SYLLABUS OF THE CURRICULUM

for

BACHELOR OF TECHNOLOGY

in.

FOOD ENGINEERING AND TECHNOLOGY

Department of Food Engineering and Technology Institute of Chemical Technology Mumbai - 400019 SEPTEMBER 2021

Preamble

The undergraduate programmes at the Institute of Chemical Technology are reputed worldwide. Alumni from these programmes have found a place of pride in the Indian chemical industry including some top names and many as entrepreneurs, in Universities/ Institutes and Research Organisations through ut India and the world. The B.Tech. programmes in the then Department of Chemical Technology, University of Mumbai started in 1934 as post B.Sc., second oraduation as B.Sc. (Tech.). Keeping national, societal needs in focus, post-independence, the programme grew into multiple branches keeping connection with chemical engineering content. Once the Institute became a university in 2009, these became independent B. Tech. Programmes retaining their dual core nature. The Institute of Chemical Technology is committed to keeping its syllabi updated and globally relevant for the industry. We have revamped the syllabi of all the B. Tech. programmes now in 2021. The 205 credit programmes each have around 6% humanities, 23% basic sciences, 8% engineering sciences, 12% chemical engineering plus 51% special subjects.

All the courses are credit based and the evaluation are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition of credits is based on student workload, learning outcomes and contact hours. This system is described in detail in Regulation No.9 of the Institute. Each theory course consists of lectures (L) and tutorials (T). During tutorial session, it is expected that the problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects are discussed in the presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the topic. Institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation.

Programme Outcomes (POs) for B. Tech. (Food Engg. & Tech.)

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need tor sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
PSO 1	Food Analysis: Able to apply analytical techniques for food safety & quality assurance
PSO 2	Innovations in Food Products and Process Development: Able to translate emerging science in various commodity products and newer technologies.

B. Tech. in Food Engineering and Technology Syllabus Structure for B. Tech. First Year

	Semester I										
0.000			Hr	s/We	ek	Mark	s for va	arious I	Exams		
Course Code	Subjects	Credits	L	T C	Р	C.A.	M.S.	E. S.	Total		
CHT1137	Organic Chemistry - I	3	2	0	0	10	15	25	50		
CHT1341	Physical Chemistry - I	3	2	1	0	10	15	25	50		
CHT1139	Industrial Inorganic Chemistry	3	2	1	0	10	15	25	50		
MAT1101	Applied Mathematics - I	4 👌	3	1	0	20	30	50	100		
PYT1101	Applied Physics - I	4	3	1	0	20	30	25	100		
GEP1113	Engineering Graphics and Elementary Autocad	4	2	0	4	50		50	100		
CHP1343	Physical and Analytical Chemistry Laboratory	2	0	0	4	25		25	50		
	TOTAL:	23	14	5	8				500		
	300										

	Semester II										
Subject	Cultinate	Quadita	Hr	s/we	ek	Mark	s for v	arious I	Exams		
Code	Subjects	Credits	L	т	Р	C.A.	M.S.	E. S.	Total		
CHT1401	Analytical Chemistry	3	2	1	0	10	15	25	50		
CHT1342	Physical Chemistry - II	3	2	1	0	10	15	25	50		
CHT1138	Organic Chemistry - II	3	2	1	0	10	15	25	50		
PYT1103	Applied Physics - II	3	2	1	0	10	15	25	50		
MAT1102	Applied Mathematics - II	4	3	1	0	20	30	50	100		
CET1507	Process Calculations	4	3	1	0	20	30	50	100		
PYP1101	Physics Laboratory	2	0	0	4	25		25	50		
CHP1132	Organic Chemistry Laboratory	2	0	0	4	25		25	50		
HUP1101	Communication Skills	2	0	0	4	50			50		
	TOTAL:	26	14	6	12				500		

Syllabus Structure for B. Tech. Second Year

	Semester III											
Subject	Subjects	Oradita	Hr	s /we	eek	Mark!	s for va	arious	Exams			
Code		Credits	L	Т	РÒ	C.A.	M.S.	E.S.	Total			
BST1110	Basics of Biology and Applications to Technology	3	2	1	0	10	15	25	50			
GET1110	Basic Mechanical Engineering	3	2	0	0	10	15	25	50			
FDT 1011	SPL1: Chemistry of Food Constituents	4	3	1	0	10	15	50	100			
CET 1302	Material Technology	3	2	1	0	10	15	25	50			
BST 1102	Biochemistry	4	3	1	0	20	30	50	100			
BST 1109	Microbiology	3	2	1	0	10	15	25	50			
FDP 1014	PR1: Biochemistry	2	0	0	4	25		25	50			
FDP 1013	PR2: Food Microbiology	2	0	0	4	25		25	50			
	TOTAL:	24	14	6	8				500			
	ler											

	Semester IV											
Subject			Hr	s/we	ek	Mark	s for va	arious I	Exams			
Code	Subjects	Credits	L	Т	Ρ	C. A.	M.S.	E. S.	Total			
GET1117	Engineering Mechanics and Strength of Materials	3	2	1	0	10	15	25	50			
CET1105	Transport Phenomena	4	3	1	0	20	30	50	100			
GET1105	Electrical Engineering and Electronics	3	2	1	0	10	15	25	50			
FDT 1031	SPL2: Principles of Food Preservation	4	3	1	0	20	30	50	100			
FDT 1014	SPL3: Food Microbiology	3	2	1	0	10	15	25	50			
FDT 1015	SPL4: Nutrition	3	2	1	0	10	15	25	50			
GEP1106	Electrical Engineering and Electronics Laboratory	2	0	0	4			25	50			
MAP1201	Computer Applications Laboratory	2	0	0	4			25	50			
	TOTAL:	24	14	6	8				500			

Regional Case Study Course or Social Entrepreneurship Course

- 1. The Course, which is being floated in optional mode and add-on-credit format, will be offered as 02 Credit course curriculum with total duration of 30 hours. At least 50% of the course is to be done compulsorily in the field for all students.
- 2. This course will be conducted during summer vacation after fourth semester of B Tech Programme. The second year B Tech students, desirous of pursuing said course, will submit request for registration to said course, to concerned Department Head at the beginning of fourth Semester.
- 3. Upon successful completion of Course, the Certificate reflecting assessment of performance will be awarded to student.
- 4. Since the course being optional, these credits will not be counted in calculations of SGPA and CGPA and hence the results of this course will not be reflected in Mark list. The course credits are thus primarily the add on Credits.

Course Objectives

- i. To prepare B Tech students for real-life project work through development of casestudies on important regional problems.
- ii. To develop skills of the student in problem identification, analysis and reporting, all in a social context.
- iii. To catalyse acquisition of values of public service and active citizenship amongst students

Course Outcomes

After completing this course, student will be able to

- i. gain an understanding of rural life, culture and social realities
- ii. develop a sense of empathy and bonds of mutuality with local community
- iii. Appreciate significant contributions of local communities to Indian society and economy
- iv. Learn to value the local knowledge and wisdom of the community
- v. Identify opportunities for contributing to community's socio-economic improvements

Mode of Evaluation of a Regional Case Study Course or Social Entrepreneurship Course

Module	Unit	Marks
1	Basic structure of society, key definitions of problem area, analysis of preliminary data	15
2	Classroom-work - correspondence, formats, interactions, liaising	05
3	Fieldwork and data gathering	15
4	Analysis and Reporting	10
5	Feedback to Community	05
	Total	50

Syllabus Structure for B. Tech. Third Year

Semester V										
Subject		Credits	Hr	s /we	eek	Mark	s for v	arious I	Exams	
Code	Subjects	Credits	L	Т	Р	C. A.	M.S.	E. S.	Total	
CET1401	Chemical Engineering Operations	3	2	1	0	10	15	25	50	
CET1212	Chemical Reaction Engineering	3	2	1	0	10	15	25	50	
FDT 1022	SPL5: Food Engineering	4	3	1	0	20	30	50	100	
FDT 1032	SPL6: Food Chemistry	3	2	1	0	10	15	25	50	
FDT 1052	SPL7: Principles of Food Analysis	3	2	1	0	10	15	25	50	
MAT1106	Design and Analysis of Experiments	4	2	2	0	20	30	50	100	
FDP 1011	PR3: Technical Analysis	4	0	0	8			50	100	
FDP 1015	PR4: Food Chemistry	2	0	0	4			25	50	
	TOTAL:	26	13	7	12				550	

	Semester VI											
Subject	Subjects	Credits	Hr	Hrs/week			s for va	arious I	Exams			
Code	Subjects	Cieuits	L	Т	Р	C.A.	M.S.	E. S.	Total			
FDT 1027	SPL8: Food Process Engineering	4	3	1	0	20	30	50	100			
FDT 1012	SPL9: Food Additives and Ingredients	4	3	1	0	20	30	50	100			
FDT 1017	SPL10: Technology of Fruits, Vegetables and Tubers	3	2	1	0	10	15	25	50			
HUT1103	Industrial Psychology & Human Resource Management	3	2	1	0	10	15	25	50			
HUT1106	Environment Science and Technology	3	2	1	0	10	15	25	50			
	Institute Elective – I	3	2	1	0	10	15	25	50			
FDP 1033	Seminar	3	0	0	6				50			
FDP 1034	PR5: Food Processing and Product Development	2	0	0	4	25		25	50			
FDP 1018	PR6: Food Analysis-I	2	0	0	4	25		25	50			
	TOTAL:	27	14	6	14				550			
FDP 1035	In-plant Training of 8 to 10 weeks after semester VI											

In-plant Training / Internship

- After the end of the sixth semester examination and before the start of the seventh semester, every student will have to undergo an internship. The Internship would be of 6 credits.
- The internship (preferably Industrial Internship) would be assigned to the student by the Departmental Internship Coordinator, with the approval of the Head of the Department.
- The total duration of the internship would be for a period equivalent to 12 Calendar weeks.
- This period typically start from 1st May and end before 30th July every year. This means the end semester examination of T. Y. Tech (Semester VI) should be completed by 25th April every year.
- The Semester VII (4th Year B.Tech.) should commence w.e.f. 1st Aug every year. The internship may be completed in one or more organizations as described below.
- The internship could be of the following forms:
- o Industrial internship in a company (within India or Abroad) involved in R & D/design/ manufacturing (QA/QC/Plant Engineering/Stores and Purchase)/marketing /finance/consultancy/Technical services/Engineering / Projects, etc.
- Research internship in reputed Institutes (within India or Abroad) like, ICT, IITs, NITs, IISC, NCL, IICT etc.
- At the end of the internship, each student will submit a written report based on the work carried
- Out during the Internship. The report will be countersigned by the Supervisor from Industry/ Institute, as the case may be.
- Performance of the student will be assessed based on the written report and a presentation to a committee consisting of two faculty members from the Department.
- Students will be assigned a grade based on the written report and a presentation; evaluated by a committee of faculty members.

Syllabus Structure for B. Tech. Final Year

	Semester VII											
Subject	Cubicata	Credite	Hrs/week			Mark	s for va	arious	Exams			
Code	Subjects	Credits	L	Т	Р	C. A.	M.S.	E.S.	Total			
CET1703	Chemical Process Control	3	2	1	0	10	15	25	50			
FDT 1024	SPL11: Technology of Plantation Products	3	2	1	0	10	15	25	50			
FDT 1023	SPL12: Technology of Cereals, Legumes and Oilseeds	3	2	40	0	10	15	25	50			
	Institute Elective- II	3	2	1	0	10	15	25	50			
FDP 1023	In-plant Training	6	0	0	0	10	15	25	50			
HUT1203	Industrial Management	4	3	1	0	20	30	50	100			
CEP1714	Chemical Engineering Laboratory	2	0	0	4	25		25	50			
FDP 1021	PR7: Food Analysis-II	2	0	0	4	25		25	50			
FDP 1027	Project I	12	0	0	4				50			
	TOTAL:	28	11	5	12				500			
	Shrie											

	Semester VIII											
Subject	Subjects	Credits	Hrs	s /we	ek	Mark	s for va	arious I	Exams			
Code	Subjects	Credits	L	Т	Р	C.A.	M.S.	E. S.	Total			
CET1504	Chemical Project Engineering and Economics	3	2	1	0	10	15	25	50			
FDT 1033	SPL13: Technology of Dairy and Animal products	4	3	1	0	20	30	50	100			
FDT 1028	SPL14: Food Safety, Quality and Regulations	3	2	1	0	10	15	25	50			
FDT 1019	SPL15: Food Packaging	3	2	1	0	10	15	25	50			
	Program Elective	3	2	1	0	10	15	25	50			
	Pre-approved Open Electives from MOOOCs/NPTEL	3	2	1	0	10	15	25	50			
FDP 1025	Project II	4	0	0	8				100			
FDP 1026	PR8: Food Processing and Engineering	4	0	0	8	50		50	100			
	Total	27	13	6	16				550			

Institutional Electives Offered by Department of Food Engineering & Technology

Subject Code	Subject	Credit	Mark	Semester
FDT 1026	Food Biotechnology	3	50	VI
FDT 1051	Nutraceuticals and Functional Foods	3	50	VII
		2		

Program Electives Offered by Department of Food Engineering & Technology

Subject Code	Subject	Credit	Mark	Semester
FDT 1053	Waste Management in Food Processing	3	50	VIII
FDT 1034	Flavours and Flavourings in Food Products	3	50	VIII
	G			

<u>Pers and Flav.</u>

Semester I

	Course Code:	Course Title: Organic Chemistry - I		dits								
	CHT1132 Semester: I	Total Contact Hours: 45	L 2	Т 1	Р 0							
	Semester	List of Prerequisite Courses	2	Ŧ								
	g up Advanced Orga	emistry Course. The Organic Chemistry studied at HSC is the b anic Chemistry knowledge. t of Courses where this course will be Prerequisite	asis f	or								
Organi		T1138), Biochemistry (BST 1102) and several Special Subjects	s of in	divid	ual							
depart												
	Description of relevance of this course in the B. Tech. (Pharm Chem. Tech.) Programme											
To acquaint the students with IUPAC and other types of Nomenclature of organic compounds, fundamentals of Organic Chemistry including reaction mechanisms, organic transformations, types of reactions, selectivity of chemical transformations, etc., stereochemical implications of organic reactions, functional group identification and reactions												
Sr. No.												
	a. IUPAC Nomeno	clature of Organic Compounds		3								
1	Structure, Stability	arbanions, Carbon radicals and Carbenes – Generation,		5								
2	carbon atoms, Ste Ethane and butane Enantiomers and stereoisomers – S interconversions	of Organic Compounds containing one and two asymmetric ereo descriptors – R/S, E/Z, erythro and thero, Conformation – e Diastereomers, meso compounds, different representations of eaw-horse, Newmann, Wedge and dash and Fischer and their		8								
3	Haloalkanes Aliphatic Nucleoph Elimination Reacti	nilic Substitution Reactions: $S_N 1$, $S_N 2$ ons: E1, E2		7								
4	Concept of acidity preparation and N Enolate chemistry	bonyl Compounds and tautomerism of carbonyl compounds, General methods of ucleophilic Addition reactions , Aldol and related condensation reactions, Michael reaction, on, Claisen condensation, Dieckmann condensation, Mannich		9								
5	Hückel rules, Arcr	matic Compounds Matic, Non-aromatic and Anti-aromatic compounds, Benzenoid d aromatic compounds		3								
6	Electrophilic Aro Nitration, Halogen Activating, oleactiv poly-substituted be	matic Substitution Reactions ation, Alkylation, Acylation and Sulfonation rating and orienting effects of functional groups in mono- and enzenes ylation, Acylation, Gattermann, Gattermann-Koch, Riemer-		10								
		Total		45								
	Clauders 1 Com	List of Text Books/Reference Books										
1	(2012)	/es, N., Warren, S.; Organic Chemsitry; 2 nd ed.; Oxford Universit										
2	Wiley & Sons. Inc.											
3	Smith M B : March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure: 7th											
4	Carey F. A., Sundberg, R. J. Advanced Organic Chemistry: Part A: Structure and Mechanisms; 5 th ed.; Springer (2005)											
5	5 Carey F. A., Sundberg, R. J.; Advanced Organic Chemistry: Part B: Reaction and Synthesis; 5 th ed.; Springer (2007)											
6	Wade, L. G.; Sime	k, J. W.; Singh, M. S. Organic Chemistry; 9 th Ed.; Pearson Educ	ation	(201	9)							

7	Eliel, E. L. Stereochemistry of Carbon Compounds; Mcgraw-Hill (2001)
8	Bruice, Paula, Y. Organic Chemistry; 8 th Ed.; Pearson Education (2020)

