# Syllabus for Multi-Disciplinary Minor (MDM) Degree

In

### **Polymer Engineering and Technology**

## Under the National Education Policy-NEP 2020 in

(2023-2024)



Offered by DEPARTMENT OF POLYMER AND SURFACE ENGINEERING

Institute of Chemical Technology (University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA), www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

#### A. PREAMBLE

Welcome to the Department of Polymer and Surface Engineering, where innovation meets material science. Our commitment to advancing the field is unwavering, fostering a dynamic environment for research, learning, and discovery. Explore the intricate world of polymers and surfaces as we embark on a journey to shape the future of materials engineering.

Within the Department of Polymer and Surface Engineering, we delve into the fascinating realm of polymers, examining their diverse applications and manipulating their properties to meet the evolving needs of technology and industry. Our focus extends beyond conventional materials as we explore cutting-edge advancements in polymer science.

The department also places a significant emphasis on surface engineering, a crucial discipline that addresses the interface between materials and their environments. Through meticulous research and experimentation, we unravel the complexities of surface interactions, paving the way for innovative solutions in areas such as adhesion, coatings, and biomaterial interfaces.

Our faculty comprises distinguished experts and researchers, dedicated to pushing the boundaries of knowledge in polymer and surface engineering. Students within our programs benefit from a curriculum that blends theoretical foundations with hands-on experiences, preparing them for careers at the forefront of materials innovation.

Collaboration is at the heart of our ethos, as we engage with industry partners and interdisciplinary teams to tackle real-world challenges. Whether you are a student eager to explore the intricacies of materials or a researcher seeking a vibrant academic community, the Department of Polymer and Surface Engineering welcomes you to join us on this journey of discovery and transformation. The design, development, and production of polymer-based goods are the main topics of the technical course multidisciplinary minor degree in Polymer Engineering and Technology. It addresses a broad variety of subjects, including material science, polymer chemistry, processing, and applications of polymers in many sectors. The study of the synthesis, processing, and testing of various polymers and polymer products is the focus of polymer technology. Polymers contain a wide range of materials, such as plastics, rubber, fibers, paints, adhesives, sealants, varnishes, and many more. These days, these materials rule the high-tech period completely, and life would be impossible without these essentials.

#### A. Programme Specific Outcomes (PSOs)

#### Multidisciplinary Minor Degree in Polymer Engineering and Technology

| PSO1 | <b>Polymer Classification and Analysis</b> : Able to analyze and classify different type of polymers and understanding the structure and properties of polymers used in various applications.                                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO2 | <b>Polymer Processing Techniques</b> : Knowledge of polymer processing techniques, such as extrusion, injection molding, and blow molding. Understanding the effects of processing on the final properties of polymer materials. |
| PSO3 | <b>Polymer Modification and Functionalization</b> : Ability to modify and functionalize polymers to enhance their properties and analyze the chemical reactions and methods for introducing desired functionalities.             |
| PSO4 | <b>Polymer Testing and Performance Assessment</b> : Ability to measure and quantify polymer performance attributes such as mechanical strength, thermal stability, and chemical resistance.                                      |
| PSO5 | <b>Development of Sustainable Polymer Materials</b> : Capability to create sustainable, biodegradable polymer materials and other eco-friendly alternatives.                                                                     |

#### **B.** Recommended batch size: Minimum 15; Maximum 35

#### **C.** Duration: Three years

#### **D.** Eligibility criteria:

First and Second semester CGPA. If second semester CGPA is not available, then first semester CGPA and students HSC CET/ JEE percentile. In addition to this preference will be given to students based on their score in the first-year courses such as Chemistry theory and practical courses.

E. <u>Prerequisites:</u> 12<sup>th</sup> Standard Physics, Chemistry and Maths / JEE

#### F. <u>Pedagogy/ Teaching method:</u>

- Lecture/Discussions: The course material will be covered in these sessions.
- Experiential Learning: The sessions will involve demonstrating some machines used for Polymer processing as well as the characterization techniques.
- Tutorials: Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects

#### **G.** Method of Evaluation/Delivery:

| Subject<br>CodeSemesterCourse | Method of Evaluation | Methods of Delivery |
|-------------------------------|----------------------|---------------------|
|-------------------------------|----------------------|---------------------|

| PST1101 | III  | Polymer Science<br>& Technology I                           | <ul> <li>Mid-Semester Examination</li> <li>End-Semester Examination</li> <li>Four class tests</li> <li>Assignments</li> <li>Seminar/ Presentation</li> <li>Report submission on case studies</li> </ul> | <ul> <li>Tutorials</li> </ul> |
|---------|------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| PET1201 | IV   | Introduction to<br>Polymer<br>Engineering and<br>Technology | <ul> <li>Mid-Semester Examination</li> <li>End-Semester Examination</li> <li>Four class tests</li> <li>Assignments</li> <li>Seminar/ Presentation</li> <li>Report submission on case studies</li> </ul> | <ul> <li>Tutorials</li> </ul> |
| PST1303 | V    | Polymer<br>Chemistry and<br>Technology                      | <ul> <li>Mid-Semester Examination</li> <li>End-Semester Examination</li> <li>Four class tests</li> <li>Assignments</li> <li>Seminar/ Presentation</li> <li>Report submission on case studies</li> </ul> | <ul> <li>Tutomals</li> </ul>  |
| PST1611 | VI   | Technology of<br>Thermoplastic<br>Polymers                  | <ul> <li>Mid-Semester Examination</li> <li>End-Semester Examination</li> <li>Four class tests</li> <li>Assignments</li> <li>Seminar/ Presentation</li> <li>Report submission on case studies</li> </ul> |                               |
| PET1703 | VII  | Additives and<br>compounding of<br>Polymers                 | <ul> <li>Mid-Semester Examination</li> <li>End-Semester Examination</li> <li>Four class tests</li> <li>Assignments</li> <li>Seminar/ Presentation</li> <li>Report submission on case studies</li> </ul> |                               |
| PET1816 | VIII | Polymer<br>Processing                                       | <ul> <li>Mid-Semester Examination</li> <li>End-Semester Examination</li> <li>Four class tests</li> <li>Assignments</li> <li>Seminar/ Presentation</li> <li>Report submission on case studies</li> </ul> | <ul> <li>Tutorials</li> </ul> |

