Syllabus for Multi-Disciplinary Minor (MDM) Degree

In

Dyestuff Technology

Under the National Education Policy (NEP 2020) (2023-2024)

Offered by

Department of Speciality Chemicals Technology

Institute of Chemical Technology
(University Under Section-3 of UGC Act, 1956)
Elite Status and Center for Excellence
Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA), www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

Department of Speciality Chemicals Technology (earlier Dyestuff Technology) was established in 1944 under the stewardship of Prof. K. Venkataraman, the then director of Institute of Chemical Technology (ICT, formerly known as UDCT), University of Mumbai. The department has trained more than 1000 undergraduate students and over 500 postgraduate students.

While the dyestuff technology has had its origins during the second world war, today its influence is felt across various domains such as agro, fertilizer and perfumery industry to name a few. The speciality chemicals technology is a multi-billion-dollar industry. And, with the advent of rapid shifting of the manufacturing of colorants from west to east makes it a highly promising industry for future innovations, research & development and sustainability. It is pertinent to note that dyestuff technology is the backbone of the entire organic process technologies of industrial relevance.

The department is a unique centre of learning that offers an advanced curriculum in tune with the latest industrial and academic developments. Not only has it produced a new generation of talented technologists and bright researchers, it has also led to an effective industry-academia relationship.

The department currently engages on niche areas of research like fluorescent dyes for sensing and sensitizers for DSSC besides the high-performance textile colorants and DFT computations, design and synthesis of graphene derivatives and their applications; energy storage materials, flame retardants, bioprobes, waste stream treatment, advanced catalysts, semiconductor materials, anticancer materials, sensors and surfactants, macro molecule synthesis, green processes for intermediates, dyes, and specialty chemicals, fragrance molecules, agrochemical synthesis, bioactive molecules and functional colorants. The outstanding research work (reported over 1000 publications) carried out by these stalwarts has created a permanent impact on dyestuff and allied industries, globally and locally.

Accordingly, this minor degree course in dyestuff technology has been designed to encompass different aspects of dyestuff technology with relevance towards fundamental & applied components, research & development and allied aspects. A major goal of these courses is to provide a solid overview of various fundamental & applied perspectives related to the dyestuff technology. This would enable the student to pursue higher degree courses in this department and also make them industry relevant towards employment. Thus, the course has been designed for a total of 14 credits as per the requirements of a minor degree and as per the national education policy guidelines.

B. Programme Outcomes:

PSO1	Intermediates & dyestuff products analysis: Able to apply analytical techniques for intermediates & dyestuffs safety, quality assurance and regulations
PSO2	Innovations in intermediates & dyestuff development: Able to translate emerging sciences in developing innovative intermediates & dyestuff products
PSO3	Intermediates & dyestuff technology knowledge: Apply the knowledge of mathematics, science, chemical engineering and dyestuff technology fundamentals to the solution of complex problems in intermediates & dyestuff chemistry & technology
PSO4	Design/Development of Solutions : Design solutions for complex intermediates & dyestuff technology problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PSO5	Dyestuff Technology: Able to translate emerging science in developing innovative dyestuff products

C. Recommended batch size: Minimum 15; Maximum 35

D. Duration: Three years

E. Eligibility criteria:

Students enrolled in the Bachelor of Chemical Engineering and Bachelor of Technology programmes of Institute of Chemical Technology will be eligible. The allotment of minor degree programme will be as per the policy of the institute

F. PEDAGOGY/TEACHING METHODS:

Lecture/Discussions: These sessions will discuss the subject matters of the course

Experiential Learning: The sessions will involve hands on training.

Tutorials: Problem solving/case studies/relevant real-life applications/ student

presentations/home assignments/individual or group projects

G. Evaluation:

Theory course

Continuous Assessment Test (CAT): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. These CATs will carry a total weightage of 20%. Depending on the instructor, class test, assignments, case studies, group discussions, report submission and seminar/presentation could also form part of the continuous assessment.