	Course Outcomes (Students will be able to)
CO1	draw structures of organic compounds and write their IUPAC names correctly (K2)
CO2	appreciate the stereochemical implications of organic compounds and visualize and appreciate chirality concept (K2)
CO3	understand organic chemistry reactions related to aliphatic as well as aromatic compounds as well as decipher the outcome of a given organic transformation (K3)
CO4	interpret and analyze reactions having different functionalities, deduce and solve problems related to the reactions as well as apply them, if need be (K4)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PC8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K								~						
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K							1							
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K							2							
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K							D							
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K						1.								
е	4	3	3	2	3	2	- 3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code			edits =	- 2							
	Course Code: CHT1341	Course Title: Physical Chemistry - I		T	- <u>3</u>							
	Semester: I	Total Contact Hours: 45	2	1	0							
		List of Prerequisite Courses										
Standa	ard XII Chemistry	22										
	List of Courses where this course will be Prerequisite											
Physic	Physical and Analytical Chemistry Laboratory (CHP1343), Physical Chemistry - II (CHT1342)											
	Description of relevance of this course in the B. Tech. Programme											
		e students to understand and apply the principles of therm										
		nts would be able to apply the insights to understand the st										
	cal equilibria, etc.	hemical processes, effect of thermocynamics parameter	15 011	phase	anu							
Sr.	<u> </u>	S.	R	equire	ed							
No.	Co	ourse Contents (Topics and Subtopics)		Hours								
1		ermodynamic systems, Work, Heat and Energy, State and ensive and Extensive variables		3								
		modynamics - Enthalpy and heat capacities, Application										
2		ses, Standard states, Enthalpy changes of chemical and		6								
	physical conversion	ons, Thermochemistry – Hess's Law										
		nird Laws of Thermodynamics - Statements and										
3		Second Law of thermodynamics, Clausius inequality, e function, Entropy changes for reversible and irreversible		6								
3	processes, Entrop			0								
		modynamics, Absolute entropies, Verification of Third Law										
	Spontaneous Pr	ocess and Equilibrium - Combined statement of First										
4		s of thermodynamics, Helmholtz and Gibbs free energy,		7								
4		Free energy, Maxwell's relations, Effect of T and P on free off equation, Free energy and equilibrium constant,		7								
	Ellingham diagram											
		Systems - Free energy and entropy of mixing, Partial	1	_								
5	molar quantities a	nd chemical potential, Gibbs Duhem equation		5								
		ι - Gibbs Phase rule, Clausius- Clapeyron equation,										
6		es, First and second order phase transitions, Phase		2								
6		and two two-component systems, I-L systems - TC, PC distillation and azeotropes, L/S systems, S/S – eutectics		3								
		, Phase diagram of three-component systems										
		nutions - Ideal and non-ideal solutions, Henry's law and	1									
	Raoult's law, Collig											
7		ia – Solubility constant, Common ion effect, Effect of olubility, pH, Weak and strong acids and bases, Buffer		6								
		plutions, Activity and activity coefficients, Thermodynamic										
		rolytes in solutions										
8		a - Equilibrium constants, Le Chaterlier's principle, Effect		6								
		essure and composition on equilibrium		-								
9		- Thermodynamics of electrochemical systems - Types of ells, Determination of electrode potentials, Activity and		3								
Ű		s, Dissociation of electrolytes, Ionic equilibria		0								
		Total		45								
		List of Text Books/Reference Books										
		Paula, Julio de; Keeler, James. Atkin's Physical Chemistry	/; 11 th E	Ed.; O	xford							
1	University Press (2	2018)										
2		Paula, Julio de. Elements of Physical Chemistry; 7th Ed.	; Oxford	d Univ	ersity							
	Press (2017)											
3	Levine, Ira. Physic	cal Chemistry; 6 th Ed.; McGraw-Hill Education (2009)										
		Course Outcomes (Students will be able to)										

CO1	comprehend the laws of thermodynamics and related concepts and to explain the molecular basis for the same (K2)
CO2	apply the concepts of partial molar quantities to explain the behaviour of pure substances and solutions (K3)
CO3	apply principles of phase equilibria in two- and three-component systems (K3)
CO4	elucidate the effect of thermodynamic quantities on chemical equilibria and relate it to properties of chemical systems (K2)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ									_					
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ									0					
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ								6						
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	Κ														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	Κ							0	8						
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, A rective domain; S, Psychomotor domain

All the second s

	Course Code:	Course Title:	Cre	dits :	= 3							
	CHT1139	Industrial Inorganic Chemistry	L	Т	Р							
	Semester: II	Total Contact Hours: 45	2	1	0							
	•	List of Prerequisite Courses		•								
Standa	ard XII Inorganic Chei	mistry										
List of Courses where this course will be Prerequisite												
Material Technology (CET1302), Engineering Mechanics and Strength of Materials (GET1117), Environment Science and Technology (HUT1106)												
Description of relevance of this course in the B. Tech. Programme												
To acqu	To acquaint the students with synthesis, properties and applications of various industrial inorganic											
chemic	als	5										
Sr. No.	Co	urse Contents (Topics and Subtopics)		quire lours								
1	Primary Inorganic Materials: Water, Hydrogen, Hydrogen Peroxide and Inorganic Peroxo Compounds, Nitrogen, Ammonia, Nitric acid, and Nitrogen Compounds, Phosphorus, Phosphoric acid and its Compounds, Sulfur, Sulfuric acid and Sulfur Compounds, Halogens, Chloralkali and Halogen Compounds 12											
2	Metals and Their Compounds: Alkali and Alkaline Earth Metals and their Compounds, Aluminum and its Compounds, Chromium Compounds and 10 Chromium, Silicon and its Inorganic Compounds, Manganese Compounds and 10											
3		mpounds: Industrially important Organo-silicon ially Important Silanes, Silicones, Industrial Silicone		7								
4		Silicate Products, Inorganic Fibers, Construction Materials, Metallic Hard Materials, Carbon Modifications, Fillers, Cement, Glass		8								
5	about the Nuclear F	nomic Importance of Nuclear Energy, General Information uel Cycle, Availability of Uranium, Nuclear Reactor Types, ction Disposal of Waste from Nuclear Power Stations		8								
		Total		45								
i		List of Text Books/ Reference Books										
1		Moretto, Hans-Heinrich; Woditsch, Peter. Industrial Inorganic Pevised Edition; Wiley-VCH (2008)	Cherr	nstry,								
2	Benvenuto, Mark An	thony. Industrial Inorganic Chemistry; de Gruyter (2015)										
3	Swaddle, T. W. Inor Academic Press (19	janic Chemistry – An Industrial and Environmental Perspecti 97)	ive; 1 st	Ed.;								
4		organic Chemistry; 3 rd Ed.; Academic Press, Inc. (2019)										
		course Outcomes (Students will be able to)										
CO1												
CO2	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)											
CO3												
CO4	Explain the concept	of nuclear fuel and power industry (K2)										

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2

Cours	K	~		0		_	_	_	_	_	_	_	6		<u>^</u>		
e 3. Stroi	3 1a C	3 ontrib	3 Ution: 2	2 2. Moc	2 lerate	2 Contri	3 3	3 1. Lo	3 w Cor	3 Stributio	3 on; – No	Contr	2 ibutio		3	3	
											sychor						
			Code:			Cours	o Title	• Annl	lied M	athem	atics -	0			redits		
		/AT1 :				cours						1		L	T	Р	
	S	emest	ter: I			Liste				ours: 6	0			3	1	0	
HSC S	tand	ard M	athema	atics		LISU	Pier	equisi		uises)					
					Cour	ses w	here t	his co	urse \	vill be	prereq	uisite					
his is	s is a basic Mathematics course. This knowledge will be required in almost all sub													cts la	ater.		
nnlioc	Description of relevance of this course in the B. Tech. Program lied Mathematics is beyond crunching numbers. It is useful for solving real-life p													blom	c and	make	
in imp solving	act var	in the	world, mather	, techr natica	nology Lequa	being tions	j one in sev	of thos /eral C	se fiel Chemi	ds. Th cal En	e know gineerii ses, Th	ledge ng cou	gaineo rses s	d is such	requir as N	ed for ∕IEBC,	
Sr.				Cour	se Co	ontent	s (Top	ics an	d Sub	otopics	5)			F	Requi		
No.	Lin	oor /	laehr							-	-	lonco	and		Hou	rs	
1	Linear Algebra: Vectors in IR ⁿ , Notion of linear independence and dependence. Vector subspaces of IR ⁿ , Basis of a vector subspace, Row space, Null space, and Column space, Rank of a matrix, Determinants and rank of matrices Abstract vector spaces, Linear transformations in IR ⁿ , Matrix of a linea transformation, Change of basis and similarity, Rank-nullity theorem, and its applications Inner product spaces, Orthonormal bases, Gram-Schmidt orthogonalization process, Eigenvalues and eigenvectors, Characteristic polynomials Eigenvalues of special orthogonal projection and its application to leas methods Diagonalization of matrices and its applications stochastic matrices, Solving initial value system of linear ordinary differential equations										and near d its ation ials, east	15					
2	deri func Fun Tota	vative ctions ctions al de	e, Taylo , Radiu s of two	or's an is of C o or ma es, Ta	d Mac urvatu pre va ylor's	claurin ire. riables theoi	's theo s, Limit rem f	orems, and c or mu	Maxii ontinu Iltivari	ma/Min iity, Pai	ibnitz F iima, C rtial diff unction	onvexit erentia	ty of tion,	15			
3	Inte inte	e gral gral s	Calcul sign, M	lus: B Iultiple	eta a integ	nd Ga rals, L	amma Line ai	functiond sur	ons, I face i		ntiation Is, App				15		
4	Green's, Gauss-Divergence and Stokes theoremsProbability & Statistics: Random variables and cumulative distribution function, Probability mass function and probability density function, Some common univariate distributions: Binomial, Poisson, Uniform, exponential, Normal, Expectation and Moments, Moment generating function, Multiple random variables and Joint distribution, Marginal distributions, Covariance and Correlation Concept of parameter estimation: Maximum likelihood estimation, Method of least squares and Simple linear regression, Nonlinear regression									15							
												1	otal		60		
1	Ctor		Linco	r Alach						ce Boo		06)					
1 2											son (20 th Ed.; \		2019)				
3	Frie Edu	dberg Icatior	ן, Stepl ו (2019	hen H.)).	; Inse	l, Arno	old J.;	Spenc	e, Lav	vrence	E. Line	ear Alg	ebra;		-		
4	Hug Mul	jhes-⊦ tivaria	Hallett, able; 6 ^{tt}	Debo 'Ed.; 、	John V	Viley &	د Sons	, Inc. (2012)		n, Willi				-		
5			E.; A Presci		ed En	gineer	ng M	athem	atics;	10 ^m E	d.; Wil	ey Glo	bal E	duca	ation ((2010)	

6	Iyengar, S. R. K.; Jain, R. K. Advanced Engineering Mathematics; 4 th Ed.; Alpha Science (2014)
7	Ross, Sheldon M. A First Course in Probability; 10 th Ed.; Pearson Education (2018)
8	Hines, William W.; Montgomery, Douglas C.; Goldsman, David M.; Borror, Connie M. Probability
0	and Statistics in Engineering; 4 th Ed.; John Wiley & Sons, Inc. (2003)
9	Boes, Duane C.; Graybill, Franklin A.; Mood, Alexander McFarlane. Introduction To the Theory
9	of Statistics; 3 rd Ed.; McGraw Hill Education (India) (2013)
	Course Outcomes (Students will be able to)
CO1	understand the notion of differentiability and be able to find maxima and minima of functions of
	one and several variables (K3)
CO2	compute surface and volume integrals (K3)
CO3	Understand and explain the notion of vectors and vector spaces (K2)
CO4	solve systems of linear equations and eigenvalue problems analytically and numerically (K3)
CO5	fit relationship between two data sets using linear, non-linear regression (K3)

0															
		M	apping	g of Co	ourse	Outco	omes ((COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K								1						
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Κ							- 0	8						
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ							1							
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K						G								
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K					÷.,	C								
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

ADDroved brac

	Course Code:			6	redi	ts = 4	1
	PYT1101	Course Title: Applied Physics – I	2	L	T	<u>13 – -</u> P	
	Semester: I	Total Contact Hours: 60	0	3	1	0)
	·	List of Prerequisite Courses	V				
Standa	ard XII Physics	0					
A		_ist of Courses where this course will be prerequisite					
		T1103), Physics Laboratory (PYP1101), Chemical Enginetry entum and Mass Transfer, Heat Transfer, Material Science			noori	na	
	ural Mechanics, et		le anu	Engi	neen	ny,	
Struct		ription of relevance of this course in the B. Tech. Pro	ogram				
This is		ourse. This knowledge will be required in almost all subj		ter o	า.		
		equired for understanding various chemical engineering			nat		
		rses such as momentum transfer, reaction engineering,	separa	tion			
	sses, thermodynar	nics, heat transfer, etc.					
Sr.		Course Contents (Topics and Subtopics)	ſ	Red	quire	d Ho	urs
No.	Solid State Phys	sics					
		of Solids: unit cell, space lattices and Bravais lattice, Mi	iller				l
		s and crystallographic planes, Cubic crystals: SSC, BCC					
		crystals: HCP, atomic radius. packing fraction, Bragg's I					
1		n, determination of crystal structure using Bragg	ſ		1	5	
-	spectrometer	Neuropean Formation of an annual in active annual of	ſ		-	•	
		Physics: Formation of energy bands in solids, concept of sification of solids: conductor, semiconductor and insulat					
		insic semiconductors, effect of doping, mobility of charge					
	carriers, conduct		-				
	Fluid Mechanics						
		of density and pressure in a fluid, ideal and real fluids,					
2		psolute pressure and pressure gauges, basic concep			1	5	
		and buoyancy, fluid flow, equation of continuity, Bernoulli					
		lined and turbulent flow, concept of viscosity, Newton's la introduction to non-Newtonian behaviour	aw				
	Optics and Fibr						
l	Diffraction: Introc	luction to interference and example; concept of diffractio	'n,				
		Fresnel aiffraction, Fraunhofer diffraction at single slit,					
		nultiple slits; diffraction grating, characteristics of diffraction	ion				
	grating and its ap	oplications oduction, polarisation by reflection, polarisation by doubl					
3		ring of light, circular and elliptical polarisation, optical	C		1	0	
	activity		ſ				
		oduction, optical fibre as a dielectric wave guide: total	ſ				
		n, numerical aperture and various fibre parameters, losse					
		optical fibres, step and graded index fibres, application o	T				
	optical fibres						
		teraction of radiation with matter, principles and working	of				
4	laser: population	inversion, pumping, various modes, threshold populatio	n		1	0	
		of laser: solid state, semiconductor, gas; application of la	asers				
		d Simple linear regression, Nonlinear regression					
	Ultrasound	recound mechanical electromechanical transferences	ſ				
5		rasound: mechanical, electromechanical transducers; trasound, attenuation, velocity of ultrasound and parame	atore		1	0	
		surement of velocity, cavitation, applications of ultrasound					
			Total		6	0	
	·	List of Textbooks/Reference Books					
1		nd II – D. Halliday and R. Resnick, Wiley Eastern					
2		sics: Vols. I, II and III – R. P. Feynman, R. B. Leighton ar	าd				
	M. Sands, Naros						
3	Loncepts of Moc	lern Physics – A. Beiser, McGraw-Hill.					