### H. <u>Structure of MDM Course:</u>

| Semester | Course  | Sech in star                                             | Credit | Hrs/Week |   |   | Marks for various<br>Exams |    |    |           |
|----------|---------|----------------------------------------------------------|--------|----------|---|---|----------------------------|----|----|-----------|
|          | Code    | Subjects                                                 | S      | L        | Т | Р | CA                         | MS | ES | Tota<br>l |
| III      | PST1101 | Polymer Science &<br>Technology I                        | 2      | 1        | 1 | 0 | 20                         | 30 | 50 | 100       |
| IV       | PET1201 | Introduction to<br>Polymer Engineering<br>and Technology | 2      | 1        | 1 | 0 | 20                         | 30 | 50 | 100       |
| V        | PST1303 | Polymer Chemistry<br>and Technology                      | 4      | 3        | 1 | 0 | 20                         | 30 | 50 | 100       |
| VI       | PST1611 | Technology of<br>Thermoplastic<br>Polymers               | 2      | 1        | 1 | 0 | 20                         | 30 | 50 | 100       |
| VII      | PET1703 | Additives and<br>compounding of<br>Polymers              | 2      | 1        | 1 | 0 | 20                         | 30 | 50 | 100       |
| VIII     | PET1816 | Polymer Processing                                       | 2      | 1        | 1 | 0 | 20                         | 30 | 50 | 100       |
|          |         | TOTAL:                                                   | 14     | 8        | 6 | 0 |                            |    |    | 600       |

### I. <u>Instructors</u> (Tentative):

| Semester | Course Code | Subjects                                              | Faculty  |
|----------|-------------|-------------------------------------------------------|----------|
| III      | PST1101     | Polymer Science & Technology I                        | APM      |
| IV       | PET1201     | Introduction to Polymer Engineering and<br>Technology | ARR      |
| V        | PST1303     | Polymer Chemistry and Technology                      | VF (MAS) |
| VI       | PST1611     | Technology of Thermoplastic Polymers                  | VF       |
| VII      | PET1703     | Additives and compounding of Polymers                 | STM/ VF  |
| VIII     | PET1816     | Polymer Processing                                    | ARR      |

#### J. Detailed Syllabus:

| MDM       | Course Code:                              | :               | Cour                  | se Title:         |               | С        | redits  | s = 2   |
|-----------|-------------------------------------------|-----------------|-----------------------|-------------------|---------------|----------|---------|---------|
| MDM-<br>I | PST1101                                   | I               | Polymer Science       |                   | gy I          | L        | Т       | Р       |
| 1         | Semester: III                             |                 |                       | act Hours: 30     |               | 1        | 1       | 0       |
|           |                                           | List o          | of Prerequisite       | Courses           |               |          |         |         |
| HSC (Sc   | ,                                         |                 |                       |                   |               |          |         |         |
|           |                                           |                 | here this cours       |                   |               |          |         |         |
|           | tion to Polymer<br>ogy of Thermopla<br>ng |                 |                       |                   |               |          |         |         |
|           |                                           | n of relevand   | ce of this cours      | e in the MDM      | programm      | e        |         |         |
| To train  | the students with                         |                 |                       |                   |               |          | and (   | Coating |
| -         | Manufacturing Ch<br>s and their handling  |                 | perties applicat      | ions of monom     | ners for syn  | thetic   | and     | natural |
| poryment  | -                                         | -               | T                     | - <b>49</b> )     |               |          | Req     | uired   |
|           | Cours                                     | e Contents (    | <b>Fopics and Sul</b> | otopics)          |               |          |         | ours    |
| 1         | Overview of Pol                           | ymer and Co     | oating Industry,      | Historical dev    | velopments    | in       |         | 5       |
| 1         | polymeric materia                         | als with intro  | duction and clas      | ssification of po | olymers       |          |         | J       |
|           | Basic concepts                            | & definition    | ns: monomer           | & functionali     | ty, oligome   | er,      |         |         |
| 2         | polymer, repeatin                         | ng unites, deg  | ree of polymer        | ization, molecu   | ular weight   | &        | 1       | 5       |
| 2         | molecular weight                          | t distribution  | commodity eng         | gineering polyr   | ners special  | ty       | 15      |         |
|           | polymer definition                        | ns              |                       |                   |               |          |         |         |
|           | Manufacturing C                           | hemistry, pro   | operties applica      | tions of raw r    | naterial for  |          |         |         |
| 3         | synthetic polymer                         | rs like Ethyle  | ene, propylene,       | butadiene, vin    | yl chloride,  |          | 1       | 0       |
|           | vinylidene dichlor                        | ride, styrene e | etc.                  |                   |               |          |         |         |
|           |                                           | -               |                       |                   | Tot           | al       | 3       | 80      |
|           |                                           | List of T       | 'extbooks/Refe        | rence Books       |               |          |         |         |
| 1         | Raw Materials for                         | r Industrial Po | olymers by H U        | Irich, Hanser P   | ublication19  | 989.     |         |         |
| 2         | Principles of Poly                        |                 |                       |                   | a Publishing  | g Hou    | ise 20  | 02.     |
| 3         | Polymer Science                           |                 |                       |                   |               |          |         |         |
| 4         | Encyclopedia of I                         |                 |                       |                   |               |          |         |         |
| 5         | Encyclopedia of I                         |                 |                       |                   |               |          |         |         |
| 6<br>7    | Petrochemicals: T                         |                 |                       | •                 | •             |          |         | 88.     |
| 1         | Polymer Chemist                           |                 | mes (Students         |                   |               | , 199    | 0       |         |
|           | Identify the basic                        |                 |                       |                   |               | nd the   | eir nro | nerties |
| CO1       | (K1)                                      | concept of i    | monomer, pory         | mer und repeat    | ing units u   |          | in pro  | perties |
| CO2       | Define the physic                         | al and chemio   | cal properties of     | f raw materials   | (K1)          |          |         |         |
| CO3       | Describe the man                          | ufacturing ro   | utes and impuri       | ties in monome    | ers and raw 1 |          |         |         |
| CO4       | Demonstrate play<br>manufacturing of      | n about eva     | luation of raw        |                   |               |          |         |         |
| N         | Mapping of Course                         |                 |                       | gramme speci      | fic Outcom    | es (P    | SOs)    |         |
|           | Ĭ                                         | PSO1            | PSO2                  | PSO3              | PSO4          | Ì        |         | 05      |
| СО        | 01 K1                                     | 3               | 3                     | 2                 | 3             |          |         | 3       |
| СО        | 2 K1                                      | 3               | 3                     | 1                 | 2             |          |         | 1       |
| СО        |                                           | 3               | 2                     | 1                 | 3             |          |         | 2       |
| CO        | 04 K2                                     | 2               | 3                     | 3                 | 2             |          |         | 3       |
| Cour      | rse K2                                    | 3               | 2                     | 3                 | 3             |          |         | 3       |
|           | trong Contribution                        |                 | <u> </u>              |                   |               | <u> </u> |         |         |