Mid-semester: Total 30 Marks (Theory paper) **End-semester:** Total 50 Marks (Theory paper)

Practical course

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, vivavoce, group/personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination)

H. Structure of the Multidisciplinary Minor Courses:

	Multidisciplinary Minors: Intermediates & Dyestuff Technology									
Semester	Course Code	Subject	Credit s	Hr	s./W	eek	M		or vari	ious
				L	T	P	CA	MS	ES	Total
		Unit Processes: An								
SEM-III	DYT1012	Introduction to Dyestuff	2	1	1	0	20	30	50	100
		Technology								
CEM IV	DVT1022	Physico Chemical Aspects of	2	1	1	0	20	30	50	100
SEM-IV	DYT1022	Colorants 2 1	1 1	0	20	30	30	100		
SEM-V	DYT1032	Technology of Intermediates	4	3	1	0	20	30	50	100
SEIVI-V	D 1 1 1032	& Dyes - I	4	3	1	U	20	30	30	100
		Technology of Intermediates								
SEM-VI	DYT1042	& Dyes - II	2	1	1	0	20	30	50	100
		Estimation of Intermediates &								
SEM-VII	DYP1052		2	0	0	4	-	50	50	100
		Chromatographic Procedures								
SEM-VIII	DYP1062	Synthesis of Intermediates &	2	0	0	4	-	50	50	100
		Dyes								
		TOTAL	14	6	4	8				600

I. Instructors: (Tentative)

Semester	Course Code	Subjects	Faculty
III	DYT1012	Unit Processes: An Introduction to Dyestuff Technology	GSS
IV	DYT1022	Physico Chemical Aspects of Colorants	NS
V	DYT1032	Technology of Intermediates & Dyes - I	SaS
VI	DYT1042	Technology of Intermediates & Dyes - II	NaSa
VII	DYP1052	Estimation of Intermediates & Chromatographic Procedures	GaS
VIII	DYP1062	Synthesis of Intermediates & Dyes	SuS

List of instructors:

NS: N. Sekar

GSS: G.S. Shankarling SuS: Surajit Some SaS: Satyajit Saha

NaSa: Nabanita Sadhukhan GaS: Garimella Subrahmanyam

I. Detailed syllabus:

	Course Code:	Unit Processes: An Introduction to Dyestuff Technology	Cre	edits	= 2
MDM	DYT1012	Unit Processes. An introduction to Dyestum Technology	L	T	P
	Semester: III	Total Contact Hours: 30	1	1	0

List of Prerequisite Courses

HSC (Science) and 1st yr chemical engg/chemical tech

List of Courses where this course will be prerequisite

Physico Chemical Aspects of Colorants, Technology of Intermediates & Dyes – I & II, Estimation of intermediates & chromatographic procedures and synthesis of intermediates & dyes

Description of relevance of this course in the B. Tech. Program

- To make the students understand chemistry of various intermediates used for chemical industry in general and dyestuff industry. In particular, to make them understand the unit processes and their relevance in chemical industries.
- To enable them to analyses and identify the proper synthetic and industrial method and choose accordingly the further processes to make intermediates.
- To develop in them capacity understand proper selection of the chemical processes based on economy and ecological aspects

Sr. No	Course Contents (Topics and Subtopics)	Required Hours
	Chemical feedstock for Dyestuff industry- Basic Raw materials	
1	a. Fossil feedstock	05
1	b. Petroleum and coal based raw materials	0.5
	c. Importance of BTX	
	Chemistry of Benzenoid intermediates-	
2	a. Electrophilic aromatic substitution reaction	05
	b. Orientation in aromatic substitutions	
	Introduction of Functional groups into benzene and technology involved	
	A. Basic Unit processes	
	a. Sulphonation	
	b. Nitration	
	c. Reduction	
	d. Halogenation	
	B.Sulphonation:	
	(i) Reaction phenomenon and conditions	
	(ii) Sulphonating agents and solvents	
	(iii) Work up and Material of construction	
3	(iv) Substitution in benzene and substituted benzene	05
3	(v) Plant and process flow	0.5
	(vi) Safety and process control parameters	
	C. Nitration:	
	(i) Reaction phenomenon and conditions	
	(ii) Nitrating agents and solvents	
	(iii) Work up and Material of construction	
	(iv) Substitution in benzene and substituted benzene	
	(v) Plant and process flow	
	(vi) Safety and process control parameters, Run away reactions	
	D. Reduction:	
	(i) Reducing agents	