4	Introduction to Modern Optics – G. R. Fowles ,Dover Publications
5	A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern.
6	Optical Fibre Communication – G. Keiser, McGraw-Hill
7	Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India
8	Ultrasonics: Methods and Applications – J. Blitz, Butterworth
9	Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.
	Course Outcomes (Students will be able to)
CO1	apply acoustic cavitation of Chemical Engineering Processes (K3)
CO2	apply Bernoulli equation in simple pipe flows (K3)
CO3	explain the principles of lasers, types of lasers and applications (K2)
CO4	calculate resolving power of instruments (K3)
CO5	describe principles of optical fibre communication (K2)

		M	apping	g of C	ourse	Outco	omes ((COs)	with F	rogra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K 2	3	2	1	2	1 -	3	3	3	3	3	3	1	3	2
Cours e	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive dcmain; A, Affective domain; S, Psychomotor domain ADDroved by ACS

			ý		
	Course Code: GEP1113	Course Title:		Credi T	<u>ts = 4</u> P
		Engineering Graphics and Elementary AUTOCAD	L 2	0	
	Semester: I	Total Contact Hours: 90 List of Prerequisite Courses	2	U	4
Basic	Geometry				
Dusic	Ceometry	~			
	L	ist of Courses where this course will be prerequisite			
Engin		II, Equipment Design and Drawing-I, Equipment Design and D	rawir	ng-II,	Home
Paper	[.] – II, Structural Me	chanics		0	
		iption of relevance of this course in the P. Tech. Program			
		student is required to know various processes and equipr			
		he elementary processes such as filtration, size reduc			
		tion etc., are very common to all the branches of Technology.			
		e machines and equipments. One should be familiar			
		and maintenance of such machines and equipments. The sub n, one can learn all such matters, because the drawings are			
		esses on paper. With the help of the drawings, a lot of accu			
		ise will not be practicable through spoken words or written			
		eers and Technologists. This course is required			
		as later on in the professional career.			
		urse Contents (Topics and Subtopics)	Re	quire	d Hours
		rojections: Conversion of 3D object or pictorial view into			
		ew and side views using first angle method of projection Iraw sectional front view, top view, and side view			
1		ection plane cutting object exactly at centre or off centre		2	0
		ews of at least 15 machine parts using mini drafter and			
	drawing board				
		ctions and Isometric Views: Isometric scale, draw pictorial			
		using front and top view or front view and any one side view			
2		ith circle, semicircle in the orthographic views and slots on		1	2
	inclined planes	the device of the first state of the second state of the second			
		etric drawings using mini drafter and drawing board			
		Draw top view when front and any one side view is given de view or both the side views when front view and top view			
3		is involving sectional views.		1	2
	l Q	le parts using mini drafter and drawing board.			
		ing: Draw front view and top view or side view of assembly			
4		all the details of machine parts		2	<u>^</u>
4	Convert assembl			2	0
		g of Nut and bolt, footstep bearings, Plummer block, etc.			
		Computer-Aided Drawing: Role of CAD in design and			
		new products, Advantages of CAD. Creating two-dimensional			
5	mandatory)	mensions using suitable software (Minimum 2 exercises		2	6
		olid Modelling: Creating 3D models of various components			
		odelling software (Minimum 2 exercises mandatory)			
	<u> </u>	Total		9	0
		List of Textbooks/Reference Books	•		
1		utoCAD Fundamentals: A Comprehensive Guide on Engine	ering	Drav	ving and
	Modeling (2020)	-			
2		rst Course in Engineering Drawing; Springer (2017)			
3		Engineering Drawing; McGraw-Hill Education (2015)			/·
4		neering Drawing by N. D. Bhatt.; 11 th Ed.; C. Publishing House		Ltd.	(2011)
5		a, B. C. Engineering Drawing; 2 nd Ed.; Pearson Education (20			
6		rick E.; Lockhart, Shawna; Goodman, Marla; Johnson, C	indy	М. Т	echnical
		gineering Graphics; 15 th Ed.; Pearson Prentice Hall (2016)			
7	טטט <i>י</i> ן, וא. H. Eng	jineering Drawing; 15 th Ed.; Nandu (2015)			

	Course Outcomes (Students will be able to)								
CO1	prepare multi view orthographic projections of objects by visualizing them in different positions. (K3)								
CO2	draw sectional views and develop surfaces of a given object. (K3)								
CO3	prepare pictorial drawings using the principles of isometric projections to visualize objects in								
003	three dimensions. (K3)								
CO4	prepare assembly drawing. (K3)								
CO5	obtain Multiview projections and solid models of objects using CAD tools (K3)								

											CD				
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PC9	PO10	PO11	PO12	PSO1	PSO2
CO1	К 3	3								5				3	
CO2	К 3	3	1						~	0				3	
CO3	К З	3							5		1			3	
CO4	К З	3						11	1		2			3	
CO5	К 3	3				3		70			3			3	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, A tective domain; S, Psychomotor domain

K, knowledge level from cognitive domain; A, Afrective domain; S, Psychomotor dom Afrective dom Afrective dom Afrective

	Course Code:	Course Title:	Cr	edits	= 2
	CHP1343	Physical and Analytical Chemistry Laboratory	L	Т	P
	Semester: II	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Stand	ard XII Chemistry L	aboratory Course			
	Li	st of Courses where this course will be prerequisite			
This is	a basic Course. Th	is knowledge will be required in Applied Chemistry subjects later	r.		
		ption of relevance of this course in the B. Tech. Program			
		niliar with laboratory experimental skills, plan and interpretation evance of principles of physical chemistry in chemical processes	of exp	oerim	ental
Sr. No.		Course Contents (Topics and Subtopics)		equir Hour:	
1		ed on chemical reaction kinetics, phase equilibria and s, surface and interfacial phenomena such as surface tension		/sess sessi	
	l	Total		60	
		List of Text Books/ Peference Books			
1	Practical physical	Chemistry – B. Viswanthan and P. S. Raghavan			
2	Practical physical	Chemistry- Alexander Findlay			
	1	Course Outcomes (students will be able to)			
C01		mine physicochemical parameters using simple tools (K3)			
CO2	interpretation of d	ata and drawing scientific conclusions, dryers, etc (K4)			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	К6	K3	K3+S	K3	K3+	K2+A	K3	K6+A+S	K3	K4
						~				Α					
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K4	3	3	2	co	2	3	3	3	3	3	3	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

.0

	Course Code				0	dita	
	Course Code:		ourse Title:	0	Ure	dits T	1
	CHT1401		/tical Chemistry	- 6'	L		P
	Semester: I		Contact Hours: 45	-07	2	1	0
Ctavada		List of Prerequ	isite Courses	~ V			
Standa	rd XII Chemistry			0			
		t of Courses where this		quisite			
Physica		emistry Laboratory (CHP1					
		tion of relevance of this					
		e students to key conce					
		data analysis. It pres					
		ents should be able to sel	ect an appropriate ar	ialytical technique	e anu	app	iy it
	indance with its stre	ngths and limitations.			De		
Sr.		Course Contents (Topic	s and Subtopics)			quir lour:	
No.	Introduction to (chamical Analysia Tarmir	alagy (to baigua/ma	thad/procedure		ours	5
1		chemical Analysis, Termin				F	
1		classification of analyt	ical techniques, Go	Dou Laboratory		5	
	Practices (GLP)	and procedures, properati	on of laboratory com				
		and procedures, preparation					
2	selectivity, and de	cting analytical methods	- accuracy, precis	ion, sensitivity,		8	
	Calibration and va						
		rors – Systematic and ra	ndom orrore statistic	al treatment of			
3		ults (F, Q and t tests.				6	
3		juare method, correlation of		and connuence		0	
		thods: General principle, ir		onlications of			
4	- UV-visible spect		ואיז איז איז איז איז איז איז איז איז איז	splications of		8	
-	- Fluorescence spect					0	
		lethods: General principles	s instrumentation and	applications of			
5		Potentiometry, Coulometry		applications of		8	
		Methods: General princip		nd applications			
6		natography (GC), High-p				10	
0		ange chromatography, Size				10	
				Total		45	
		List of Textbooks/	Peference Books	Total		43	
1	Modern Analytica	Chemistry by David Harve		<u> </u>			
2		rsis by R. A. Day and A. L.					
		nods of Analysis by H. H.				So	ttle
3	Wadsworth Public			, J. A. Dean and		. 50	ue,
		Analytical Chemistry by D		st E James Ho	ller ar	nd S	P
4	Crouch, Cengage		. A. Skoby, D. M. W.			iu S	
		umental Analysis by D. A. S	Skoog E James Holl	er and S. R. Crou	ich C	:ena	ane
5	Learning, 2007		energ, r. barres rion		, c	Jeng	uge
		Course Outcomes (Stud	ents will be able to)			
CO1	Apply the knowled	Ige of sampling, data analy			d (K3)	
CO2		bles of UV Visible and Fluo	· · ·		<u> </u>	/	
CO3		ples of electrochemical me	-				
CO4		bles of chromatographic me					

		Μ	appin	g of C	ourse	Outco	omes ((COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2