| MDM-      | Course Code:<br>PET1201                         | Course Title:                                                             | Cr      | redits        | s =  |  |  |  |  |
|-----------|-------------------------------------------------|---------------------------------------------------------------------------|---------|---------------|------|--|--|--|--|
| II        | 1 1 1 2 0 1                                     | Introduction to polymer engineering and technology                        | L       | T             | Р    |  |  |  |  |
|           | Semester: IV                                    | Total Contact Hours: 30                                                   | 1       | 1             | 0    |  |  |  |  |
|           |                                                 | List of Prerequisite Courses                                              |         |               |      |  |  |  |  |
| HSC (Sci  | HSC (Science), Polymer science and technology I |                                                                           |         |               |      |  |  |  |  |
|           |                                                 | of Courses where this course will be prerequisite                         |         |               |      |  |  |  |  |
|           | ding of Polymers,                               | Technology, Technology of Thermoplastic Polymers, A<br>Polymer Processing | dditiv  | /es           | and  |  |  |  |  |
|           |                                                 | on of relevance of this course in the MDM programme                       |         |               |      |  |  |  |  |
|           |                                                 | Polymer Engineering and Technology" is highly relevant in t               | -       |               |      |  |  |  |  |
|           | -                                               | of polymers in various industries. Polymers have become integ             | -       |               |      |  |  |  |  |
| -         |                                                 | g packaging, automotive, electronics, medical devices, and                |         | -             |      |  |  |  |  |
| Understar | nding the propertie                             | es, processing methods, and applications of polymers is crucia            | l for   | aspir         | ing  |  |  |  |  |
| engineers | and technologist                                | is to design innovative products, reduce production costs,                | and     | addr          | ress |  |  |  |  |
| environm  | ental challenges a                              | ssociated with polymer waste and disposal. Additionally, with             | the     | grow          | ing  |  |  |  |  |
| demand f  | for sustainable m                               | aterials, this course equips students with knowledge about                | eco-    | frien         | ıdly |  |  |  |  |
| polymers  | and their potential                             | l in future industries.                                                   |         |               |      |  |  |  |  |
|           |                                                 | Course Contents (Topics and Subtopics)                                    |         | equir<br>Iour |      |  |  |  |  |
| 1         | Introduction to m                               | naterials and polymer                                                     |         | 6             |      |  |  |  |  |
| 2         | Polymer industry                                |                                                                           |         | 6             |      |  |  |  |  |
| 3         | Various types of                                | polymers                                                                  |         | 6             |      |  |  |  |  |
| 4         | Introduction to p                               | olymer processing                                                         |         | 6             |      |  |  |  |  |
| 5         | • •                                             | ions of polymers; Environmental and sustainability aspects                |         | 6             |      |  |  |  |  |
|           | related to the use                              | of polymers in industry Total                                             |         | 30            |      |  |  |  |  |
|           |                                                 | List of Textbooks/Reference Books                                         |         | 30            |      |  |  |  |  |
| 1         | Polymer chemist                                 | ry- Charles E Carraher Jr., 2003                                          |         |               |      |  |  |  |  |
| 2         |                                                 | olymer Science- Robert J. Young, Peter A. Lovell, 2011                    |         |               |      |  |  |  |  |
| 3         |                                                 | and Processing- A. Brentstrong, 2006                                      |         |               |      |  |  |  |  |
|           |                                                 | Course Outcomes (Students will be able to)                                |         |               |      |  |  |  |  |
|           |                                                 | amental principles of polymer engineering and technology, i               | inclu   | ding          | the  |  |  |  |  |
| CO1       | molecular struct                                | ure and properties of various types of polymers, and their ap             | oplica  | ations        | s in |  |  |  |  |
|           | different industri                              | es. (K1)                                                                  | _       |               |      |  |  |  |  |
|           | Match the manu                                  | facturing processes involved in the production of polymers                | and     | anal          | yze  |  |  |  |  |
| CO2       | their impact on the                             | he final properties of the materials. (K1)                                |         |               | -    |  |  |  |  |
|           | -                                               | derstand the diverse applications of polymers in everyday                 | produ   | icts          | and  |  |  |  |  |
| CO3       | •                                               | logies and evaluate their advantages over traditional materials.          |         |               |      |  |  |  |  |
|           | Interpret and class                             | ssify different types of polymers based on their chemical struct          | ture,   | phys          | ical |  |  |  |  |
| CO4       | properties, and p (K2)                          | rocessing techniques to determine their suitability for specific          | appl    | icatio        | ons. |  |  |  |  |
| <u> </u>  |                                                 | environmental and sustainability aspects related to the use of            | polv    | mer           | s in |  |  |  |  |
| CO5       |                                                 | luate potential solutions for mitigating their impact on the ecos         | · ·     |               |      |  |  |  |  |
|           | une o va                                        | r                                                                         | J - 001 | (             | -/   |  |  |  |  |