	(ii) Reduction methods					
	(iii) Selection of best method for Benzene and substituent					
	(iv) Process and workup					
	(v) Safety aspect					
	E. Halogenation					
	(i) Basic nucleophilic and Electrophilic substitution					
	(ii) Reaction and MOC					
4	Naphthalene Introduction	05				
4	a. Nomenclature, Reactions, Reactivity rules	03				
	Chemistry: Naphthalene intermediates					
5	a. Synthesis of naphthalene	05				
3	b. Substitution pattern	03				
	c. Reactions possible and criterion for the same					
	Technology and Reactions of naphthalene					
	a. Nitration					
6	b. Sulphonation	05				
O	c. Halogenation	03				
	d. Reduction					
	(Key points are similar to benzene)					
	Total	30				
	List of Textbooks/Reference Books					
1	Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993					
2	Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004					
3	Chemistry of Synthetic Dyes, Lubs H. A., NY 1995					
4	Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952					
5	Organic Chemistry, Clayden, Oxford Univ. Press, 2001					
	Course Outcomes (Students will be able to)					
CO1	Understand the basics of dyestuff industry in terms of raw materials utilized (K	2)				
CO2	Apprehend basic benzene and naphthalene chemistry (K2)					
CO3	Analyze the various methods for synthesis of different intermediates used in dyes (K2)					
CO4	<i>Know</i> the various technology and safety aspects for reactions (K2)					
CO5	<i>Identify</i> the substrates and chemistry to synthesize desired product (K2)					

Mapping of Course Outcomes (COs) with Programme								
Specific Outcomes (PSOs)								
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	1	2	2	3	1			
CO2	1	2	2	2	1			
CO3	1	3	3	2	2			
CO4	3	2	3	2	1			
CO5	1	3	2	3	2			
Course	1	3	2	2	1			

MDM	Course Code:	Course Title: Physicochemical Aspects of Colorants	Cre	edits	= 2	Ī
IVIDIVI	DYT1022	Course Title. Thysicochemical Aspects of Colorants	L	T	P	Ī

Semester: IV Total Contact Hours: 30 1 1 0 List of Prerequisite Courses

HSC (Science); Dyestuff Technology: An Introduction

List of courses where this course will be prerequisite

Technology of Intermediates & Dyes – I & II, Estimation of intermediates & chromatographic procedures and Synthesis of intermediates & dyes

Description of relevance of this course in the B. Tech. Program

Students will be able to understand the relation between the chemical structure and the colour.

Sr. No	Course Contents (Topics and Subtopics)	Required Hours
1	Origin of colour in organic molecules. Chromatic and achromatic colors. Red shift, blue shift, hyperchromic effect, solvatochromism, halochromism. Beer-Lambert's law, absorptivity, oscillator strength, , and half band width.	02
2	Early theories of color and constitution - empirical correlations between the chemical structures and their color. Chromophores, auxochromes, distribution rules, chromogens. $n\rightarrow\pi^*$, donor-acceptor, acyclic and cyclic polyene, and cyanine type chromogens	02
3	Resonance theory of color, failures of resonance theory. Steric effects in electronic absorption spectra – some general considerations.	02
4	Perturbational molecular orbital theory: Alternation of the electronegativity of an atom in an even alternant system. Alteration of the electronegativity of an atom in an odd alternate system, Dewar rules. Other empirical approaches to substituent effects, Mesomeric and field effects, Correlation between the frequency shift of a substitution and the Hammett substituent constant	02
5	Simple donor-acceptor chromogens: general characteristics – donor group, unsaturated bridge, acceptor group. The carbonyl acceptor – merocyanine types of compounds.	02
6	Complex donor-acceptor chromogens: classes of complex acceptor residues, donor substituted quinones. Donor substituted azo compounds. Color and constitution of simple azo dyes. Steric effects, and azo-hydrazonetautomerism in azo dyes	02
7	Color and chemical constitution of indigoid dyes. Introduction to cross-conjugated chromophores. Chromogens based on acycyclicand cyclic polyene systems: general characteristics with examples. Cyanine type chromogens.	02
8	Di- and triaryl methane colorants, heterocyclic analogues of di- and triaryl methane colorants. Simple color and constitution relationships.	02
9	Essentials of computational colour chemistry – brief introduction to one particle system. Schrodinger equation. Particle in a box.	02
10	Two particle system, Many particle systems – HartreeFock theory. Basis sets.	02
11	Electronic Structure theory. Molecular orbitals and light absorption. Semiempirical methods,	02
12	Limitations of HartreeFock method, Computational complexities in post HartreeFock (wavefunction based methods).	02
13	Introduction to Density Functional Theory and its application in colour chemistry	02
14	Excited State calculations, Configuration Interaction Singles.	02
15	Time Dependent Density Functional Theory.	02