e 3 3 2 2 3	Cours	s K		- 6	-								
K. knowledge level from cognitive domain; A. Affective domain; S. Psychomotor comain Credits = 3 Corres Code: Corres Title: Credits = 1 Semester: II Total Contact Hours: 45 2 1 0 List of Prerequisite Courses Standard XII Chemistry, Physical Chemistry - I (CHT1341) Image: Courses Image: Course Image: Courses Image: Courses Image: Courses Image: Course: Course Image: Course: Course Image: Course: Course Image: Course: Course				-	-	3	3						
CHT1342 Physical Chemistry - II L T P Semester: II Total Contact Hours: 45 2 1 0 List of Prerequisite Courses Standard XII Chemistry, Physical Chemistry - II (CHT1341) Image: CHT1342 Image: CHT1342 Other Chemistry and Applied Chemistry courses Description of relevance of kinetic studies and parameters affecting the same. The understanding of kinetic principles should be applied to vards understanding complex reaction pathways and their mechanistic studies. The concept of intrafaces and surfaces are instrumental in conveying the applications and importance of disperse systems. Required Hours Sr. Course Contents (Topics and Subtopics) Required Hours Introduction - concept of reaction rates and order, experimental methods in kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions 3 Complex reactions parallel, consecutive and reversible reactions 4 Homogenous catalysis, enzyme catalysis (Michalis-Menten kinetics) 4 Reactions at interface - Ads option isotherms, kinetic so of surface reaction reaction rates - Theory of unimolecular reactions, collision theory and transition studies of distruct of surface reaction and surface interface on reaction faces - Ads option isotherms, kinetic so or reaction faces - Ads option isotherms, kinetic so in reaction reaction reactions, collision theory and transition studies of surface s – contact angle, wetting													
Semester: II Total Contact Hours: 45 2 1 0 Standard XII Chemistry, Physical Chemistry - I (CHT1341) List of Courses where this course will be prerequisite Other Chemistry, Physical Chemistry - I (CHT1341) Chemistry, Physical Chemistry - I (CHT1341) List of Courses where this course will be prerequisite Other Chemistry, Physical Chemistry ourses Description of relevance of this course in the St Tech. Program Students should learn to appreciate the relevance of kinetic studies and parameters affecting the same. The understanding of kinetic studies, sifterential and integral methods to formulate rate equations of zero, first and second order reactions reactions provimation Required Hours No. Course Contents (Topics and Subtopics) Required Hours Introduction - concept of reaction rates and order, experimental methods in kinetic studies. differential and integral methods to formulate rate equations of zero, first and second order reactions 3 Experimental methods of kinetic studies Kinetics and reactions mechanism - rate determining step, steady state approximation 4 Complex reactions - experimental techniques 4 4 Homogenous catalysis (Mchalis-Menten kinetics) 4 Reactions at interface - Adso ption isotherms, kinetics of surface reactions - Hishelwood and Riedam doc. Iso surface and interfacial tensions 10 Theories of reactio				0									
List of Prerequisite Courses Standard XII Chemistry. Physical Chemistry - I (CHT1341) List of Courses where this course will be pre-requisite Other Chemistry and Applied Chemistry courses Bescription of relevance of this course in the S. Tech. Program Students should learn to appreciate the relevance of kinetic studies and parameters affecting the same. The understanding of kinetic principles should be applied towards understanding complex reaction pathways and their mechanistic studies. The concept of Interfaces and surfaces are instrumental in conveying the applications and importance of disperse systems. Sr. Course Contents (Topics and Subtopics) Required Hours Introduction - concept of reaction rates and order, experimental methods in kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions 8 Experimental methods of kinetic studies Complex reactions - parallel, consect twe and reversible reactions 6 Reactions - experimental techniques Fast reactions - experimental techniques 4 Homogenous catalysis - homoreneous acid / base catalysis (specific and general acid catalysis), = norm cienceus, site facts on reaction and techniques of surface acidons, where has a construction reaction and surface free energy, methods of determining surface and interfacial tensions 4 Required Homogenous catalysis (Michalis-Menten kinetics) 6 5 <td></td> <td></td> <td><u> </u></td> <td>~</td> <td></td> <td>-</td> <td>-</td>			<u> </u>	~		-	-						
Standard XII Chemistry - I (CHT1341) List of Courses where this course will be prerequisite Other Chemistry and Applied Chemistry courses Description of relevance of this course in the 9. Tech. Program Students should learn to appreciate the relevance of kinetic studies and parameters affecting the same. The understanding complex reaction pathways and their mechanistic studies. The concept of interfaces and surfaces are instrumental in conveying the applications and importance of disperse systems. Required Hours Sr. Course Contents (Topics and Subtopics) Required Hours Introduction – concept of reaction rates and order, experimental methods in factors mutates and order, experimental methods in factors approximation 3 Experimental methods of kinetic studies 8 Kinetics and reaction mechanism – raie determining step, steady state approximation 6 Complex reactions- parallel, consect live and reversible reactions 4 Homogenous catalysis – homocraneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 Reactions at interface – Adcoption isotherms, kinetics of surface reactions - Histewood and Rideal moctels of surface reactions, collision theory and transition state the up, Effect of temperature, Solvent effects on reaction factor rates - surface excess, Gibbs adsorption equation, curved surfaces - surface excess, Gibbs adsorption equation, currend				<i>.</i>	2	±	0						
Other Chemistry and Applied Chemistry courses Description of relevance of this course in the 9. Tech. Program Students should learn to appreciate the relevance of kinetic studies and parameters affecting the same. The understanding of kinetic principles should be applied to vards understanding complex reaction pathways and their mechanistic studies. The concept of inter aces and surfaces are instrumental in conveying the applications and importance of disperse systems. Required Hours Sr. Course Contents (Topics and Subtopics) Required Hours Importantice of the same. Surface and reaction retes and order, experimental methods in of zero, first and second order reactions of zero, first and second order reactions 3 Experimental methods of kinetic studies. Kinetics and reaction mechanism – raic determining step, steady state approximation 6 Complex reactions – experimental techniques Homogenous catalysis – homoreneous acid / base catalysis (specific and general acid catalysis), nerzym catalysis (Michalis-Menten kinetics) 4 Hishelwood and Rideal moores of surface reactions. 4 1 Theories of reaction rates – heory of unimolecular reactions and interfacial chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial chemistry – urataces. 10 Surface and interfacial Chemistry – introduction, surface tensions and spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 Surfaca atis instrace su	Standa		5										
Description of relevance of this course in the 5. Tech. Program Students should learn to appreciate the relevance of kinetic studies and parameters affecting the same. The understanding of kinetic principles should be applied to vards understanding complex reaction pathways and their mechanistic studies. The concept of interfaces and surfaces are instrumental in conveying the applications and importance of disperse systems. Required Hours Sr. Course Contents (Topics and Subopics) Required Hours Required Hours 1 Introduction – concept of reaction rates and order, experimental methods in kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions Required Hours 2 Complex reactions – parallel, consect view and reversible reactions meactions 6 3 general acid catalysis), enzymic catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Ado option isotherms, kinetics of surface reactions- Hishelwood and Rideal models of surface reactions, collision theory and transition state theory of unimolecular reactions, collision theory and transition state theory of unimolecular reactions and surface free energy, methods of determining surface and interfacial tensions 10 7 Curved surfaces, bubbles, droplets and foams, kelvin, Young Laplace and transon state theory, Effect of temperature, Solvent effects on reaction free energy, methods of determining surface and interfacial tensions 10 7	Othor		ll be prereq	uisite									
Students should learn to appreciate the relevance of kinetic studies and parameters affecting the same. The understanding of kinetic principles should be applied towards understanding complex reaction pathways and their mechanistic studies. The concept of inter aces and surfaces are instrumental in conveying the applications and importance of disperse systems. Sr. Course Contents (Topics and Subtopics) Required Hours Introduction – concept of reaction rates and order, experimental methods in kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions 3 Experimental methods of kinetic studies 3 Complex reactions parallel, consect tive and reversible reactions Mechanism of thermal, photochemical chain reactions, polymerization reactions – experimental techniques 4 Homogenous catalysis – homeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 Reactions at interface – Ads option isotherms, kinetics of surface reactions - fast reaction rates - Theory of unimolecular reactions, collision theory and transition state theory. Effect of temperature, Solvent effects on reaction rates 10 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of dietermining surfaces and interfacial tensions 4 Itering adhesion and cohesion, contact angle measurements and thysteresis. 5 Surface and interfacial chemistry – introduction, surface charges and ther surfaces subles, dropl	Outlet		the B. Tech	. Program									
pathways and their mechanistic studies. The concept of interfaces and surfaces are instrumental in conveying the applications and importance of disperse sys ems. Required Hours Sr. No. Course Contents (Topics and Subtopics) Required Hours 1 kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions 3 2 Kinetics and reaction mechanism – rate determining step, steady state approximation 6 2 Complex reactions parallel, consecutive and reversible reactions Mechanism of thermal, photochemical chain reactions, polymerization reactions – experimental methods of kinetics (Michais-Menten kinetics) 4 2 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michais-Menten kinetics) 4 4 Reactions at interface – Adsorption isotherms, kinetics of surface reactions - Hishelwood and Rideal models of surface reactions, collision theory and transition state theory. Effect of temperature, Solvent effects on reaction factor - Theory of unimolecular reactions, collision theory and transition state theory. Effect of temperature, Solvent effects on reaction fraces - multiput interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and thysteresis 4 6 Surface and interfacial Chemistry – introduction, surface tensions of surface and theys and poslic-liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and thysteresis		ents should learn to appreciate the relevance of kinetic stu	idies and pa	rameters aff									
Sr. No. Course Contents (Topics and Subtopics) Required Hours 1 Introduction – concept of reaction rates and order, experimental methods in kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions 3 2 Kinetics and reaction mechanism – rate determining step, steady state approximation Complex reactions- parallel, consect live and reversible reactions Mechanism of thermal, photochemical chain reactions, polymerization reactions Fast reactions – experimental techniques 6 3 Homogenous catalysis, – nomeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adcoption isotherms, kinetics of surface reactions- Hishelwood and Rideal models of surface reactions, collision theory and transition state theory. Effect of temperature, Solvent effects on reaction rates 10 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces – surface excess, Gibbs adsorption equation, curved surfaces – subles, droplets and foams, Kelvin, Young Laplace and thomson equations, homogeneous nucleation 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresic 4 9 surfactants:: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems 5 10 Emeridation the	pathwa	vays and their mechanistic studies. The concept of inter	rfaces and s										
No. Introduction – concept of reaction rates and order, experimental methods in kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions 3 1 of zero, first and second order reactions 3 2 Kinetics and reaction mechanism – rate determining step, steady state approximation 3 2 Complex reactions- parallel, consect tive and reversible reactions 6 3 general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adsorption isotherms, kinetics of surface reactions- Hishelwood and Rideal models of surface reactions, collision theory and transition state theory. Effect of temperature, Solvent effects on reaction for rates 10 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces – surface se – courface excess, Gibbs adsorption equation, and solid-liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and 4 hysteresic 4 8 surfactants:: Types, adsorption at surfaces and interfaces, surfactant aggregation phenomena, applications of surface free double layer 5 9 </td <td>Sr.</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	Sr.					-							
1 kinetic studies, differential and integral methods to formulate rate equations of zero, first and second order reactions 3 2 Kinetics and reaction mechanism – rate determining step, steady state approximation 6 2 Complex reactions- parallel, consect tive and reversible reactions mechanism of thermal, photochemical chain reactions, polymerization reactions – experimental techniques 6 3 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adso ption isotherms, kinetics of surface reactions- 4 5 and transition state theory. Effect of temperature, Solvent effects on reaction rates or surfaces - publes, droplets and foams, Kelvin, Young Laplace and thomogeneous nucleation 10 7 curved surfaces - publes, droplets and foams, Kelvin, Young Laplace and thysteresis 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 surfactants: Types, adsorption at surface charges and interfaces, surfactant and interes surface surface surface surface surface surface surface surface surfaces, surfactant 4 10 Extension and cohesion, contact angle measurements and thysteresis 4 10 Eulaid-liquid interfaces and interfaces, surfactant 4 10 Eulaid-liquid interfa	No.		<u> </u>	nothode in	ŀ	lours	5						
07 2ero, inst and second order reactions Experimental methods of kinetic studies Xinetics and reaction mechanism – raie determining step, steady state approximation 2 Complex reactions- parallel, consect tive and reversible reactions Mechanism of thermal, photochemical chain reactions, polymerization reactions Fast reactions – experimental techniques 3 Homogenous catalysis – homoreneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adso ption isotherms, kinetics of surface reactions- 4 Hishelwood and Rideal models of surface reactions 4 Theories of reaction rates - Theory of unimolecular reactions, collision theory and transition state theory, Effect of temperature, Solvent effects on reaction frates 10 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces – bubbles, droplets and foams, Kelvin, Young Laplace and thromogeneous nucleation 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 aggregates, factors affecting aggregation phenomena, applications of surfacatant 4 9 aggregates, factors affecting aggregation phenomena, applications and foams,	1					2							
Kinetics and reaction mechanism – rate determining step, steady state approximation 6 2 Complex reactions- parallel, consect tive and reversible reactions 6 3 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adsorption isotherms, kinetics of surface reactions-Hishelwood and Rideal models of surface reactions 4 5 Theories of reaction rates - Theory of unimolecular reactions, collision theory and transition state theory. Effect of temperature, Solvent effects on reaction rates 10 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces – pubbles, droplets and foams, Kelvin, Young Laplace and thysteresis 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 surfactants: Types, adsorption at surfaces and interfaces, surfactant adgregates, factors affecting aggregation phenomena, applications of surfactant systems 5 10 Eist of Textbooks/Reference Books 5 10 Eist of Textbooks/Reference Books 5 11 Press, 2017. 2 Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017.	L					3							
approximation Complex reactions- parallel, consecutive and reversible reactions 6 2 Mechanism of thermal, photochemical chain reactions, polymerization reactions 6 3 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adsorption isotherms, kinetics of surface reactions-Hishelwood and Rideal models of surface reactions 4 5 and transition state theory, Effect of temperature, Solvent effects on reaction rates 10 6 free energy, methods of determining surface and interfacial tensions 10 7 Thermodynamics of surfaces – surface excess, Gibbs adsorption equation, curved surfaces – bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 4 8 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants; and mixed surfactant systems 4 9 Surfactants: Collidis: preparation, stability, characterization, surface charges and feart, BLB values 5 10 Ext of Textbooks/Reference Books 5 11 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 2 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, Ne			na sten ste	adv state									
2 Mechanism of thermal, photochemical chain reactions, polymerization reactions 0 3 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adsorption isotherms, kinetics of surface reactions-Hishelwood and Rideal models of surface reactions 4 5 Reactions at interface – Adsorption isotherms, kinetics of surface reactions-Hishelwood and Rideal models of surface reactions 4 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces - bubles, droplets and foams, Kelvin, Young Laplace and thorson equation, curved surfaces - bubles, droplets and foams, Kelvin, Young Laplace and 4 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactent systems 4 10 Enulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 10 Enulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 10 Enulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values <td></td> <td>approximation</td> <td>0</td> <td>Judy State</td> <td></td> <td></td> <td></td>		approximation	0	Judy State									
reactions experimental techniques 3 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adsorption isotherms, kinetics of surface reactions-Hishelwood and Rideal models of surface reactions 4 5 Anotesis of reaction rates - Theory of unimolecular reactions, collision theory and transition state theory. Effect of temperature, Solvent effects on reaction rates 6 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface excess, Gibbs adsorption equation, curved surfaces - bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 10 7 curved surfaces - bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactant systems 5 10 Enulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 10 Enulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 10 Enulsions: Thermodynamics and stability of emulsions, microemul	2			morizotion		6							
Fast reactions – experimental techniques 3 Homogenous catalysis – homogeneous acid / base catalysis (specific and general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adsorption isotherms, kinetics of surface reactions-Hishelwood and Rideal models of surface reactions 4 5 Theories of reaction rates - Theory of unimolecular reactions, collision theory and transition state theory, Effect of temperature, Solvent effects on reaction frates 10 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces - bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems 4 10 Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 10 Ext of Textbooks/Reference Books 5 11 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 2 2 Chemical Kinetics (3rd edition) by Keith J. Laidler,													
3 general acid catalysis), enzyme catalysis (Michalis-Menten kinetics) 4 4 Reactions at interface – Adso ption isotherms, kinetics of surface reactions- Hishelwood and Rideal models of surface reactions 4 5 And transition state theory, Effect of temperature, Solvent effects on reaction rates 6 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces- bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 4 8 spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of foams, HLB values 4 10 Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 5 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 1 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013. 4		Fast reactions – experimental techniques											
4 Reactions at interface – Ads option isotherms, kinetics of surface reactions. Hishelwood and Rideal motels of surface reactions 4 5 And transition state theory, Effect of temperature, Solvent effects on reaction rates rates 6 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 curved surfaces - bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 4 8 Spreading, adhesion and cohesion, contact angle, wetting and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants: Types, adsorption at surfaces and interfaces and fectrical double layer 4 10 Extractant systems 5 10 Surfactants: Topes, adsorption at sublity of emulsions, microemulsions and foams, HLB values 5 10 Entrical on bubble stand stability of emulsions, microemulsions and foams, HLB values 5 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 1 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 1 3 Introduction to Colloid and Surface Chemistry (4th edition) by Dun	3					4							
5 and transition state theory, Effect of temperature, Solvent effects on reaction rates 6 6 Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions 10 7 Thermodynamics of surfaces – surface excess, Gibbs adsorption equation, curved surfaces – bubbles, droplets and foams, Kelvin, Young Laplace and thomson equations, homogeneous nucleation 4 8 Liquid-liquid and solid-liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregales, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems 4 10 Colloids: preparation, stability, characterization, surface charges and electrical double layer 5 10 Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 45 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 1 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth-Heinemann 2013. 4 4 Surfaces, Interfaces, and Collolds: Principles and Applications (2nd edition) by Dr	4	Reactions at interface – Adsorption isotherms, kinetics				4							
rates6Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions107Thermodynamics of surfaces – surface excess, Gibbs adsorption equation, curved surfaces - pubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation48spreading, adhesion and cohesion, contact angle, wetting and hysteresis49Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of electrical double layer410Colloids: preparation, stability, characterization, surface charges and foams, HLB values51Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017.452Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013.5	5					6							
0 free energy, methoos of determining surface and interfacial tensions 10 7 Thermodynamics of surfaces – surface excess, Gibbs adsorption equation, curved surfaces - bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 4 8 Liquid-liquid and solid-liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems 4 10 Colloids: preparation, stability, characterization, surface charges and electrical double layer Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 45 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 1 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth-Heinemann 2013. 4 4 Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers, 5		rates											
7 Thermodynamics of surfaces – surface excess, Gibbs adsorption equation, curved surfaces- pubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation 4 8 Liquid-liquid and solid-liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and 4 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems 4 10 Colloids: preparation, stability, characterization, surface charges and electrical double layer Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 11 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 45 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 1 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth-Heinemann 2013. 4	6					10							
Thomson equations, homogeneous nucleationLiquid-liquid and solid-liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and hysteresisSurfactants:Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systemsColloids:preparation, stability, characterization, surface charges and electrical double layerColloids:preparation, stability, characterization, surface charges and electrical double layerEmulsions:Thermodynamics and stability of emulsions, microemulsions and foams, HLB valuesImage: Colloids:Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017.Physical Chemistry (11th edition) by Keith J. Laidler, New York : Harper & Row, 1987.Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013.A		Thermodynamics of surfaces - surface excess, Gibbs	s adsorption	equation,									
8 Liquid-liquid and solid-liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and hysteresis 4 9 Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems 4 10 Colloids: preparation, stability, characterization, surface charges and electrical double layer Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 10 List of Textbooks/Reference Books 5 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 45 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 1 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth-Heinemann 2013. 4 4 Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,	7		n, Young La	place and		4							
hysteresis Image: second s		Liquid-liquid and solid-liquid interfaces - contact											
9Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems410Colloids: preparation, stability, characterization, surface charges and electrical double layer Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values51Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017.52Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013.54Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,	8		e measuren	nents and		4							
surfactants and mixed surfactant systems10Colloids: preparation, stability, characterization, surface charges and electrical double layer Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values51Total451Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017.97.2Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987.3Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013.4Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,			interfaces,	surfactant									
10Colloids: preparation, stability, characterization, surface charges and electrical double layer Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values51Total451Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017.12Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987.3Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013.4Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,	9		nena, applio	cations of		4							
10 electrical double layer Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values 5 1 Total 45 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. Verses, 2017. 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013. 4 Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,			surface cha	arges and									
Emulsions: Thermodynamics and stability of emulsions, microemulsions and foams, HLB values Total 45 List of Textbooks/Reference Books 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth-Heinemann 2013. 4 Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,	10	electrical double layer		-		5							
Total 45 List of Textbooks/Reference Books 1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth-Heinemann 2013. 4 Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,	10		s, microemu	lsions and		Ŭ							
1 Physical Chemistry (11th edition) by P. W. Atkins, J. de Paula and J. Keeler, Oxford University Press, 2017. 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013. 4 Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,				Total		45							
1 Press, 2017. 2 Chemical Kinetics (3rd edition) by Keith J. Laidler, New York : Harper & Row, 1987. 3 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013. 4 Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers,													
 Introduction to Colloid and Surface Chemistry (4th edition) by Duncan Shaw, Butterworth- Heinemann 2013. Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers, 	1		e Paula and	J. Keeler, C	Dxford	Unive	ersity						
 ³ Heinemann 2013. A Surfaces, Interfaces, and Colloids: Principles and Applications (2nd edition) by Drew Myers, 	2												
	3		edition) by	Duncan Sha	aw, Bi	utterw	orth-						
	4		plications (2	nd edition)	by Dre	ew M	yers,						

5	Surfactants and Interfacial Phenomena (4th edition) by M. J. Rosen, John Wiley & Sons, Inc., 2012
	Course Outcomes (Students will be able to)
CO1	comprehend fundamental knowledge in chemical kinetics with basics of c der, molecularity and temperature effect (K2)
CO2	examine kinetics for complex, fast as well as surface reactions and comprehend different theories in kinetics (K4)
CO3	comprehend fundamental knowledge and thermodynamics in surface and interfacial chemistry (K3)
CO4	evaluate the behavior of surface-active agents and disperse systems based on the knowledge of interfacial phenomena (K4)

										~					
		M	apping	g of C	ourse	Outco	omes ((COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K								1						
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K							- 6							
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K							5							
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K						G								
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code:	Course Title:	0.1	Credi	ts = 3	
	CHT1138	Organic Chemistry - II	OV.	LT	Р	
	Semester: II	Total Contact Hours: 45	- <u>A</u>	2 1	0	
Organi	c Chemistry - I (C	List of Prerequisite Courses	0			
Organi		ist of Courses where this course will be prerequ	lisite			
Other		olied Chemistry courses				
	Descr	ption of relevance of this course in the B. Tech.				
		with concepts related to aromatic, heteroaromatic				
Sr.	ey are perfectly all	gned to apply the same for the future courses and i	in their prof		career J ired	
No.		Course Contents (Topics and Subtopics)		Ho		
1	Nitro and amino	arenes		5		
	Reactions, basic		0	,		
2		philic substitution reactions	achaniam	,	_	
2	Addition, elimir (benzyne), Sand	nation mechanism; elimination – addition m meyer reaction	lechanism	Ę		
	Pericyclic Reacti					
		plecular orbitals, frontier orbitals of ethylene, 1,3-b	outadiene,			
		and allyl system, classification of pericyclic				
		nann correlation diagrams, FMO and PMO ap				
3		ction -conrotatory and disrotatory motions of 4n, cloaddition -antara facial and suprafacial addition		1	3	
3		2+2 addition of ketenes, 1,3 dipolar cycloaddi	· ·	T	3	
		actions; sigmatropic rearrangements - suprafa				
		s of hydrohen, sigmairopic shifts involving carbon				
		igmatropic rearrangements, Claisen, Cope and	Aza-Cope			
	rearrangements,	0.00				
	Heteroaromatic	lature, structures and common names, compar	rison with			
4		pounds, reactivity and synthesis – pyrroles		1	0	
	thiophenes and	byridines				
	Named Organic					
		(Mauvine synthesis-dyes), Fischer indole synthesi ey epoxide synthesis (Pharmaceutical), Ziegl				
5			reaction	1	2	
		r amino acid synthesis (Pharmaceuticals & Foo				
	reactions, Prilezl		<i>,,</i> 0			
		ŭ	Total	4	5	
	Claydon 1 Cro	List of Textbooks/Reference Books eves, N., Warren, S.; Organic Chemsitry; 2 nd ed.; O	vford Linivo		20	
1	(2012)	eves, N., Warten, S., Organic Chemsnity, 2 ed., O.			55	
2		ns, T. W.; Fryhle, Craig B.; Snyder, Scott A. Organic	Chemistry	; 12 th Ed.	; John	
	Wiley & Sons. In					
3		rch's Advanced Organic Chemistry: Reactions, Med	chanisms a	nd Struct	ure; 7th	
	ed.; Wiley, India	dberg, R. J. Advanced Organic Chemistry: Part A: S	Structure an	d Mecha	nisms:	
4	5 th ed.; Springer			u meena	11131113,	
5		dberg, R. J.; Advanced Organic Chemistry: Part B:	Reaction ar	nd Synthe	esis; 5 th	
	ed.; Springer (20					
6		nek, J. W.; Singh, M. S. Organic Chemistry; 9th Ed.;		ducation	(2019)	
7		ochemistry of Carbon Compounds; Mcgraw-Hill (20 Organic Chemistry; 8 th Ed.; Pearson Education (20				
0	I DIVICE, Paula, 1.	Course Outcomes (Students will be able to				
CO1	Explain the arom	natic chemistry and interpret the outcome of general		tions (K	3)	
CO2		isualize the reactions involving radicals such as cyc			/	
	reactions in synt			-		
CO3		mportance of heterocycles, learn the properties and				
	UPAC OF COMPO	unds and decipher outcomes of various transforma	uons involv	ing neter	ocycles	