| Mapping of Course Outcomes (COs) with Programme specific Outcomes (PSOs) |    |      |      |      |      |      |  |  |
|--------------------------------------------------------------------------|----|------|------|------|------|------|--|--|
|                                                                          |    | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |  |
| C01                                                                      | K1 | 1    | 3    | 3    | 2    | 2    |  |  |
| CO2                                                                      | K1 | 3    | 3    | 2    | 2    | 1    |  |  |
| CO3                                                                      | K1 | 3    | 2    | 2    | 3    | 3    |  |  |
| CO4                                                                      | K2 | 2    | 2    | 1    | 3    | 3    |  |  |
| CO5                                                                      | K2 | 3    | 3    | 2    | 2    | 3    |  |  |
| Course                                                                   | K2 | 3    | 3    | 3    | 2    | 3    |  |  |

|                                                                                    | VIDVI-III * POWMER C DEMISIRY & LECONOLOGY            |                                                                                                                                                     |        |              |        |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--------|--|--|
| MDM                                                                                |                                                       |                                                                                                                                                     |        |              |        |  |  |
| -III                                                                               | Semester: V                                           | Total Contact Hours: 60                                                                                                                             | L<br>3 | Т<br>1       | P<br>0 |  |  |
|                                                                                    | Semester. V                                           | List of Prerequisite Courses                                                                                                                        | 5      | 1            | U      |  |  |
| Polymer Science & Technology I, Introduction to Polymer Engineering and Technology |                                                       |                                                                                                                                                     |        |              |        |  |  |
|                                                                                    |                                                       | t of Courses where this course will be prerequisite                                                                                                 |        |              |        |  |  |
| Technol<br>Processi                                                                | ing                                                   | plastic Polymers, Additives and compounding of Polyme                                                                                               | ers, 1 | Polyı        | ner    |  |  |
|                                                                                    |                                                       | ion of relevance of this course in the MDM programme                                                                                                |        |              |        |  |  |
|                                                                                    | h students basic clearn other subject                 | oncepts of Polymer Chemistry & Technology so that they cas                                                                                          |        | Ũ            |        |  |  |
|                                                                                    |                                                       | <b>Course Contents (Topics and Subtopics)</b>                                                                                                       |        | quir<br>Iour |        |  |  |
| 1                                                                                  | engineering an<br>Polymerizability<br>homochain/heter | . Crystalline/amorphous, step growth /chain growth, ochain, crystalline/amorphous polymers, confirmation etc.                                       |        | 5            |        |  |  |
|                                                                                    |                                                       | mers, graft, block alt, ladder, etc. & nomenclature,                                                                                                |        | 5            |        |  |  |
| 2                                                                                  | configuration: ci                                     | s/trans; tacticity, branched/ crosslinked,                                                                                                          |        |              |        |  |  |
|                                                                                    | Addition and cor                                      | ndensation polymerization mechanism                                                                                                                 |        |              |        |  |  |
| 3                                                                                  | · · ·                                                 | olymerization: bulk, solution, suspension, emulsion, plasma                                                                                         |        | 5            |        |  |  |
| -                                                                                  | etc.                                                  | A so d'ite distribution determination model de CMR de M-s 10                                                                                        |        | 5            |        |  |  |
| 4                                                                                  | MWD, Poly disp                                        | at and its distribution determination methods (Mn to Mz+1& ersity Index), calculations & problems based on it,                                      |        |              |        |  |  |
| 5                                                                                  |                                                       | on for condensation polymers & conditions to get high or<br>r weight, calculations & problems based on it.                                          |        | 5            |        |  |  |
| 6                                                                                  |                                                       | eratures such as Tg, Tc, Tm, their relevance to properties factors affecting them                                                                   |        | 5            |        |  |  |
| 7                                                                                  |                                                       | eter, solution properties, temperature, good/ bad solvent.                                                                                          |        | 5            |        |  |  |
| 8                                                                                  | examples & the                                        | ng systems such as free radical polymerization, redox with<br>ir use choice of initiator half-life period. Measurement of<br>y by different method  |        | 5            |        |  |  |
|                                                                                    |                                                       | n, reactivity ratios & kinetics of copolymerization                                                                                                 |        | 5            |        |  |  |
|                                                                                    |                                                       | position equation). Polymerization: Probability and statistics-<br>condensation, chain polymerization, branching and gelation.<br>ence distribution |        |              |        |  |  |
| 9                                                                                  |                                                       | al concepts of polymer solutions and melts, Newtonian / non dependent/ independent                                                                  |        | 5            |        |  |  |
| 10                                                                                 |                                                       | ons: Typical agitation system, dissolution, suspension,                                                                                             |        | 5            |        |  |  |