	Total	30
	List of Textbooks/Reference Books	
1	Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E Krieger Publi	shing
2	Company, New York, 1977	
3	Chemistry of Synthetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952	
4	Chemistry of Synthetic Dyes – Vol III, Venkataraman, K., Academic Press, 197	2
5	Colour and Chemical Constitution of Organic Dyes, Griffiths J., Academic Pres	s, 1976
6	Quantum Chemistry, Chandra A. K., Tata McGraw Hill, 1979	
	Course Outcomes (Students will be able to)	
CO1	Understand the constitution of different colorants (K2)	
CO2	Analysis the correlation of proposed absorption and observed absorption (K2)	
CO3	<i>Identify</i> the colour changes with different classes of molecules (K2)	
CO4	Understand the detail properties of colour changes with respective structural ch	anges (K2)
CO5	Assess the technical importance of colour chemistry (K2)	

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
	PSO1 PSO2 PSO3 PSO4 PSO5							
CO1	1	1	2	2	3			
CO2	1	1	1	1	2			
CO3	1	2	2	2	2			
CO4	1	2	3	3	2			
CO5	2	2	3	3	3			
Course	1	2	2	3	2			

MDM	Course Code: DYT1032	Course Title: Technology of Intermediates & Dyes - I	Credits = 4			
			L	Т	P	
	Semester - V	Total Contacts hours = 60	3	1	0	
		List of Prerequisite Courses				
HSC (S	cience); Dyestuff Technol	ogy: An Introduction				
	List of Co	urses where this course will be prerequisite				
Techno	logy of Intermediates & I	Dyes-II, Estimation of intermediates & chroma	tograp	hic pr	ocedures	
and Syr	thesis of intermediates &	dyes				
	Description of relevance of this course in the B. Tech. Program The subject is intended to make the students learn about the azo chromophore, their synthesis and properties as well as several dyes related to azo chromophore. The course will also focus on discussing the properties of several azo dyes as well as their synthesis routes and their structural importance along with the recent trends in the azo dyes as well as their technical importance					
Sr. No	Course	Contents (Topics and Subtopics)		Requ Hour		

1	Chemistry, Technology & Manufacture of Acid Dyes	12
2	Chemistry, Technology & Manufacture of Direct Dyes	12
3	Chemistry, Technology & Manufacture of Reactive Dyes	12
4	Chemistry, Technology & Manufacture of Basic Dyes	12
5	Drawbacks of Ionic Dyes	12

	List of Textbooks/Reference Books				
1	Chemistry of Synthetic Dyes, Lubs H. A., NY 1995				
2	Chemistry of azo colorants Vol I and Vol II- P. Zollinger				
3	Chemistry of Synthetic Dyes – Vol I, II, IV, VI Venkataraman, K., Academic Press, 1952				
4	Synthesis and Application of Dyes, Rys and Zollinger				
5	The Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger Publishing				
3	Со				
(Industrial Dyes - Chemistry, Properties, Applications, Hunger K. (Ed), Wiley-VCH,				
6	Weinheim, 2003				