	(K3)
CO4	apply the knowledge obtained through the course to predict the outcome of reactions and
004	devise solutions to unknown problems (K3)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K3	3	3	2	2	2	3	3	3	3	З	3	2	3	3
Cours	K3									~					
е		3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

ect

	Course Code:			redit	c - 2	
	PYT1103	Course Title:		T	<u>5-3</u> P	
		Applied Physics - II		· ·	-	
	Semester: II	Total Contact Hours: 45	2	1	0	
Chavada		List of Prerequisite Courses				
Stanua		pplied Physics – I (PYT1101), Physics Laboratory (PYP1101)				
Thia ia		ist of Courses where this course will be prerequisite	toro	~		
This is		ourse. This knowledge will be required in almost all subjects la	ter o	n.		
The la		iption of relevance of this course in the B. Tech. Program	viaal	ongir	ooring	
		from this course is required for understanding various chem introduced in courses such as momentum transfer, react				
		ermodynamics, heat transfer, etc.		engin	eening,	
Separa Sr.				Requ	irod	
No.		Course Contents (Topics and Subtopics)		Hou		
INU.	Quantum Mech		nou	15		
		uantum physics, black body radiation, explanation using the photoelectric effect, Compton effect, de Broglie hypothesis,				
1		ality, Born's interpretation of the wave function, verification		25	1	
		uncertainty principle, Schrodinger wave equation, particle in				
		armonic oscillator, hydrogen atom (no detailed derivation)				
		Agnetic Properties of Materials				
		e 'del' operator and vector calculus, revision of the laws of				
		lectric current and the continuity equation, revision of the				
	laws	2				
2	of magnetism.	machility and dialact is constant, palar and non-palar	20			
		meability and dielectric constant, polar and non-polar				
		nal fields in a solid, Clausius-Mossotti equation, applications				
	of dielectrics.	armachility and avecantibility, alagaification of magnetic				
		ermeability and susceptibility, classification of magnetic nagnetism, magnetic domains and hysteresis, applications.				
		Total		45		
		List of Textbooks/Reference Books		40	,	
1	Physics · Vols I	and II – D. Halliday and R. Resnick, Wiley Eastern				
		sics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and				
2	M. Sands, Naros					
3	,	dern Physics – A. Beiser, McGraw-Hill.				
4	· · · · · · · · · · · · · · · · · · ·	ics – A. J. Dekker, 1957, MacMillan India.				
5		Modern Physics – A. Beiser, 1969, McGraw-Hill.				
		Course Outcomes (Students will be able to)				
CO1	1	m mechanics calculations (K3)				
		rms related to properties of materials such as, permeability, po	lariz	ation	etc	
CO2	(K2)					
		e basic laws related to quantum mechanics as well as magneti	c and	d diel	ectric	
CO3	properties of ma		Jun		20010	
	5.70					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
0 Church	-			<u> </u>		<u> </u>		4 1	~			<u> </u>			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code:	Course Title:	Credi	ts = 4	
	MAT1102	Applied Mathematics – II	LT	Р	
	Semester: II	Total Contact Hours: 60	3 1	0	
		List of Prerequisite Courses			
HSC S		olied Mathematics – I (MAT1101)			
		ourses where this course will be prerequisite			
This is		se. This knowledge will be required in almost all subje	cts later.		
A 11		of relevance of this course in the B. Tech. Program			
impact various	t in the world, technology something the second s	crunching numbers. It is useful for solving real-life prob being one of those fields. The knowledge gained is re in several Chemical Engineering courses such as N Separation Processes, Thermodynamics, and several	equired fo MEBC, Mo	r solving	
Sr. No.	Course	Contents (Topics and Subtopics)	Require	d Hours	
	Numerical Methods I:	4			
		ear equations (Gauss-elimination, LU-			
	decomposition, and other				
1	method, Secant, Regula	olving non-linear algebraic/transcendental, Newton's	1	5	
		of linear algebraic equations: Jacobi, Gauss Siedel,			
	and under /over relaxatio				
	Numerical Methods II:				
		polation for equal and non-equal spaced data			
		ions backward and Lagrange)			
2	Numerical integration (tra	apezoidal rule, Simpson's Rule)	1	5	
		solution of initial values problems using RK method,			
	Euler's method and Taylo	or series method			
3	variable coefficients an problems, Series solut	Solution of Higher order ODE with constant and id its applications to boundary and initial value tion of differential equations, Bessel functions,	15		
	Legendre Polynomials, E	(
4	equation (both ODEs PD	e Transforms and their application in differential Es) ions, Classification of higher order PDEs, Solution of	1	5	
-	2	Total	6	0	
	2	List of Textbooks/ Reference books			
1	Kreyszig, E; Advanced (Officially Prescribed)	Engineering Mathematics; 10 th ed.; Wiley Global	Education	n (2010)	
2		. K. Advanced Engineering Mathematics; 4 th ed.; Alpha	Science	(2014)	
		R. K.; Jain, R. K. Numerical Methods for Scientific			
3		w Age International (P) Ltd. (2004)		,g	
4		R. C. Elementary Differential Equations; 10 th ed.; Jo	ohn Wiley	& Sons	
5		R. V. Fourier Series and Boundary Value Problems; 8	th ed.; Mc0	Graw-Hill	
	1	se Outcomes (Students will be able to)			
CO1	solve system of linear alg				
CO2	do numerical integrations				
CO3 CO4	<u> </u>	by analytical methods (K4) ns using numerical methods (K3)			
CO4	•	Laplace transform techniques to solve ODE and PDE	(K3)		
005	Apply i build sches and	Euplace transform techniques to solve ODE and FDE	(13)		

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	К3	K6+A+P	K3	K4
C01	K3	3	3	2	2	2	3	3	3	3	3 /	3	2	3	3
CO2	K3	3	3	2	3	2	3	3	3	3	3	3	2	3	2
CO3	K4	3	2	1	2	1	3	3	2	3	3	3	1	3	3
CO4	K3	3	3	3	2	2	2	3	3	3	3	3	2	3	2
CO5	K3	3	2	2	3	2	3	3	3	2	3	3	2	3	3
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution rit, ain; A, . K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

		\sim			
	Course Code:	Course Title:	Cr	edits	= 4
	CET1507	Process Calculations	L	Т	Ρ
	Semester: II	Total Contact Hours: 60	2	2	0
	1	List of Prerequisite Courses			
Stand	ard XII Mathematics,	Chemistry, Physics			
	List of C	ourses where this course will be prerequisite			
This is	s a basic Course. This	s knowledge will be required in ALL subjects later.			
	Description o	f relevance of this course in the B. Tech. Program			
this co It can	ourse is required for i	ous concepts used in Chemical Engineering to the students. Th n ALL B. Tech. courses in the subsequent semesters including th s situations such as process selection, economics, sustainability	ne pro	oject v	vork.
Sr.		Course Contents (Topics and Subtopics)		equir	
No.				Hour	5
1	operations, Concept	nical process calculations, Overview of single- and multistage tof process flow sheets		2	
2	Revision of Units an techniques	d Dimensions, Dimensional analysis of equations, Mathematical		4	
3	Mole concept, Comp	position relationship, Types of flow rates		2	
4	Material balance in processes	non-reacting systems: Application to single- and multistage		8	
5	Stoichiometry	2		2	
6	Material balance in processes	reacting systems: Application to single- and multistage		6	
7	Behavior of gases a	nd vapors		4	
8	Introduction to Psyc	hrometry, Humidity and air-conditioning calculations.		6	
9	Calculation of X-Y d	iagrams based on Raoult's law.		2	
10	Applications of mate	erial balances to multiphase systems		6	
11	Basic concepts of ty	pes of energy and calculations		2	
12	Application of energ	y balance to non-reacting systems		6	
13	Application of energ	y balance to reacting systems		6	
14	Fuels and combustion	on		4	
	0	Total		60	
	A.	List of Text Books/ Reference Books			
1	Elementary Princip	les of Chemical Processes, Felder, R.M. and Rousseau			
2	Chemical Process	Principles, Hougen O.A., Watson K. M.			
3	Basic Principles an	d Calculations in Chemical Engineering, Himmelblau,			
4	Stoichiometry, Bha	tt B.I. and Vora S.M.			
0.01		Course Outcomes (students will be able to)			
CO1	1	nple quantities from one set of units to another set of units (K2) and /or compositions, energy usages, etc. in various processes	and	oroce	SS
CO2	equipment such as	reactors, filters, dryers, etc. (K3)	-		
CO3 CO4		nces in multiphase systems (K3) ce to various systems (K3)			
	L apply chergy balan				

Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)															
		PO1			PO4					PO9		PO11		PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S		K3+A		K3	Kó+A+S		K4
CO1	K			1.0							··~·A	110	1.0.7.1.0		
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	ĸ					-						\sim			
002	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K										6	6			
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K										0				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	K									đ	7				
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
3, Stro	ong	Contr	ibution	; 2, Mo	oderat	e Cont	ributio	n; 1, L	ow Co	ontribut	ion; – N	lo Cont	ribution		
K, kno	owle	edge le	evel fro	om cog	Initive	domai	n; A, A	ffective	e dom	ain; S,	Psycho	motor	domain		
				-					1						
									- č	1					
								~ounce.	~	/					
									200						
								- C	5						
								S							
								õ							
							- (Ϋ́							
							. 0								
							~								
						1									
						0	7								
						N									
					6	.9									
					-	2									
					. X										
					~										
				-	0'										
				-											
				0	÷										
				Q.											
				2											
)											
			-Q												
			0												
			7	ULOON T											
			7												

	Course Code:	Course Title:	Cr	edits	= 2							
	PYP1101	Physics Laboratory	L	Т	Р							
	Semester: II	Total Contact Hours: 60	0	0	4							
		List of Prerequisite Courses										
Applie	ed Physics – I <mark>(PY1</mark>	T1101)										
		t of Courses where this course will be prerequisite										
This i	s a basic physics L	aboratory course. This knowledge will be required in almost a	ll sub	ojects	later							
on.												
Chuda		tion of relevance of this course in the B. Tech. Program	-+ +-	-:	This							
knowl under	Students will be able to learn various concepts by doing experiments on different topics. This knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc.											
Sr. No.		Course Contents (Topics and Subtopics)		equir Hour								
1	Viscosity	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		5								
2	Thermistor			6								
3	Thermal conductiv		5									
4	Ultrasonic interfer		6									
5	Photoelectric effect			5								
6	Hall effect		6									
7	Newton's rings	of pricm		5								
8	Dispersive power Laser diffraction			8								
9 10	Resolving power of	of anoting		8								
10	Resolving power (Total										
		List of Text Books/ Reference Books		60								
1		and II – D. Halliday and R. Resnick, Wiley Eastern										
2		sics: Vo's. I, II and III – R. P. Feynman, R. B. Leighton and										
	M. Sands, Naros											
3		ern Physics – A. Beiser, McGraw-Hill.										
4		odern Optics – G. R. Fowles ,Dover Publications.										
5	1	nmunication – G. Keiser, McGraw-Hill.										
6	A Course of Expo	eriments with LASERs – R. S. Sirohi, Wiley Eastern										
7	Optoelectronics -	J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India.										
8	8 Ultrasonics: Methods and Applications – J. Blitz, Butterworth											
9		mistry – T. J. Mason and J. P. Lorimer, Wiley VCH.										
		Course Outcomes (students will be able to)										
C01		vs which they have studied through experiments (K3)										
CO2		rt properties like viscosity, conductivity, etc.(K4)										
CO3	Explain the appli	cation of acoustic cavitation (K2)										

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

 μiŋ; - Νο ζ

 β, Psychonote

	CHP1132	Course Title: Organic Chemistry Laboratory		Teun	s = 2
			L	Т	Р
	Semester: I	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Standar	d XII Organic Chem	istry Laboratory			
	Lis	t of Courses where this course will be prerequisite			
All the A		racticals Physical and Analytical Chemistry Laboratory (CHP	1 <mark>343)</mark>		
		tion of relevance of this course in the B. Tech. Program			
		r training the students for working with binary mixtures.			
		anic separations and identification of organic compound			
		. The laboratory training is crucial for the students to car			
		o separation of crude products followed by purification usin	g reci	ystall	ization
and/or d	listillation or related	methods.			
		Course Contents (Topics and Subtopics)	1	Requi Hou	
	a) Principles o	f qualitative separation of organic mixtures using physical		4	
1		chemical properties and their combination		4	
-		of quantitative separation of organic mixtures using physical		4	
		chemical properties and their combination			
		id-solid water insoluble bir ary organic mixtures		5X4	
		id-solid partly water soluble binary organic mixtures		2X4	
		id-solid mixtures by fractional crystallization		2X4	
		uid-liquid mixtures by distillation uid-liquid mixtures by solvent extraction		2X4 2X4	
	e) Separation of liqu			<u> </u>	
		List of Textbooks/Reference Books	al	00	
	Arthur Vogel Texth	ook of practical organic chemistry, 5th edition, publishers Lo	nama	n aroi	un I td
	1989	ook of practical organic chemistry, our callon, publishers Et	ngina	i giui	<i>ч</i> р ∟ю,
		C. Saunders, Practical Organic Chemistry, 4thedition pu	blishe	d bv	Orient
2	Longman				
		. B, and Trevor P. Toube. Practical organic synthesis: a stud	lent's	guide	. John
	Wiley & Sons, 2006				
		Course Outcomes (Students will be able to)			
CO1	work safely in the o	rganic chemistry laboratory (K3)			
		anic mixtures by multiple techniques (K4)			
$(1) \prec 1$	•	rinciples for separation of binary organic mixtures qualitative	y and		
	quantitatively (K3)	0			
	Q.	Ĩ.			

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
Κ		Q												
3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Κ		-												
4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Κ														
3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Κ														
4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
	3 K 4 K 3 K	PO1 K3 3 3 K 4 3 K 3 3 K 5 K	PO1 PO2 K3 K4 3 3 K - 4 3 K - 3 3 K - 4 3 K - 3 3 K - 3 3 K - S 3 K - K -	PO1 PO2 PO3 K3 K4 K6 K 3 3 2 K 4 3 3 2 K 4 3 3 2 K 3 3 2 3 K 3 3 2 3 K 3 3 2 3 K 3 3 2 3 K 3 3 2 3 K 3 3 2 3 K 6 6 6 6 K 7 7 7 7	PO1 PO2 PO3 PO4 K3 K4 K6 K5 K 3 3 2 2 K 4 3 3 2 3 K - - - - - K - - - - - - K - <	PO1 PO2 PO3 PO4 PO5 K3 K4 K6 K5 K6 X 3 3 2 2 2 K - - - - - 4 3 3 2 3 2 2 K - - - - - 4 3 3 2 3 2 2 K - - - - - - 3 3 3 2 2 2 2 - K -	PO1 PO2 PO3 PO4 PO5 PO6 K3 K4 K6 K5 K6 K3 X 3 3 2 2 2 3 K - - - - - - 4 3 3 2 3 2 3 - K - - - - - - - 4 3 3 2 3 2 3 - - - K -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 K3 K4 K6 K5 K6 K3 K3+S X 3 3 2 2 2 3 3 K 3 3 2 2 2 3 3 K 4 3 3 2 3 2 3 3 K - <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 K3 K4 K6 K5 K6 K3 K3+S K3 3 3 3 2 2 2 3 3 3 K </td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K 3 3 2 2 2 3 3 3 3 K - <</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K 3 3 2 2 2 3 3 3 3 3 K -</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K3 X 3 3 2 2 2 3</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K3 K6+A+S X 3 3 2 2 2 3 3 3 3 3 2 K </td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K3 K6+A+S K3 X 3 3 2 2 2 3 3 3 3 3 2 3 K 3 3 2 2 2 3 3 3 3 3 2 3 K -</td>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 K3 K4 K6 K5 K6 K3 K3+S K3 3 3 3 2 2 2 3 3 3 K	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K 3 3 2 2 2 3 3 3 3 K - <	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K 3 3 2 2 2 3 3 3 3 3 K -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K3 X 3 3 2 2 2 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K3 K6+A+S X 3 3 2 2 2 3 3 3 3 3 2 K	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 K3 K4 K6 K5 K6 K3 K3+S K3 K3+A K2+A K3 K6+A+S K3 X 3 3 2 2 2 3 3 3 3 3 2 3 K 3 3 2 2 2 3 3 3 3 3 2 3 K -

	Course Code:	Course Title:		C	edits	- 2
	HUP1101	Course Title:	N		T	= <u>2</u> P
	Semester: II	Total Contact Hours: 60	0.	0	0	г 4
	Semester. II		V	U	U	4
		List of Prerequisite Courses	-			
Standa	ard XII English		/			
	Lis	st of Courses where this course will be prerequisite	•			
All						
	Descrip	otion of relevance of this course in the B. Tech. Pro	gram			
		ourse for the effective functioning of an Engine required in all courses and professional career.	er and a	a Teo	chnolo	ogist.
Sr. No.		Course Contents (Topics and Subtopics)			equir Hours	
1	Development of co	mmunication skills in oral as well as writing			10	
2	The writing skills sh writing, letter draftir	nould emphasize technical report writing, scientific pap- ng, etc.	er		14	
3	The oral communic	ation skills should emphasize presentation skills.			10	
4	Use of audio-visual presentation	I facilities like powerpoint, LCD. for making effective or	al		14	
5	Group Discussions				12	
		2	Total		60	
		List of Text Books/ Reference Books				
1	Elements of Style	– Strunk and White				
	1	Course Outcomes (students will be able to)				
CO1	write grammar err	or free technical reports in MS Word or equivalent soft	ware (K3)			
CO2	make power point	slides in MS PowerPoint or equivalent software (K3)				