|     | removal of water condensates high speed (low viscosity) stirring, low speed<br>(high viscosity) stirring selection criterion, power consumption. Heat transfer<br>characteristics, powder mixing times etc |               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 11  | Commercial applicability of Polymers as Plastics, paints, rubbers, fibres & adhesives                                                                                                                      | 5             |
|     | Total                                                                                                                                                                                                      | 60            |
|     | List of Textbooks/Reference Books                                                                                                                                                                          |               |
| 1   | Principles of Polymer Science, Bahadur and Sastry, Narosa Publishing House 2                                                                                                                               | 002           |
| 2   | Polymer Science, Gowarikar, Johan wiley and Sons 1986                                                                                                                                                      |               |
| 3   | Encyclopedia of Polymer Science and Technology, Johan Wiley and Sons, Inc                                                                                                                                  | 1965          |
| 4   | Encyclopedia of Polymer Science and Engineering, Johan Wiley and Sons, Inc                                                                                                                                 | 1988          |
| 5   | Polymer Chemistry, Malcolm P. Stevens, Oxford University Press, Inc, 1990.                                                                                                                                 |               |
| 6   | Text book of polymer Science, Billmeyer, John Wiley ans Sons 1984.                                                                                                                                         |               |
| 7   | Principles of Polymer Systems, Rodriguez, Hemisphere Publishing Corpn, 1982                                                                                                                                |               |
| 8   | Introduction to Polymer Science and Technology, H. S. Kaufman and J. J. Falc<br>Inter science Publication, 1977                                                                                            | etta, Wiley – |
| 9   | Principles of polymerization, G. Odian, Wiley – Inter science (1981)                                                                                                                                       |               |
|     | Course Outcomes (Students will be able to)                                                                                                                                                                 |               |
| CO1 | Define the basics of polymers and various terminologies. (K1)                                                                                                                                              |               |
| CO2 | Calculate the problems regarding Calculation of MW - MWD & its relevance (                                                                                                                                 | K3)           |
| CO3 | Interpret the basics of rheology & its effect on processing & application, mixin                                                                                                                           | g operations. |
| 005 | (K2)                                                                                                                                                                                                       |               |
| CO4 | Differentiate various techniques of polymerization & initiating systems (K2)                                                                                                                               |               |
| CO5 | Classify the various types of copolymerization & their commercial applications                                                                                                                             | . (K2)        |

| Mapping of Course Outcomes (COs) with Programme specific Outcomes (PSOs) |    |      |      |      |      |      |  |  |
|--------------------------------------------------------------------------|----|------|------|------|------|------|--|--|
|                                                                          |    | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |  |
| CO1                                                                      | K1 | 3    | 2    | 3    | 2    | 1    |  |  |
| CO2                                                                      | K3 | 3    | 3    | 2    | 3    | 2    |  |  |
| CO3                                                                      | K2 | 2    | 2    | 3    | 2    | 1    |  |  |
| CO4                                                                      | K2 | 3    | 3    | 2    | 3    | 2    |  |  |
| CO5                                                                      | K2 | 3    | 3    | 2    | 3    | 2    |  |  |
| Course                                                                   | K3 | 3    | 3    | 2    | 3    | 2    |  |  |

| MDM      | Course Code:Course Title:PST1611Technology of Thermoplastic Polymers                               |                                                                   |       | Credits = 2 |     |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|-------------|-----|--|--|--|--|
| -IV      | PS11611                                                                                            | Technology of Thermoplastic Polymers                              | L     | Т           | Р   |  |  |  |  |
|          | Semester: VI                                                                                       |                                                                   |       |             |     |  |  |  |  |
|          |                                                                                                    | List of Prerequisite Courses                                      |       |             |     |  |  |  |  |
| Polymer  | Science & Tech                                                                                     | nology I, Introduction to Polymer Engineering and Technology      | gy, I | Polyr       | ner |  |  |  |  |
| Chemist  | ry and Technolog                                                                                   | у                                                                 |       |             |     |  |  |  |  |
|          | Lis                                                                                                | t of Courses where this course will be prerequisite               |       |             |     |  |  |  |  |
| Additive | es and compoundi                                                                                   | ng of Polymers, Polymer Processing                                |       |             |     |  |  |  |  |
|          | Descript                                                                                           | ion of relevance of this course in the MDM programme              |       |             |     |  |  |  |  |
| To give  | an understanding                                                                                   | of industrial manufacturing processes, properties and application | ation | s, an       | d   |  |  |  |  |
| processi | processing of various types of thermoplastic polymers. Knowledge of the subject will help students |                                                                   |       |             |     |  |  |  |  |
| conduct  | research and                                                                                       | development in polymer blends polymer nanocomposite               | s, co | oatin       | g   |  |  |  |  |
| formula  | tion development,                                                                                  | Fiber reinforces composites, Polymer processing, Rheology o       | f pol | ymer        | S   |  |  |  |  |

