII	Total Contact Hours: 45	2	1	0		
		List of Prerequisite Courses					
All Mat	thematics and Com	outer Applications courses					
	Lis	t of Courses where this course will be Prerequisite					
Profes	sion career	2					
De	escription of releva	ance of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gram	ime			
The co fields i	ourse is designed to ncluding medical, pl	introduce the students with machine learning and its application harmaceutical, analytical, engineering, genetics, etc. The studen	in va ts cai	ries 1 the	n		
further	develop the skills s	ets required to be a high-end machine learning professional with	tech	nical			
Sr	l experiise.		Re	auir	ed		
No.		Course Contents (Topics and Subtopics)	H	ours	5 5		
	Introduction to Ma	chine Learning					
1	Supervised and U	nsupervised learning		8			
	Choosing the right	algorithm					
	Cotting Started wit	th Machine Learning					
	Machine learning	workflow using a Case Study (Healthcare)					
	- Accessing	and loading data					
~	- Data pre-	processing		10			
2	- Feature d	erivation		12			
	 Model bui 	lding					
	- Model val	idation					
	 Model dep 	ployment					
	Applying Unsuper	vised Learning					
	- Hard and	soft clustering algorithms					
3	- Common	dimensionality reduction algorithms for improving model		10			
	performar						
	- Case Stud						
	Applying Supervis	ed Learning					
4	- Classificat	tion and Regression algorithms		10			
	- WOUELING	motor tuning					
5	Machine learning			5			
	T Maenine learning	Total		45			
	0	List of Text Books/Reference Books					
1	Dumont, R. Macni	ne Learning: The Ultimate Beginners Guide: To Understanding N	/lachi	ne			
	Turner, R. Python	Machine Learning: The Ultimate Beginner's Guide to Learn Pyth	on M	achi	ne		
2	Learning Step by	Step; 2019.					
3	Lee, A. Programm	ning for Beginners: 3 Manuscripts: The Complete Guide to Learn	ing P	ytho	n		
4	Crash Course, Py	thon Machine Learning and Python Data Science in a Week; 202	21.				
4	Giussari, A. Applie	eu Machine Learning with Python; Bocconi University Press; 202	U.	<u></u>			
5	Series: 1 st ed.: Add	dison-Wesley Professional/Pearson Education: 2020.	& AN	aiyti	55		
	, <u></u> , <u></u> , <u></u> , <u></u>	Course Outcomes (Students will be able to)					
CO1	grasp the overall r	process of machine learning and its real-world applications.(K2)					
	understand differe	nce between supervised and unsupervised machine learning alc	orith	ms fo	or		
CO2	given data set.(K3)					
CO3	apply machine lea	ning techniques to further refine their newly-acquired skills.(K3)					
CO4	explore the maching	ne learning applications using MATLAB.(K4)					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+	K3	K3+	K2+A	K3	K6+A+	K3	K4
								S		Α			V P		
CO1	Κ											0	0		
	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	Κ											0			
	3	3	3	2	3	2	1	3	3	3	3	2	2	3	2
CO3	Κ											7			
	3	3	2	3	3	3	3	3	0	3	1	3	3	2	3
CO4	Κ										2				
	4	3	3	3	2	3	3	3	3	3	3	3	2	3	3
Cours	K										0				
e	4	3	3	3	3	3	3	3	3	3 🛰	3	3	3	3	3