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K				(1							İ		
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K				1										
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	K				~										
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

Semester III

	Course Code:	Course Title:	0.7	Cr	edits	= 3
	BST1110	Basics of Biology and Applications to Technol	ogy	L	Т	Ρ
	Semester: III	Total Contact Hours: 45 🧷 🧷	V	2	1	0
		List of Prerequisite Courses				
Standar	d XII Biology	2				
		t of Courses where this course will be prerequisite				
Safety s	tudies pertaining to	Chemicals, Pharmaceuticals, Polymers, cosmetics, Lu	ubricants	, Tex	tiles,	etc.
		tion of relevance of this course in the B. Tech. Prog				
ertain t echnolo	erminologies to ena	e will help a student understand basics of Human biolog able them to read contemporary research pertaining to s. The course will help a student to understand the safe guidelines	importar	nt		
		Course Contents (Topics and Subtopics)			equii Hour	
1	etc. Definitions of Health, Disease, human body, the	es of Human Anatomy and Physiology, the terminologi Anatomy, Physiology, Histology, Biochemistry, Homoe Toxicity, Safety, Genotoxicity, etc. Systems that ma rationale behind introducing the subject to the tec ha, foods, Polymers, Surface coatings, Oils, Textiles, D	ostasis, ake the hnology		7	
2	functions and its a cell death by ap	cell functioning as a whole unit and its organelles w applications to technology. An overview of normal cell optosis, necrosis Cancerous growth, metabolites/ lar secretions, different types of cells, cell repair, bion	division, energy		8	
3	Overview of Biom applications	aterials: Biodegradable, Biocompatible and their techn	ological		5	
4	using cellular exp	ions: design some simple experiments to evaluate erimente, organisms, animals etc. OECD guidelines. (and industrial relevance. (oral, dermal, inhalation)			5	
5		n in terms of mortality, Genotoxicity, hypersensitivity (s per various international guidelines namely, ICH, OEC			10	
6		n in terms of mortality, Genotoxicity, hypersensitivity (s per various international guidelines namely, ICH, OEC			5	
7	Irritation potential	evaluation of Lubricants, surfactants, excipients, etc.			5	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Total		45	
	Y.	List of Textbooks/Reference Books				
1	-	and Physiology R. K. Goyal, Ahmedabad, India.				
2		P. Rang, M. M. Dale, J. M. Ritter				
3		s Anatomy and Physiology in Health and Illness Anne V	Vaugh ai	nd Al		
4		of OECD, ISO, ICH				
	1	Course Outcomes (Students will be able to)				
CO1		xplain the basic concepts and terminologies of Biology	. ,			
CO2	Appreciate interdis experiments (K3)	sciplinary nature of biology and will be able to design a	nd execı	ute si	mple	
CO3	understand about applications in eve	the concept of toxicity/safety and its relevance to techn eryday life (K2)	nology ai	nd its	;	
	Manning of	Course Outcomes (COs) with Programme Outcom		<u> </u>		
		Course Outcomes (COS) with Programme Outcom	<u>50 - 1) 55</u>	<u> </u>		

									-	-			Const.		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6- A+S	K3	K4
CO1	K												$\sim$		
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K											0			
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K											1			
	2	3	2	1	2	1	3	3	3	3	3 🤇	3	1	3	2
Cours	K										2	£			
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution K, knowledge level from cognitive domain; A, Affective domain; S Psychomotor domain

Low .ctive don.

	Course Code:	Course Title:	Cre	dits			
	GET1110	Basic Mechanical Engineering		T	P		
	Semester: III	Total Contact Hours: 45	2	1	0		
		List of Prerequisite Courses					
None							
		st of Courses where this course will be Prerequisite					
Materia		1302), Strength of Materials, Environment Science and Technolog	у <b>(Н</b>	JT11	06)		
<b>T</b> 2 2 2 2 2		ion of relevance of this course in the B. Tech. Programme					
chemic		vith synthesis, properties and applications of various industrial ino	rganic	;			
Sr.			Do	quir			
No.		Course Contents (Topics and subtopics)		ours			
	Introduction to T	hermodynamics: First Law of Thermodynamics, Steady-flow					
1		Second Law of Thermodynamics		3			
		team and Boilers: Steam formation, Types of steam, Steam					
2		alpy, Simple numerical for finding enthalpy and dryness fraction		6			
	etc. boilers	lassification, Working principle of Cochran, Babcock & Wilcox,					
		assification, Working of 2-stroke, 4-stroke C.I. and S.I. Engines					
		s, Definitions and simple numerical for determining indicated		~			
3		er, Mechanical efficiency, indicated thermal efficiency, and		6			
	Brake thermal effi						
4		Classification of Prime movers, Working principle of steam, gas s, Concept of impulse and reaction steam turbines		4			
_		Classification of compressors, Reciprocating compressors, multistage compressors, P-V diagram, Rotary compressors,		4			
5	Fan, Blower & Compressors, Centrifugal and axial compressors, Application of						
	compressors						
6		ation of pumps, Reciprocating pumps, Centrifugal pumps, Axial		4			
		nps, Maintenance of pumps		-			
		OP of refrigerator and heat pumps, Classification of refrigerants, Properties desired by refrigerants, Vapour compression					
7		e, Methods of increasing COP of VCRS, Vapour absorption		5			
	refrigeration syste						
8		rgy: Role and importance of nonconventional and alternate		4			
		uch as solar, wind, ocean, bio-mass and geothermal		-			
9		<b>Power:</b> Introduction to various drives such as belt, rope, chain troduction to mechanical elements such as keys, couplings and		5			
		transmission (No numericals)		0			
		Applications of Engineering Materials: Metals -ferrous, cast-					
		nd stainless steels and non-ferrous aluminium, brass, bronze		_			
10		noplastic and thermosetting polymers		4			
		, optical fibre, glass, cermets e-reinforced composites, metal-matrix composites					
		Total		45			
		List of Text Books/ Reference Books	•				
1	Nag, P. K. Engine	ering Thermodynamics; 5 th Ed.; McGraw Hill Education (2013)					
2	Morse, Frederick	T. Power Plant Engineering; 3 rd Ed.; Van Nostrand Reinhold Inc. (	1953)				
3	Ballaney, P. L. The	ermal Engineering: Engineering Thermodynamics & Energy Conv		1			
	Techniques; 5 th Ec	d.; Khanna Publishers (1966)					
4		Achines Including Fluidics; 6 th Ed.; Metropolitan Book Co. Pvt. Lt					
5		ir, Tony. Renewable Energy Resources; 3 rd Ed.; Routledge	e (201	.5)			
6		nventional Energy Sources; Khanna (1988)					
7 8		geration and Air Conditioning; 4 th Ed.; McGraw Hill (2021)					
Ö	ralian, S. S. The	pry of Machines; 5 th Ed.; McGraw Hill (2019)					

	Course Outcomes (Students will be able to)
CO1	discuss the steam formation process and its properties (K2)
CO2	understand basics of heat transfer, refrigeration and I. C. Engines (K2)
CO3	understand mechanism of power transfer through belt, rope and gear drives and understand
003	the properties of common engineering materials and apply in engineering industry (K2)
CO4	explain the working principles of power-absorbing devices such as pumps and compressors
004	and explain need and importance of various renewable energy sources (K2)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	K 2	3	2	2	2	1				4	2			3	
CO2	K 2	3	2	2	2	1				40				3	
CO3	K 2	2	3	2	1	1			1	_				3	
CO4	K 2	3	3	2	1	1	1	1	10	/				3	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

Linding and a second se

Course Code:	Course Title: SPL1: Chemistry of Food	Cre	Credits = 4				
FDT 1011	Constituents	L	Т	Р			
Semester: III	Total Contact Hours: 60	3	1	0			
·							
Basics of Organic and Inorganic Chemistry, Physical chemistry, Analytical chemistry, Organic Chemistry I (CHT1137), Physical Chemistry-I (CHT1341), Analytical Chemistry (CHT1401), Industrial Inorganic Chemistry (CHT1139)							
List of Courses where this course will be Prerequisite							
Food Chemistry (FDT1032), Food additives and ingredients (FDT 1012), Food Microbiology (FDT 1014), Technical Analysis Lab (FDP1011), Food Chemistry Lab (FDP1015)							

Desc	ription of relevance of this course in the B. Tech. (Food Engg. & Tech.) P	rogramme
Cours	e objectives	
1	To understand basic physico-chemical properties and chemical structur constituents	es of food
2.	To understand the properties, method of preparation and application constituents	ns of food
3.	To understand the importance and mechanism of the reactions of food c taking place during food processing and storage,	onstituents
4.	To think critically on the role of water and its various forms in food preservat	ion
5.	To understand the role of food constituents responsible for nutritional/anti- and aesthetic quality of foods (such as texture, flavor, and color)	-nutritional,
6.	To apply course concepts in solving problems related to food constituents	
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	An introduction to food resources and its general composition. proximate analysis of foods, water in food systems – concept of free and bound	4 (3L+1T)
2	Carbohycrates- classification, structure, properties. Chemical reactions such as caramelization, Maillard reaction, and dehydration; identification and estimations; Sucrose – manufacture from sugar cane and sugar beet; hydrolysis of sucrose (inversion), Starches – isolation from varied sources; amylose/amylopectin, size/shape, gelatinization, gelation, retrogradation, pasting behaviour, functional properties, modification; Commercially important products – glucose, glucose syrup, high fructose corn syrup, maltodextrins.	16 (12L+4T)
	Glycosides in nature; pectin – structure, gelling behaviour of HMP vs. LMP, sources- manufacture and applications; Cellulose and other components of dietary fibre, hydrocolloids (plant/seaweed/ microbial polysaccharides), mucopolysaccharides; chitin and chitosan – sources, structure, manufacture and applications.	
3	Proteins- chemistry of amino acids, structure, classification and their properties (isoelectric pH, solubility profile), special amino acids, non-	16 (12L+4T)

	protein amino acids; Peptides, bioactive peptides; Classification of proteins; protein structure (primary, secondary, tertiary and quaternary); Denaturation of proteins; determination of primary sequence, quanutative estimation of amino acids and proteins in foods; functional properties of proteins, isolation and purification methods for proteins; Isolation of food	
	proteins (soya, fish, whey); Maillard browning; concept of modified proteins; Major food protein systems (milk, egg, wheat, meat)	
4	Chemistry of lipids- fatty acids, mono-, di and triacylglycerois; Classification of lipids- simple, compound and derived; unsaponifiable constituents of lipids such as sterols and hydrocarbons and waxes; Nutritional overview on fats and oils. Rancidity and reversion of fats and oils and thermal stability- its measurement and inhibition; analytical parameters of oils and fats. Extraction, alkali refining, degumming, deodorization, winterization, inter- esterification, hydrogenation etc. of vegetable and animal fats, manufacturing of products such as margarines, hydrogenated vegetable oil and spreads.	12 (9L+3T)
5	Vitamins – classification- water soluble (all the B vitamins and C) and fat soluble (Vitamins A, D, E and K); Chemistry, structure and properties; physiological functions; absorption and metabolism; food sources, deficiency and hypervitaminosis; RDA: methods of assay; processing stability in foods of all the vitamins	12 (9L+3T)
	Total	60

 $\odot$ 

	List of Textbooks / Reference Books
1	Belitz, H.D, Grosch, W., & Schieberle, P. Food Chemistry; 3 rd ed.; Springer, Germany; 2005.
2	Damodaran, S., & Parkin, K.L. Fennema's Food Chemistry; 5 th ed.; CRC Press, Boca Raton; 2017.
3	Velisek, J., The Chemistry of Food; Wiley-Blackwell; 2013.
4	Meyer, L.H., Food Chemistry. Cbs Publisher; 2004.
5	Velisek J., Koplik, R., Cejpek, K. The Chemistry of Food; 2nd ed.; Wiley-Blackwell; 2020
	Course Outcomes (Students will be able to)
C01	Describe the various constituents present in foods and their roles therein and solve practical problems in food quality (K3)
CO2	Describe the properties, method of preparation and applications of food constituents (K2)
CO3	Describe the mechanisms and significance of physicochemical reactions involved in food processing and storage (K2)

CO4	Explain the significance of water in food quality, preservation and storage (K2)
CO5	Describe and demonstrate the role of food constituents on nutritional/anti-nutritional and aesthetic quality of raw and processed foods (K3)

2

						0									
			apping	g or C	ourse	Outco	omes (	(COS)		rogra			es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO5	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours e	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Crea	lits =	= 3
	CET1302	Material Technology	L	Т	P
	Semester: III	Total Contact Hours: 45	2	1	0
		List of Provonsisite Courses			
Δnr	olied Physics – II	List of Prerequisite Courses			
		(*********			
		List of Courses where this course will be prerequisite			
		inal Year Project [Project I (FDP 1027) & Project II (FDP 1025)], Proces	SS		
Dev	velopment and Er	ngineering, Chemical Project Engineering and Economics (CET1504)			
	Do	scription of relevance of this course in the B. Tech. Program			
Sel		of Construction for a given application, Maintenance and corrective me	asur	es foi	r
		materials, Troubleshooting	Jasun	53 10	
Sr.		Course Contents (Topics and subtopics)		quire	
No.			H	ours	
1		terials: Classification, Fundamentals of Engineering properties of e diagrams, Study of ferrous and nonferrous materials		12	
2	Composite and			03	
		rty Relationship: Subatomic to macroscopic level, Modification and			
3	control of materi		10		
4		e of Materials: Fracture, creep and fatigue	08		
5		eering: Electrochemical principles, different types of corrosion,			
5		chanisms of corrosion control and prevention, Preventive coatings. vior of industrial materials		08	
6.	Criteria for selec	tion of materials in Chemical Process industry		04	
		Total		45	
1	The Eccence of	List of Textbooks			
T		Materials for Engineers, Robert W. Messler, Jr. e and Engineering, Raghavan V.			
3		e and Engineering, Vagnavan V.			
4		terials and Applications, Flin R.A., Trojan P.K.			
		List of Additional Reading Material/Reference Books			
1	Material Science	e and Engg, Callister			
2	Mechanical Meta				
	·	Course Outcomes (students will be able to)			
со	resolve the issue	es related to mechanical failure (K3)			
1					
СО	troubleshoot cor	rosion-related industrial problems (K3)			
2					
00	learn from incide	PNCES (LHI) (KZ)			
3		7			

		М	appin	g of C	ourse	Outco	omes	(Cos)	with F	Progra	mme O	utcom	es (Pos)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3



	Course Code:		ourse Title:		redits	= 4
	BST1102		liochemistry	VL	T	P
	Semester: III		Contact Hours: 60	3	1	0
	·,	List of Prereq	uisite Courses			
Standard	d XII Biology and (		0			
			course will be prerequisite			
			ry, Pharmaceutical Biotechnology			
	lology <mark>(FDT 1026)</mark>		relevant courses [Institute Election	/e – I. r	-000	
Dioteeni			course in the B. Tech. Program			
To train			nistry principles involved in functi		of biolo	gical
			molecules, including proteins, car			
			nd kinetic properties of enzymes			
			s anabolic pathways involved in c	ell meta	bolism	n and
quantita		chemical analysis of mac	/		Requir	har
		Course Contents (Topic	cs and Subtopics)		Hour	
	Carbohydrates: I	- undamentals of chemist	ry of carbohydrates, concept of			-
			e of common carbohydrates			
	•		tose, sucrose, polysaccharides,		5	
1	starch, glycogen		hydrazine, alkali – oxidation		2	
T		actical significance	nycrazine, aikali – oxidalion		2	
			preakdown of carbohydrates:		5	
			cle; pentose phosphate pathway,			
		t chain and coupled oxida				
			phingolipids, terpenoids. With		4	
2		e structure and significar			1	
Z		parative distribution of lip ly acids, functions of cho			4	
		lue, iodine value & hydro			4	
			ctures, pK – isoelectric point,		5	
			lour reaction of amino acids			
3		ein: globular, fibrous			4	
		about chromatography &	secondary, tertiary, quaternary		5 2	
			& RNA bases, nucleosides,		2	
			ructure and functions of RNA &		5	
4	DNA					
		RNA, tRNA&rRNA			5	
		of protein biosynthesis &				
5			re, classification, mechanism of zyme kinetics, enzyme inhibition		5	
5	and regulation	peementy of enzymes, enz			5	
		nzymes: Structures& fund	tion of Nicotinamide, nicotinic			
6			ne, B6, folic acid, B12, pantother	ic	5	
	acid, ascorbic ac	id, vitamins A, D, K, and				
			To To	al	60	
	Principles of Rio		/Reference Books Nelson DL and Cox MM, 5th			
1	Edition, 2008, Ma					
2			oczko JL, 5th Edition, 2002, Freen	nan & C	0.	
3	Fundamentals of		and Voet JG, Upgrade edition, 2			ley &
5	Sons					
			dents will be able to)	al		I
CO1			emistry to biological systems an ble of different macromolecules in			and
			tion of macromolecules in/derive			nical
CO2	samples (K3)					gioui
	/					

understand the role of enzymes in cellular environment and their use in industrial applications for their practical applications and evaluate and elucidate impact of different catalytic CO3 reactions involved in metabolic pathway (K4) evaluate and explain influence and interactions of different metabolic pathway on each other CO4 (K4)