|     | Course Contents (Topics and Subtopics)                                                                                                                                          | Required<br>Hours |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
|     | Industrial Manufacturing processes, properties and applications, processing                                                                                                     |                   |  |  |  |  |  |
| 1   | environmental concerns of various types of polymers polyolefins like LDPE<br>HDPE etc.                                                                                          | 4                 |  |  |  |  |  |
| 2   | Polypropylene and copolymer of PP Plastomers, The copolymer of5polyolefines like EVA LLDPE EAA etc.5                                                                            |                   |  |  |  |  |  |
| 3   | Polyvinyl chloride & its copolymers Compounding of PVC, Polystyrene, HIPS, SAN                                                                                                  | 4                 |  |  |  |  |  |
| 4   | ABS, important copolymers of styrene maleic anhydride and styrene acrylic copolymers, toughening mechanism of impact-modified plastics.                                         | 5                 |  |  |  |  |  |
| 5   | Saturated Polyesters such as PET, PBT, PTT                                                                                                                                      | 3                 |  |  |  |  |  |
| 6   | Polycarbonates, Polyacetals, Polyamide- Nylon 6, Nylon 6, Nylon 11 etc.,<br>aromatic polyamide such as Kevlar etc.                                                              | 3                 |  |  |  |  |  |
| 7   | Acrylic polymers & copolymers, Polyacrylamide, PMMA, Polyacrylonitrile etc.                                                                                                     |                   |  |  |  |  |  |
| 8   | Thermoplastic PU, Polyvinyl acetate, Polyvinyl alcohol, etc.                                                                                                                    | 3                 |  |  |  |  |  |
|     | Total                                                                                                                                                                           | 30                |  |  |  |  |  |
|     | List of Textbooks/Reference Books                                                                                                                                               |                   |  |  |  |  |  |
|     | Plastics Materials, 7th Edition by John Brydson, Elsevier 1999.                                                                                                                 |                   |  |  |  |  |  |
|     | Text book of polymer Science by Bill Meyer, John Wiley and Sons 1984                                                                                                            |                   |  |  |  |  |  |
|     | Principles of Polymer Science, by Bahadur and Sastry, Narosa Publishing House 2002.                                                                                             |                   |  |  |  |  |  |
|     | Polymer Science by Gowarikar, John Wiley and Sons 1986.                                                                                                                         |                   |  |  |  |  |  |
|     | Encyclopedia of Polymer Science and Technology, Johan Wiley and Sons, Inc.                                                                                                      | 1965.             |  |  |  |  |  |
|     | Encyclopedia of Polymer Science and Engineering, Johan Wiley and Sons, Incl                                                                                                     |                   |  |  |  |  |  |
|     | Handbook of Thermoplastics, Second Edition Olagoke Olabisiby CRC Press20                                                                                                        |                   |  |  |  |  |  |
|     | Thermoplastic Materials by Ibeh, Christopher C, Taylor Francis Inc 2013                                                                                                         | -                 |  |  |  |  |  |
|     | Introduction to Polymer Science and Technology by H. S. Kaufman and J Wiley Inter science Publication, 1977                                                                     | . J. Falcetta     |  |  |  |  |  |
|     | Handbook of Polyethylene, A. J. Peacock, Marcel Dakker Inc,2000                                                                                                                 |                   |  |  |  |  |  |
|     | PVC Technology, A. S. Athalye and Prakash Trivedi, Multi-Tech Publishing C                                                                                                      |                   |  |  |  |  |  |
|     | Engineering Thermoplastics Polycarbonates Polyacetals Cellulose Esters, L.<br>Hanser Publishers, 1996.                                                                          |                   |  |  |  |  |  |
|     | Polymer and Resins; Their Chemistry and Chemical Engg, Brage Goldi<br>Nostrand Company Inc, 1959.<br>Structures of Cellulose, Atlla, American Chemical society, 2003.           | ng, D. Va         |  |  |  |  |  |
|     | Course Outcomes (Students will be able to)                                                                                                                                      |                   |  |  |  |  |  |
|     |                                                                                                                                                                                 | duantagoa         |  |  |  |  |  |
| CO1 | Examine the industrial manufacturing process, compare the advantages disadvantages o<br>such processes, define the process parameters of the thermoplastics polymers and discus |                   |  |  |  |  |  |
| CO2 | the environmental concerns of their products (K1)<br>Describe properties like physical mechanical thermal rheological etc (K1)                                                  |                   |  |  |  |  |  |
| 002 |                                                                                                                                                                                 | D'                |  |  |  |  |  |
|     | CO3 Explain basic processing methods related to the thermoplastics polym practical applications of thermoplastics in real world and structure relationship. (K2)                |                   |  |  |  |  |  |

| Mapping of Course Outcomes (COs) with Programme specific Outcomes (PSOs) |      |      |      |      |      |  |  |
|--------------------------------------------------------------------------|------|------|------|------|------|--|--|
|                                                                          | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |  |

| CO1    | K1 | 3 | 3 | 2 | 1 | 2 |
|--------|----|---|---|---|---|---|
| CO2    | K1 | 2 | 3 | 2 | 3 | 2 |
| CO3    | K2 | 3 | 2 | 1 | 2 | 1 |
| Course | K2 | 2 | 3 | 2 | 3 | 1 |