	Course Outcomes (Students will be able to)				
CO1	CO1 Explain and define the classes of dyes, substrates (K2)				
CO2	Understand the variety and chemistry of dyes and their application (K2)				
CO3	Overview of recent trends in the field of dyes containing azo groups (K2)				
CO4	Differentiate the techniques of diazotization and variations available (K2)				
CO5	Design the synthesis of novel azo based dyes (K3)				

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1 PSO2 PSO3 PSO4 PSO5								
CO1	1	2	3	2	2				
CO2	1	3	2	3	3				
CO3	1	2	3	2	2				
CO4	1	2	3	3	3				
CO5	1	3	3	3	3				
Course	1	2	3	3	3				

^{3,} Strong Contribution; 2, Moderate Contribution; 1, Low Contribution

	Course Code:	Course Title: Technology of Intermediates & Dyes - II	Cre	edits	= 2
MDM	DYT1042		L	T	P
	Semester: VI	Total Contact Hours: 30	1	1	0
		List of Prerequisite Courses			
HSC (So	cience); Dyestuff T	Technology: An Introduction; Technology of Intermediates & I)yes ·	- I	
	List	t of Courses where this course will be prerequisite			
Estimati	on of intermediate	s & chromatographic procedures and Synthesis of intermediate	es &	dyes	
	Descript	tion of relevance of this course in the B. Tech. Program			
The stud	lents will be introd	luced to the different chemical and technological aspects of no	n-ion	ic dy	es
Sr. No	Sr. No Course Contents (Topics and Subtopics)				d
1	Chemistry & Tec	hnology of Disperse Dyes			

2	Chemistry & Technology of Oxidation Colorants	06			
3	Chemistry & Technology of Vat Dyes	06			
4	Chemistry & Technology of Sulfur Dyes 06				
5	Drawbacks of Non-ionic dyes	06			
	Total	30			
	List of Textbooks/Reference Books				
1	Industrial Organic Chemistry, Weissermal K., Arpe H. J., VCH, Weinheim, 199	93			
2	Organic Chemistry, Clayden, Greeves, Warren, Oxford University Press, 2001				
3	Chemistry of Synthetic Dyes – Vol I, II, IV, VI Venkataraman, K., Academic Pr	ress, 1952			
4	Synthesis and Application of Dyes, Rys and Zollinger				
5	The Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger Publishi				
3	Со				
6	Industrial Dyes - Chemistry, Properties, Applications, Hunger K. (Ed),	Wiley-VCH,			
O	Weinheim, 2003				
	Course Outcomes (Students will be able to)				
CO1	Define and state different terminologies related to non-ionic dyes				
CO2	Describe and explain the chemistry and technology of non-ionic dyes				
CO3	Applications of non-ionic dyes				
CO4	Outline the synthesis & technology of various commercially important product	S			
CO5	Develop methods for the synthesis of various intermediates				

Mappi	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1 PSO2 PSO3 PSO4 PSO5							
CO1	1	1	2	3	1			
CO2	1	1	2	3	2			
CO3	1	2	3	2	2			
CO4	1	2	3	3	2			
CO5	1	3	3	3	3			
Course	1	1	2	3	2			

	Course Code:	Course Title:	Cı	redits	s=2	
MDM	Estimation of Intermediates & Chromatographic		L		P	
	Semester: VII	Total Contact Hours: 60	0	0	4	
		List of Prerequisite Courses				
HSC (Sc	eience); Physico C	hemical Aspects of Colorants				
	Li	st of Courses where this course will be prerequisite				
Synthesi	s of intermediates	& dyes				
	Descrip	otion of relevance of this course in the B. Tech. Program				
Students	Students will understand the significance of uses of these materials & procedures in the chemical industry					
Sr. No	r. No Course Contents (Topics and Subtopics)			Required Hours		