		M	appin	g of C	ourse	Outco	omes	(Cos)	with F	Progra	mme O	utcom	es (Pos)		
		PO1	PO2	PO3		i	PO6						PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K										5				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K									_					
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K									0					
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	K								(	2					
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution

ibu, .in; A, , K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code:	Course Title:	~	Cr	edits	= 3
	BST1109	Microbiology	.v	L	Т	Ρ
	Semester: III	Total Contact Hour	rs: 45	2	1	0
		List of Prerequisite Course				
Standard		combination of Physics, Chemistry, Ma				
Food Mi		t <b>of Courses where this course will b</b> 14), Principles of Food Preservations (				
FUUU IVIII		ion of relevance of this course in the				
fermenta structure and cult microbia	arize students wi ation, oil, pharmac and function, mi ivate/control grow I replication, trans	h diverse microorganisms in different eutical industry and bioenergy, with dive crobial growth and metabolism, enviro th of microbes using physical and c cription, translation and mutagenesis the system in defending invading patho	industries like food, da ersity of microorganisms, n mental factors affecting hemical technologies; w and involvement of micro	micr thei vith t borga	obial ir gro basics	cell wth s of s in
		Course Contents (Topics and Subto	opics)		Hour	
1	Foods (Dairy inc Pharmaceuticals etc), Oils (biore ment (waste wa etc.)	crobiology and its significance (benefic uding pre and probiotics, cheese, vitam (Antibiotics, vaccine production, pathog nediation, bio-diesel from microorgani ter, nitrification, methanation, green c	nins, beverages etc.), genic organisms ism etc.), and environ- chemicals and biofuels,		5	
2		Eukaryotes - morphology, structure and d their components	d function of		5	
3	Major groups of Rickettsia, Chlan	nicroorganisms - Eacteria, Virus, Yeast Iydia and Algae	s and Molds,	5		
4	Gram character a maintenance of p	and staining techniques, Isolation, prese ure cultures	ervation and	5		
5	sterilization of mi	ents of microorganism, Composition, p crobiologica' media; Classification of m fection, sanitation, asepsis			5	
6		ag phase, log phase, stationary phase, e; Physical and chemical factors affecti			5	
7		nd their applications-Acidophiles, Bas s, Psychrophiles, Osmophiles	sophiles, Thermophiles,		5	
8	Enumeration of r	, Fluorscence, atomic force, scanning t hicroorganisms (TPC, Yeast and molds id methods like flow cytometry, etc.)			5	
9	Principles of imm	unology			5	
	V.	Link of Totals In ID- from -	Total		45	
1	Microbiology by	List of Textbooks/Reference B Prescott, Harley & Klein's 7th Edition, 20				
1 2	••••	Pelczar, 5th edition, 1993, Mcgraw-Hill	uuo, wicylaw-⊓III			
2		Course Outcomes (Students will be a	able to)			
CO1	Explain the appli	cation of diverse microorganisms in difference of the second second second second second second second second s	erent industries like food	, dair	y, oil,	
CO2	Describe the cult metabolism (K2)	vation/control methods for diversity of r	microorganisms, their ph	ysiolo	ogy a	nd
CO3	Explain the flow therein (K2)	of genetic information from DNA to prote	ein and the mechanisms	invol	ved	
CO4	Understand and	apply the significance of microorganism vading pathogens (K3)	ns in diseases and basic	immı	ine	

													- V		
		Μ	appin	g of C	ourse	Outco	omes	(Cos)	with F	Progra	mme O	utcom	es (Pos)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ											2	İ		
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ										0	2			
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K										6				
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K										2				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

jution; . , A, Affectiv

	<u> </u>		-		
	Course Code:		Cro	edite	s =
	FDP 1014	Course Title: Pr 1: Biochemistry Lab	<u> </u>	2	
			L	T	P
	Semester: III	Total Contact Hours: 60	0	0	4
	1	List of Prerequisite Courses			
	None				
		of Courses where this course will be Prerequisite			
	1 2	(FDT1032), Chemistry of Food Constituents (FDT1011), F	ood		
	Chemistry Lab	FDP1015), Food Analysis Lab (FDP1013)			
		nce of this course in the B. Tech. (Food Engg. & Tech.)	_		
•		the principles of analytical methods used for protein	and	su	gar
	estimation.				
•		he analytical methods used for vitamin estimation.			
•	•	extraction and assay of quality indicator enzymes in food			
•		ytical protocols for quantifying the sensitivity of critical nutri	ents	IN	
	foods	<u>N</u>		-	
Sr.					
No.	C	Course Contents (Topics and subtopics)		quir ours	
		course Contents (Topics and subtopics) otein by Biuret Method & Folin-Lowry method		-	
No.	Estimation of pro			ours	
<b>No.</b>	Estimation of pro	otein by Biuret Method & Folin-Lowry method		ours 4	
<b>No.</b> 1 2	Estimation of pro Estimation of pro Estimation of pro	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method		ours 4 4	
No. 1 2 3	Estimation of pro Estimation of pro Estimation of pro Estimation of su	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method		ours 4 4 4	
No. 1 2 3 4	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method gar by DNSA method & Phenol-H ₂ SO ₄ method		ours 4 4 4 4	
No. 1 2 3 4 5 6	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an	otein by Biuret Method & Folin-Lowry method otein by Microkjeldani method & Pope & Steven's method oteins by Bradford method & Dye binding method gar by DNSA method & Phenol-H ₂ SO ₄ method gar by Resorcinol method & Anthrone method		ours 4 4 4 4 4 4 4 4	
No. 1 2 3 4 5	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method gar by DNSA method & Phenol-H ₂ SO ₄ method gar by Resorcinol method & Anthrone method nylose & amylopectin		ours 4 4 4 4 4 4	
No. 1 2 3 4 5 6	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of po method	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method gar by DNSA method & Phenol-H ₂ SO ₄ method gar by Resorcinol method & Anthrone method nylose & amylopectin		ours 4 4 4 4 4 4 4 4	
No. 1 2 3 4 5 6 7	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of po method	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method gar by DNSA method & Phenol-H ₂ SO ₄ method igar by Resorcinol method & Anthrone method nylose & amylopectin olyphenols by Folin-Denis method & Ferrous Tartarate se and kinetic study		ours           4           4           4           4           4           4           4           4           4           4           4           4           4           4	
No. 1 2 3 4 5 6 7 8	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of an Estimation of po method Study of Amylas Study of Proteas Study of Lipases	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method gar by DNSA method & Phenol-H ₂ SO ₄ method gar by Resorcinol method & Anthrone method nylose & amylopectin hyphenols by Folin-Denis method & Ferrous Tartarate se and kinetic study ses		ours           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4	
No. 1 2 3 4 5 6 7 8 9	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of an Estimation of po method Study of Amylas Study of Proteas Study of Lipases	otein by Biuret Method & Folin-Lowry method otein by Microkjeldani method & Pope & Steven's method oteins by Bradford method & Dye binding method igar by DNSA method & Phenol-H ₂ SO ₄ method igar by Resorcinol method & Anthrone method nylose & amylopectin olyphenols by Folin-Denis method & Ferrous Tartarate se and kinetic study ses		ours           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4	
No. 1 2 3 4 5 6 7 8 9 10	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of po method Study of Amylas Study of Proteas Study of Lipases Enzymes as ind	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method gar by DNSA method & Phenol-H ₂ SO ₄ method gar by Resorcinol method & Anthrone method nylose & amylopectin hyphenols by Folin-Denis method & Ferrous Tartarate se and kinetic study ses		ours           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4	
No. 1 2 3 4 5 6 7 8 9 10 11	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of po method Study of Amylas Study of Proteas Study of Lipases Enzymes as ind	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method igar by DNSA method & Phenol-H ₂ SO ₄ method igar by Resorcinol method & Anthrone method nylose & amylopectin olyphenols by Folin-Denis method & Ferrous Tartarate se and kinetic study ses s icators of thermal processing tion by ammonium sulphate		ours           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4	
No. 1 2 3 4 5 6 7 8 9 10 11 12	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of an Estimation of po method Study of Amylas Study of Proteas Study of Lipases Enzymes as ind Enzyme purifica Estimation of tro	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method igar by DNSA method & Phenol-H ₂ SO ₄ method igar by Resorcinol method & Anthrone method nylose & amylopectin olyphenols by Folin-Denis method & Ferrous Tartarate se and kinetic study ses s icators of thermal processing tion by ammonium sulphate		ours           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Estimation of pro Estimation of pro Estimation of pro Estimation of su Estimation of su Estimation of an Estimation of an Estimation of po method Study of Amylas Study of Proteas Study of Lipases Enzymes as ind Enzyme purifica Estimation of tro	otein by Biuret Method & Folin-Lowry method otein by Microkjeluani method & Pope & Steven's method oteins by Bradford method & Dye binding method ogar by DNSA method & Phenol-H ₂ SO ₄ method ogar by Resorcinol method & Anthrone method nylose & amylopectin olyphenols by Folin-Denis method & Ferrous Tartarate see and kinetic study ses s icrtors of thermal processing tion by ammonium sulphate opsin inhibitors amine and vitamin C		ours           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4	

	List of Text Books / Reference Books
1	Boyer R., Biochemistry Laboratory: Modern Theory and Techniques; 2 nd Ed.; Pearson Prentice Hall; 2012; ISBN: 978-0-13-604302-7
2	Holtzhauer M., Basic Methods for the Biochemical Lab; Springer, New York; 2006; ISBN: 978-3-540-32786-8
	Course Outcomes (Students will be able to)
C01	Analyse different analytical methods used for protein and sugar estimation (K4)
CO2	Analyse different enzyme assay, their purification and applications (K4)
CO3	Demonstrate and analyse the analytical methods for vitamin estimation (K4)

CO4	Develop analytical protocols of important nutrients in foods (K3)
CO5	Apply the concept of biochemical analysis in quality assurance of food industry (K3)

												~			
		M					omes	(COs)			mme O	utcom	es (POs)		
		PO1					PO6		PO8		PO10			PSO1	
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	К 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K 3	3	3	2	2	2	3	3	۵	3	3	3	2	3	3
Cours e	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
3, Stror K, knov	ng C	Contrib	ution;	2, Moc	lerate	Contri	bution	; 1, ! 0	w Con	tributic	n; – No	Contri	bution		
							ć	~							
							G								
							<i>(</i> .								
							~								
						- 5									
						. O									
						0									
					. 1	0									
					_0	1									
					N.										
					7										
				~	2										
				6											
				õ											
			-	2											
			O												
			0												
			D'												
		V	1												

			5	7				
	ourse Code:	Course Title: Pr 2: Food Microbiology	20	Credits = 2				
FL	OP1013	0	L	Т	Р			
Se	emester: III	Total contact hours: 60	4	0	0	4		
		List of Prerequisite Courses	~		-			
М	icrobiology (BST	[1109)						
		5						
	List of	Courses where this course will be Prer	equisite					
Fc	ood Microbiology	(FDT1014), Principle of Food Preservation	n <b>(FDT10</b>	31)				

	Description of relevance of this course in the B. Tech. (Food Engg. & 1	Tech.)
	Programme	comy
1.	To understand the principles of different staining techniques used for speci- microorganism and chemical compounds within the cells	
2. 3.	To identify and enumerate the contaminating microorganisms in the food s To identify the microbial resistance towards different types of disinfectants effects of physiochemical factors for microbes	and the
4.	To develop a specific media and isolate microorganisms from different food	
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Working and handling of common laboratory equipment and materials	4
2	Monochrome staining, Cell wall staining	4
3	Gram staining	4
4	Negative staining. Hanging drop technique	4
5	Capsule staining, Pacterial endospore staining	4
6	Study of Yeast, mold and Bacteria	4
7	Phenol Coefficient of disinfectant	4
8	Microchemical test for reserve material	4
9	Isolation of Microbes from a food sample	4
10	Composition, preparation, sterilization of routine lab media	4
11	Enumeration, characterization, isolation and maintenance from air and surface	4
12	Effect of physicochemical factors and nutritional requirements on growth of microorganisms	4
13	Isolation and characterization of microbes based on morphological & physiological characteristics	4
14	Evaluations of microbial quality of milk and water samples	4
15	Spread Plate, pour Plate methods for cultivation of microbes, Streaking, and point inoculation methods for bacteria, fungi, and actinomycetes.	4

60
00

Total

	· /
	List of Text Books / Reference Books
1	Laboratory Experiments in Microbiology (10th Edition) - by Ted R. Johnson and Christine L. Case, (2012). Publisher: Benjamin Cummings, ISBN: 0321794389
2	Microbiology Lab Manual (8th Edition) - by John Harley. (2010). Publisher: McGraw- Hill Science, ISBN: 0077292812
3	Fundamental Food Microbiology (3 rd Edition) – by Bibek Ray. CRC Press: ISBN - 0- 8493-1610-3
4	Modern Food Microbiology (Seventh Edition) – by James M. Jay, Martin J. Loessner and David A. Golden. Springer-Food Science Text Series ISBN 0·387·23180-3
5	{FSSAI Lab Manual 14} Manual of Methods of Analysis of Foods [Microbiological Testing]. FSSAI, MoHFW, Gol - 2012
	Course Outcomes (Students will be able to)
C01	Describe and analyze the principles of different staining techniques used for bacteria, yeast and chemical compounds within the cells (K4)
CO2	Describe and apply the procedure for enumerating the microorganisms in the food samples (K3)
СОЗ	Analyse the effect of different media composition and physiochemical factors for microbes (K4)
CO4	Isolate and characterize different microorganisms from food samples (K4)
CO5	Assess the microbial quality of various food samples (K4)

				-											
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ		.0												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	Κ		Ď												
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ	2													
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	Κ														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO5	Κ														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

## Semester IV

	îî				
	Course Code: GET1117	Course Title: Engineering Mechanics and Strength of Materials	Cre	dits	
				Т	Р
	Semester: IV	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
		athematics, Applied Mathematics - I (MAT1101) and – II (MAT12	L <b>02)</b> ,	Appl	ed
Physics	<u>s – I (PYT1101)</u>	of Courses where this source will be Dreve wisite			
Motori		of Courses where this course will be Prerequisite	<u></u>		
(HUT1		302), Strength of Materials, Environment Science and Technolog	ĴХ		
		nce of this course in the B. Tech. (Pl.arm. Chem. Tech.) Prog	Iram	me	
		ents to understand use of basics of Applied Mechanics and			) of
		ngineer and Technologist, the students will relate different type			
		their quantification during design of equipments. It will			
		is of equilibrium and their application for analysing the problems			
		nent of inertia in Engineering Design, study of different types of			
		components of the structure including in thin cylindrical shells.			
		ous geometric sections available for Engineering design. In			
		with different advance fibre polymer composite materials used i veral performance- enharcing construction chemicals. In summ			
		icient Design Engineer and Technologist.	iaiy,	uno	Ju
Sr.	1		Re	quir	ed
No.		Course Contents (Topics and subtopics)	<u> </u> н	iours	\$
1		their types, Resolution of forces, Composition of forces, Steps		4	
-		ign, Different types supports and free body diagram	$\vdash$	-	
		bodies - Conditions of equilibrium			
2		determinate structures		6	
		ns, trusses and frames			
		sis of beams and truss. and moment of Inertia (Second moment of area) its use			
	Parallel axis theore				
3		centroid and moment of Inertia of single figures, composite		5	
	figures				
		theorem, Polar M.I., Radius of gyration.			
		Bending Moment - Basic concept, S.F. and B.M. diagram for			
4		upported beams (with or without overhang)		4	
		entrated and U.D. loads. ns - Tensile and compressive stresses, Strains, Modulus of	┞───		
		of rigidity, Bulk modulus			
	Thermal stresses a				
5		stresses and strains		6	
		ing Design - Steps in the engineering design, Importance of			
		D and 3-D analysis and interpretation of results. Design			
	philosophies	Assumptions in desiration of heads any disc. Desire any disc			
6		- Assumptions in derivation of basic equation, Basic equation, ending stress distribution		3	
		stress - Concept, Derivation of basic formula Shear stress	├		
7	distribution for stan			3	
•	Problems of Shear			J	
		n of beams - Basic concept, Slope and Deflection of cantilever			
8	and simply supporte	ed beams under standard loading		4	
	Macaulay's method		$\vdash$		
		nders - Concept of radial, longitudinal stresses, behaviour of			
9	thin cylinders	disclosed and enhanced abolts		4	
		/lindrical and spherical shells			
10	Natural Materials, N	cylinders (Theory only)	├	6	
TO		s – Types of composite materials and their uses in various		0	
			<u>ــــــــــــــــــــــــــــــــــــ</u>		

	industrial applications	
	Different types of performance enhancing and special purpose construction	
	chemicals	
	Plasticizers and super-plasticizers	
	Recycling of waste – value addition	
	Testing of Materials and its relevance	
	Total	45
	List of Text Books/ Reference Books	
1	Thadani, B. N. Engineering Mechanics; Asia Publishing House (1966)	
2	Popov, Egor P. Introduction to Mechanics of Solids; Macdonald (1968)	
3	Beer. Mechanics of Materials; 7th Ed.; Mc Graw Hill India (2016)	
4	Dadhe, V. G.; Jamdar, M. G.; Walavlkar, Y. N. Fundamentals of Applied Mechanics; Sa Prakashan (1989)	arita
5	Timoshenko, S.; Young, D. H.; Rao, J. V.; Pati, Sukumar. Engineering Mechanics; 5 th E McGraw Hill Education (2017)	Ed.;
6	Singer, Ferdinand L.; Pytel, Andrew. Strength of Materials; 4 th Ed.; Harper Colins Publi (2012)	ishers
7	Kaw, Autar K. Mechanics of Composite Materials; 2 nd Ed.; CRC Press (2006)	
8	Shetty, M. S.; Concrete Technology: Theory and Practice; S. Chand & Co. Ltd. (2005)	
	Course Outcomes (Students will be able to)	
C01	quantify the actions and able to find reactions by applying conditions of equilibrium, the Centroid and Moment of Inertia for various cross sections used in engineering struction for plane areas and be able to draw the Shear Force and Bending Moment diagram for types of beams under simple and complex loading (K3)	ctures and or different
CO2	calculate the forces, reactions, stresses, strains in components of the bodies of a cor engineering structure (K3)	-
CO3	find out the Bending Stresses at different positions and Shear Stress distribution across section at various points and calculate the Slope and Deflection at different points simple and complex loading (K3)	
CO4	explain various materials used in various applications in engineering. cement compo Concrete, Chemicals used to alter the properties of concrete (K2)	site –