| MDM-       | Course Code:<br>PET1703                                                                                                                 | Course Title:<br>MDM-V: Additives and Compounding of polymers                                                 | Cre<br>2 | dits          | =  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|---------------|----|
| V          | 1211/05                                                                                                                                 | When ve Additives and compounding of polymers                                                                 | LT       |               | Р  |
|            | Semester: VII Total contact hours: 30                                                                                                   |                                                                                                               | 1        | 1             | 0  |
|            |                                                                                                                                         | List of Prerequisite Courses                                                                                  |          |               |    |
|            |                                                                                                                                         | echnology I, Introduction to Polymer Engineering and<br>Chemistry and Technology, Technology of Thermoplastic |          |               |    |
|            | List of C                                                                                                                               | ourses where this course will be prerequisite                                                                 |          |               |    |
|            | Polymer Processing                                                                                                                      |                                                                                                               |          |               |    |
|            | Description o                                                                                                                           | f relevance of this course in the MDM programme                                                               |          |               |    |
|            |                                                                                                                                         | ous additives used in polymer. To understand the che                                                          | mist     | ry ai         | nd |
| Sr.<br>No. | Cor                                                                                                                                     | urse Contents (Topics and subtopics)                                                                          |          | luire<br>ours |    |
| 1          | An overview of additives, type of additives, main trends of additives, Fillers, mechanical properties due to fillers                    |                                                                                                               |          |               |    |
| 2          | UV stabilizers, Heat Sta                                                                                                                | ibilizers, Flame Retardants                                                                                   | 2        |               |    |
| 3          | Conductivity, Antistatic Agent                                                                                                          |                                                                                                               |          |               |    |
| 4          | Curing & Curing agents                                                                                                                  |                                                                                                               |          |               |    |
| 5          | Coupling agents and Co                                                                                                                  | ompatibilization agents                                                                                       |          | 1             |    |
| 6          | Plasticizer, Blowing Ag                                                                                                                 | ents, Processing and modifier aid                                                                             |          | 2             |    |
| 7          | Lubricants Mould Relea                                                                                                                  | ase Agents, Antislip and Antiblocking additives                                                               |          | 2             |    |
| 8          |                                                                                                                                         | d recycling, mixing, compounding, Health and Safety                                                           |          | 23            |    |
| 9          |                                                                                                                                         |                                                                                                               |          |               |    |
| 10         | Mechanisms and Theor<br>Additives, Distributive                                                                                         | y of mixing, Basic Concepts, Dispersive Mixing of Solid<br>Mixing Distribution,                               |          | 3             |    |
| 11         | Blenders, Internal Mixers - Single Screw Extruders - Twin Screw Extruders -<br>Intermeshing Twin Screw Extruders - Reciprocating Screws |                                                                                                               |          |               |    |
| 12         |                                                                                                                                         |                                                                                                               |          |               |    |
|            |                                                                                                                                         | Total                                                                                                         |          | 30            |    |
|            | l                                                                                                                                       | List of Text Books/ Reference Books                                                                           |          | ~~            |    |
| 1          | Text book of Polymer S                                                                                                                  | cience by Billmeyer, John Wiley ans Sons 1984.                                                                |          |               |    |
| -          |                                                                                                                                         |                                                                                                               |          |               |    |

| 2   | Additives for plastic by Raymond B. Seymour, Academic Press 1978.                 |  |
|-----|-----------------------------------------------------------------------------------|--|
| 3   | Additives for plastic handbook by John Murphy, Elsevier advance technology        |  |
|     | 1996.                                                                             |  |
| 4   | Determination of Additives in Polymers and Rubbers by T R. Crompton, Rapra        |  |
|     | Technology Ltd 2007.                                                              |  |
| 5   | Polymer Modifiers and Additives by Richard F. Grossman, John T. Lutz Jr,          |  |
|     | CRC Press 2000.                                                                   |  |
| 6   | The Complete Technology Book on Industrial Polymers, Additives, Colourants        |  |
|     | and Fillers by NIIR Board of Consultants & Engineers. Asia Pacific Business       |  |
|     | Press Inc. 2006.                                                                  |  |
| 7   | Additives in Polymers: Industrial Analysis and Applications by Jan C. J. Bart     |  |
|     | John Wiley and Sons 2005.                                                         |  |
|     | Course Outcomes (students will be able to)                                        |  |
| CO1 | Describe about polymer additives depending upon their requirement and final       |  |
|     | applications (K1)                                                                 |  |
| CO2 | Select the proper dosage of additives based on their requirements and chemistries |  |
|     | (K2)                                                                              |  |
| CO3 | Choose the various additive in chemistry (K3)                                     |  |
| CO4 | Calculate the problems during processing, and end application by selecting        |  |
|     | proper additives, their dosage, and combination based on requirement (K3)         |  |
| CO5 | Select the requirement of processing for any batch with the proper quantity of    |  |
|     | each and every ingredient such as fillers and additives etc. (K4)                 |  |

| Mapping of Course Outcomes (COs) with Programme specific Outcomes (PSOs) |    |      |      |      |      |      |  |
|--------------------------------------------------------------------------|----|------|------|------|------|------|--|
|                                                                          |    | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |
| CO1                                                                      | K1 | 2    | 2    | 3    | 2    | 1    |  |
| CO2                                                                      | K2 | 1    | 3    | 2    | 2    | 2    |  |
| CO3                                                                      | K3 | 2    | 2    | 3    | 1    | 2    |  |
| CO4                                                                      | K3 | 2    | 2    | 2    | 2    | 1    |  |
| CO5                                                                      | K4 | 2    | 3    | 3    | 2    | 2    |  |
| Course                                                                   | K4 | 2    | 3    | 2    | 2    | 2    |  |