	a) Estimation by volumetric titrations of inorganic raw materials such as	10				
	i) sodium sulphite					
	ii) sodium sulphide					
	iii) zinc dust					
	b) Analyze the purity of primary aromatic amines such as					
	i) aniline	10				
	ii) sulphanilic acid					
	iii) chloroanilines					
1	c) Estimation of azo coupling compounds by azo coupling method					
	d) Estimation of azo dyes by TiCl ₃ and titrations such as	10				
	i) Sunset Yellow					
	ii) Ponceau 4R	15				
	iii) Orange II					
	iv) Tartrazine					
	e) TLC technique – preparation of TLC plate, finding rf value, separation of a					
	mixture of two coloured organic compounds, detection of colourless					
	compounds, separation of a mixture of a coloured and colourless compound	15				
	and two colourless compounds Total	60				
	List of Textbooks/Reference Books	00				
1	Vogel's textbook of quantitative chemical analysis, G. H. JEFFERY J. MENDHAM R C. DENNEY, Longman Scientific & Technical, 5 th Edition	BASSETT J.				
2	Chromatography: Basic principles, Sample preparations and Related Me Lundanes, Leon Reubsaet, Tyge Greibrokk	thods by Elsa				
	Course Outcomes (Students will be able to)					
CO1	Estimate the amount of inorganic and organic compounds present (K4)					
CO2	Analyse the purity of the amines used for dye synthesis (K3)					
CO3	Check the presence of coupling components for dye synthesis (K3)					
	Understand the principle behind chromatographic techniques. TLC pener and column					
CO4	Understand the principle behind chromatographic techniques – ILC, paper and	i column – useu				
CO4	for the separation of organic compounds (K2)	r column – used				

Mapping of Course Outcomes (COs) with Programme									
	Specific Outcomes (PSOs)								
	PSO1 PSO2 PSO3 PSO4 PSO5								
CO1	2	3	2	2	2				
CO2	1	3	2	3	2				
CO3	1	2	3	3	2				
CO4	1	2	3	2	1				
CO5	1	3	3	3	3				
Course	1	3	3	3	2				

^{3,} Strong Contribution; 2, Moderate Contribution; 1, Low Contribution

	Course Code:	Course Title:	Credits = 2			
MDM	DYP1062	Synthesis of Intermediates & Dyes	L	T	P	
	Semester: VIII	Total Contact Hours: 60	0	0	4	
		List of Prerequisite Courses				
	`	ience); Technology of Intermediates & Dyes – I & II				
N T	List o	f courses where this course will be prerequisite				
None	Description	of volumes of this course in the D. Took Ducamen				
a 1		n of relevance of this course in the B. Tech. Program				
Students	s will understand the significar	nce of uses of these inorganic raw materials in the chemical industry	n.	•	1	
	Cours	se Contents (Topics and Subtopics)		quir [our		
1				60		
	Preparation of any unit pro	ocesses like		30		
	i) nitration					
	ii) sulphonation iii) ammonolysis					
	iv) reduction					
	v) oxidation					
	vi) halogenation etc. on be	enzene, naphthalene and anthraquinone intermediates				
	Preparation of some dyes	such as:		15		
	i) Acid dyes					
	ii) Direct dyes					
	iii) Reactive dyes					
	iv) Basic Dyes					
	a. Diazotization and coupl	ing of any azo dye and their applications		15		
		Total		60		
		List of Textbooks/Reference Books				
1		sses of Dye Chemistry by Hans Eduard Fierz-David And Louis Bl	angey	7		
	Co	urse Outcomes (Students will be able to)				
CO1	Ability to synthesize diffe	rent intermediates, and ionic & non-ionic dyes (K3)				
CO2		the intermediates, ionic & non-ionic dyes (K3)				
CO3	Differentiate the methods	of synthesis of different classes of dyes (K3)				
CO4	Design the synthesis of dy	res (K3)				
CO5	Develop practical skills in	the synthesis, separation and isolation of the ionic & non-ionic dy	es (K	(4)		

Mapping of Course Outcomes (COs) with Programme								
Specific Outcomes (PSOs)								
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	1	2	3	3	3			
CO2	1	3	3	3	3			
CO3	1	1	2	2	2			

CO4	1	2	2	3	3
CO5	1	3	3	3	3
Course	1	3	3	3	3