| MDM<br>-VI                                             | Course Code:<br>PET1816                                                                      | Course Title:              |   |   | 8 = |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|---|---|-----|--|--|--|--|
|                                                        |                                                                                              | MDM-VI: Polymer Processing |   | Т | Р   |  |  |  |  |
|                                                        | Semester: VIII                                                                               | Total Contact Hours: 30    | 1 | 1 | 0   |  |  |  |  |
| List of Prerequisite Courses                           |                                                                                              |                            |   |   |     |  |  |  |  |
| Polymer                                                | Polymer Science & Technology I, Introduction to Polymer Engineering and Technology, Polymer  |                            |   |   |     |  |  |  |  |
| Chemist                                                | Chemistry and Technology, Technology of Thermoplastic Polymers, Additives and compounding of |                            |   |   |     |  |  |  |  |
| Polymers                                               |                                                                                              |                            |   |   |     |  |  |  |  |
| List of Courses where this course will be prerequisite |                                                                                              |                            |   |   |     |  |  |  |  |
| NA                                                     |                                                                                              |                            |   |   |     |  |  |  |  |

|        | Description of relevance of this course in the MDM programme                                |                      |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| The co | purse gives an insight into the processing techniques of polymers. It w                     | vill help in         |  |  |  |  |
|        | shooting the various problems faced during processing. The need for com                     | -                    |  |  |  |  |
|        |                                                                                             | pounding of          |  |  |  |  |
| polyme | r and techniques involved.                                                                  | <b>D</b> • 1         |  |  |  |  |
|        | Course Contents (Topics and Subtopics)                                                      | Required<br>Hours    |  |  |  |  |
| 1      | Extruders: single screw and twin screw extruders, Film blowing, Fiber                       | 10                   |  |  |  |  |
|        | spinning, Pipe extrusion, Co-extrusion of pipes, Extrusion of cable material,               |                      |  |  |  |  |
|        | extrusion of the sheet, Calendaring, Thermoforming                                          |                      |  |  |  |  |
| 2      | Molding: Injection molding,                                                                 | 5                    |  |  |  |  |
| 3      | Blow molding, Compression molding                                                           | 5                    |  |  |  |  |
| 4      | Injection stretch blow molding, Resin transfer molding                                      | 5                    |  |  |  |  |
| 5      | The one-dimensional process is like Coating and Adhesives.                                  | 5                    |  |  |  |  |
|        | Total                                                                                       | 30                   |  |  |  |  |
|        | List of Textbooks/Reference Books                                                           |                      |  |  |  |  |
| 1      | Encyclopedia of Polymer Science and Technology, Johan Wiley and Sons, Inc                   | 1988.                |  |  |  |  |
| 2      | Polymer processing by Mckelvey, J.M, John wiley & sons inc 1962.                            |                      |  |  |  |  |
| 3      | Polymer processing fundamentals by T. A. Osswald, Munich hanser publishers                  | 1998.                |  |  |  |  |
| 4      | Polymer reaction engineering by K. H. Reichert and W. Heiseler, VCH published               | ers, 1989            |  |  |  |  |
| 5      | Plastics Compounding by David Burton Todd, Hanser Publishers 1998.                          |                      |  |  |  |  |
| 6      | Principles of Polymer Processing, 2nd Edition by Zehev Tadmor, Costas G.                    | <u>Gogos</u> , John  |  |  |  |  |
|        | Wiley & Sons, Inc., 2006.                                                                   |                      |  |  |  |  |
| 7      | Fundamentals of Modern Manufacturing: Materials, Processes, and Systems Groover, 2009.      | by <u>Mikell P.</u>  |  |  |  |  |
| 8      | Polymer Extrusion by Chris Rauwendaal, Carl Hanser Verlag GmbH & Co;                        | 3rd Revised          |  |  |  |  |
| Ű      | edition edition (1 August 1994).                                                            |                      |  |  |  |  |
| 9      | Polymer Processing: Principles and Design, 2nd Edition by Donald G. Baird                   | l, Dimitris I.       |  |  |  |  |
|        | Collias, Wiley-Interscience, 2014.                                                          |                      |  |  |  |  |
| 10     | Polymer Processing and Characterization by Sabu Thomas, Deepalekshmi                        | Ponnamma,            |  |  |  |  |
|        | Ajesh K. Zachariah. Apple Academic Press 2012.                                              |                      |  |  |  |  |
|        | Course Outcomes (Students will be able to)                                                  |                      |  |  |  |  |
|        | Interpret the polymers by various technique and able to solve the problems obs              | -                    |  |  |  |  |
| CO1    | processing. Ability to understand the degradation/stabilization of polymers and to analyses |                      |  |  |  |  |
|        | the respective case studies (K2)                                                            |                      |  |  |  |  |
|        | Illustrate effect of temperature during processing, screw dimensions, the rate of           | f addition as        |  |  |  |  |
| CO2    | well as the concentration of addition of filler etc. (K3)                                   |                      |  |  |  |  |
|        | Calculate the batch for any processing with proper quantity of each and even                | y ingredient         |  |  |  |  |
| CO3    | such as fillers and additives etc. (K4)                                                     | , <u>0</u> -2-414114 |  |  |  |  |
|        |                                                                                             |                      |  |  |  |  |

| Mapping of Course Outcomes (COs) with Programme specific Outcomes (PSOs) |    |   |   |   |   |   |  |
|--------------------------------------------------------------------------|----|---|---|---|---|---|--|
| PSO1 PSO2 PSO3 PSO4 PSO5                                                 |    |   |   |   |   |   |  |
| CO1                                                                      | K2 | 3 | 1 | 3 | 3 | 2 |  |
| CO2                                                                      | K3 | 1 | 3 | 2 | 3 | 2 |  |
| CO3                                                                      | K4 | 3 | 3 | 3 | 2 | 3 |  |
| Course                                                                   | K4 | 3 | 3 | 3 | 3 | 2 |  |