								<u> </u>							
	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		PO1	PO2	PO3	F04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	Kõ	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ			0											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Κ		ć	~											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ		-0												
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K		~												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

5

	Course	Course Title:	Cr	edits	; = 4
	Code: CET1105	Transport Phenomena	L	Т	Ρ
	Semester: IV	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
XII th	Standard Physi	cs and Mathematics			
		List of Courses where this course will be prerequisite			
	is a basic cou s transfer, etc.	rse required in special subjects that deal with flow of fluids, he	eat a	nd	
	D	escription of relevance of this course in the B. Tech. Program	n		
Vario relat vario	ous other conc ed to conserva	introduces concepts of momentum, heat and mass transfer to epts such as pressure, momentum, energy are introduced as tion of momentum, energy, mass are taught. Applications of th and technological situations and process equipments are exp problems.	well ese	. Lav Iaws	vs to
Sr. No.		Course Contents (Topics and subtopics)		equii Hour	
1	Fluid Statics ar	nd Applications to Engineering in portance		4	
2		Bernoulli's Equation, Pressure-drop in pipes and Fittings, noving machinery such as pumps		10	
3	Particle Dynam	nics, Flow through fixed and fluidized Beds		4	
4		Continuity and Motion in laminar flows and its applications for flow and Poiseuille flow applications		6	
5	coefficient	on, Convective heat transfer and concept of heat transfer		4	
6	counter-current and Shell and t	nstructional Aspects of Exchangers: Types of flows - Concurrent, and cross flows, Log mean temperature difference, Double-pipe ube heat exchangers other heat exchangers like, PHE, finned tube heat exchangers, etc		10	
7		spects in agitated tanks, Condensers, Reboilers and		6	
8	Fundamentals	of Mass Transfer: Molecular diffusion in fluids, concept of coefficients, and interface mass transfer		4	
9	correlations	ss transfer, Analogies for heat and mass transfer, Empirical		4	
10	Mass transfer a	applications in simple 1-D situations		8	
	- 2	Total List of Text Books/ Reference Books		60	
1	Transport Phe	nomena, Bird R.B., Stewart W.E., Lightfoot E.N.			
2	-	cs, Kundu Pijush K.			
3		cs, F. W. White			
4		ns of Chemical Engineering, McCabe, Smith			
	•	Course Outcomes (students will be able to)			
CO1	calculate frict	on factor, pressure drop, power (K3)			
CO2		and power required for pumps(K3)			
CO3		transfer coefficients and do basic sizing of double pipe and she	ll and	l tube	;
CO4		s transfer coefficients and estimate mass transfer rates in simple	e situ	ation	S

													0.		
Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	К 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	К 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours e	К 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

, Affec.

	Course Code:	Course Title:	Cr	edits	= 3
	GET1105	Electrical Engineering and Electronics	L	Т	Ρ
	Semester: IV	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses		I	
Standar	d XII Physics and	Mathematics courses			
	Lis	t of Courses where this course will be prerequisite			
Various	Technology Cours	es and Professional Career			
	Descrip	tion of relevance of this course in the B. Tech. Program			
The stue selection	dents will understand of different types	vill get an insight to the importance of Electrical Energy in Ch and basics of electricity alongside basic knowledge about Tr s of drives for a given application process. They will get basic ir applications in Power supplies, amplifiers and other circuits.	ansfo	ormei	and
Sr. No.		Course Contents (Topics and Subtopics)		equi Hour	
1	connections, sta	hoff's current and voltage law, Simple series and parallel r and delta transformation. Mesh and nodal analysis, Basic nd C. Concept of self and mutual inductance		6	
2		ns: super position, Thevenin's theorems		3	
3	frequency. Time A.C. through res	als: Equations of alternating voltages and currents, cycle, period, amplitude, peak value average value, R.M.S. value, sistance, inductance and capacitance, simple RL, RC and esonance in series RLC circuits, Power, power factor, series uits		5	
4		stems: Star and delta connections, relationship between line ges and currents. Power in three phase circuits	5		
5	diagrams. Ideal t	troduction, principle of operation, e.m.f. equation, phasor transformer, transformer on no load, Transformer under load, ses, efficiency, regulation		5	
6	Introduction to de	c and ac drives		5	
7		ifiers: P-N junction diode characteristics, Zener diode, Half we rectifiers, their waveforms, brief introduction to filters		4	
8		transistor: Current components. Modes of operation, Input acteristics, Regions of operation, Transistor as an amplifier, amplifiers		6	
9	Introduction to oscillator	Uni junction transistor, Characteristics, UJT relaxation		3	
10	Silicon controllect turning-on Appli	I rectifier, controlled rectification, characteristics, methods of cations		3	
	Q	Total		45	
	Y	List of Textbooks/Reference Books			
1		ering Fundamentals by Vincent Deltoro			
2		es and circuits by Boylstead, Nashelsky			
3		nes by Nagrath, Kothari			
4		nes by P.S. Bhimbra			
5		blogy by B. L. Theraja, A.K.Therajavol I,II,IV			
6		neir applications by M. Ramamurthy			
7		cs by P.S. Bhimbra			
CO1		Course Outcomes (Students will be able to) c concepts of D.C circuits. Solve basic electrical circuit problem		2)	
CO1		c concepts of D.C circuits. Solve basic electrical circuit problem		,	
CO2 CO3	· ·	c concepts of transformers & motors used as various industrial	uits (	(1\2)	
	unves (NZ)				

Explain the basic concepts of electronic devices and their applications (K2) CO4

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
			appin								i				
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K											. 7			
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K										2	0			
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K										O.				
	2	3	2	1	2	1	3	3	3	3	- 3	3	1	3	2
CO4	K									-	2				
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K									~					
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

La A, A,

Course Code:	Course Title: SPL2: Principles of Food	2	Credits = 4			
FDT 1031	Preservation	N	L	Т	Ρ	
Semester: IV	mester: IV Total Contact Hours: 60					
	List of Prerequisite Courses	4				
SPL1: Chemistry Biochemistry (BS	of Food Constituents <b>(FDT1011)</b> , Microbio T1102)	ogy <mark>(BS1</mark>	Г <b>1109</b>	),		
	22					
List of	Courses where this course will be Prere	quisite				
	neering (FDT1022), SPL8: Food Process E ng and Engineering (FDP1026)	ngineerin	ıg <mark>(FD</mark>	<b>T102</b>	<b>7)</b> , P	

	Description of relevance of this course in the B. Tech. (Food Engg. & T Programme	ſech.)
te • To • To	o understand the fundamentals of food preservation through dehydration, hig mperature processing of food o explain the principles of advanced thermal and non-thermal processing of o explain the principles of food preservation by fermentation, chemical prese o- preservatives and hurdle technology	food
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Introduction to food preservation: Food spoilage; Underlying principles of different modes of food preservation; Preservation, methods with emphasis on inactivation, inhibition, and avoiding recontamination.	4
2	<b>Dehydration and drying of foods:</b> Drying curve and drying time calculation; Water activity and moisture absorption isotherms, Psychometric chart; Different types of dryers- Conductive, convective, and combined; IMF foods; osmotic dehydration.	10
3	<b>Thermal processing of food products:</b> Sterilization and Pasteurization; Canning of food products; Classifications and structure of cans, corrosion, Lacquering; Spoilage in canned foods (1) Thermal death time (TDT) concept; Process time calculation for canned foods; Retort processing; Aseptic packaging.	14
4	Newer tachniques in thermal processing: Concept of HTST; UHT; Ohmic, Dielectric, Infra-red Heating; Microwave heating; Frying method.	6
5	Non-thermal processing of food: High pressure processing; Pulsed electric field processing; Cold extrusion; Plasma processing; Ionizing Radiations; Ultrasound processing; UV and Pulsed light processing; Membrane Technology.	10
6	Low temperature storage and preservation: Chilling and Freezing; Freezing curve and water activity; Properties of frozen foods; Enthalpy change during freezing; Plank's equation for freezing time; Cold storage and Refrigeration load; Refrigeration cycle; Cryogenic freezing and IQF; Freeze concentration and freeze drying.	10
7	<b>Hurdle technology:</b> Role of acidity and pH in food preservation; Preservation by fermentation – Curing, Pickling and Smoking; Controlled and modified atmospheric	6

packaging and storage; Chemical and Bio-preservatives; Antimicrobials.	
Total	60

	0
	List of Text Books / Reference Books
1	Toledo, R.T. Fundamentals of Food Process Engineering, Chapman and Hall; 2000,
2	Fellows, P.J. Food Processing Technology: Principles and Practice, CBS Publishers; 2005.
3	Rahman, M.S. Handbook of food preservation, CRC Press; 2007.
4	Cullen, P.J., Brijesh, K.T., Vasilis, Valdramidis, P. Novel Thermal and Non-Thermal Technologies for Fluid Foods, Elsevier Academic Press; 2012.
5	Zhang, H.Q., Barbosa-Cánovas, G.V., Balasubramaniam, V.M., Dunne, C.P., Farkas, D.F., Yuan, J.T.C. Non-thermal Processing Technologies for Food, John Wiley & Sons; 2011.
6	Shakuntala, N., & Many, O. Food: Facts and Principles, New Age International; 2001.
	Course Outcomes (Students will be able to)
C01	Apply the principles and develop operations using thermal technologies for food preservation (K4)
CO2	Apply the principle, technology and operations of various non-thermal technologies for food preservation (K3)
CO3	Analyse the concept of various advanced thermal food processing (K4)
CO4	Apply the technique of low temperature in food preservation and analyse the process efficiency (K4)
CO5	Apply the principles of hurd e technology in food preservation (K3)

					1										
		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K				0										
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	Κ			0.											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ		õ												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	Κ		Ó												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO5	Κ	þ													
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

0

Course Code: FDT 1014	Course Title: Food Microbiology	2	Credits = 3			
FDT 1014		N	L	Т	Р	
Semester: IV	Total contact hours: 45	0	2	1	0	
•	List of Prerequisite Courses	N				
Basics of Microbic	blogy	12				
		S				
List o	f Courses where this course will be a	Prerequisite				
	/ <b>(FDT 1014)</b> , Principle of Food Preserved d Regulations <b>(FDT 1028)</b> , Institute Ele					

	Description of relevance of this course in the B. Tech. (Food Engg. & 7 Programme	ſech.)						
1.	To understand the concept of general microbiological ecology and control of food-based products.	of food and						
	<ol> <li>To identify the conditions, including sanitation practices, under which the important pathogens and spoilage microorganisms are commonly inactivated, killed or made harmless</li> </ol>							
3.	To understand microbiological concerns in product development, e.g., new formulations, new packaging, new processes							
Sr. No.	Course Contents (Topics and subtopics)	Required Hours						
1	Factors affecting spoilage of toods and associated microflora; Intrinsic and extrinsic factors affecting spoilage of foods; biochemical changes caused by microorganisms - putrefaction, lipolysis; Antagonism and synergism in microorganisms	05						
2	Microbiological spoilage problems associated with typical food products such as dairy products, fruits and vegetables, grains and oilseeds, meat/fish and poultry, spices, and their control	09						
3	Food borne infections and food poisoning, Microbial toxins, Emerging pathogens.	06						
4	Detection methods for <i>E. coli</i> , <i>Staphylococci</i> , <i>Yersinia</i> , <i>Campylobacter</i> , <i>B. cereus</i> , <i>C. Botulinum</i> & <i>Salmonella</i> from food samples.	10						
5	Indicator organisms, microbiological quality assurance systems in food industry, use of the hazard analysis critical control points system to ensure microbiological safety and quality of foods, microbiological food standards	06						
6	Rapid methods of microbial analysis; applications of immunological techniques to food industry	09						
	Total	45						

	List of Text Books / Reference Books								
1	Food Microbiology: Frazier W.C. and Dennis C. Westhoff 5th Edn. Tata McGraw-Hill Publishing Co. Ltd. (2013).								
2	Modern Food Microbiology- Jay, James M., Loessner, Martin J., Golden, David A, Aspen Publishers, Inc, 7th ed. (2004)								

3	Food Microbiology and Fundamentals and Frontiers: Doyle M.P, Beuchat L.R, Montville T.J.2nd Edn. ASM Press, Washington D.C. (2001)
4	Food Borne Bacterial Pathogens: Doyle, M.P. Marcel Dekker Inc. (1989) Basic Food Microbiology; George J. Banwart, Chapman and Hall (1999)
5	Food Microbiology (Third Edition). Martin R. Adams and Maurice O. Moss. RSC Publishing. ISBN 978-0-85404-284-5
	Course Outcomes (Students will be able to)
C01	Describe the different factors associated with microbia! spoilage of food and the corresponding biochemical changes in it (K2)
CO2	Explain the spoilage and methods of controlling the microbial spoilage for specific food products and describing the fundamentals of food fermentation (K2)
СОЗ	Describe different food borne infections and focd poisoning, microbial toxins and functions of newer pathogens (K2)
CO4	describe and apply different detection methods of critical microorganism, rapid methods of microbial analysis, and applications of immunological techniques to food industry (K3)
CO5	Identify the target organism in specific food and design the hazard analysis critical control points system ensuring microbiological safety and quality of foods (K3)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K					2									
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ				6	2									
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K				. X										
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K			~	0										
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K			20											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ		õ												
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

Course Code:	Course Title: Nutrition	3	Credits = 3			
FDT 1015		N	L	Т	Ρ	
Semester: III	Total Contact Hours: 45	0	2	1	0	
•	List of Prerequisite Courses	N			_	
Biochemistry (BST1102)						
		2				
List of	Courses where this course will be P	rerequisite				
Food Chemistry Foods (FDT 105	(FDT1032), Institute Elective- II: Nutract 1)	euticals and Fu	Inctior	nal		

Description of relevance of this course in the B. Tech. (Food Engg. & Tech.)
Programme
Programme

Course objectives

- 1. To understand basic concepts of nutrition, compute energy value of foods and understand body's need for energy
- 2. To understand the role of different constituents of carbohydrates and lipids in human nutrition
- 3. To understand the role of proteins in human nutrition, explain concept of protein quality and methods of estimation and to identify anti-nutritional factors in food sources
- 4. To understand the requirements and role of micronutrients (vitamins /minerals) in human health
- 5. To understand formulation of diets, techniques of health surveys, nutritional assessment etc.

Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	t induced thermogenesis; energy imbalance and body weight regulation; Nutrition through lifecycle.	9 (6L+3T)
2	Role of caroohydrates in human nutrition- nutritionally important carbohydrates, physiological functions, digestion and absorption of available carbohydrates, dietary fiber, non-digestible oligosaccharides, resistant starch and its types, carbohydrates as prebiotics, dental carries and role of sugar, Lactose intolerance and galactosemia, Glycemic index and glycemic load of carbohydrate containing foods. Role of lipids in Human Nutrition- nutritionally important lipid constituents, physiological functions, digestion and absorption of lipids, conjugated linoleic acid, trans fats, medium chain triglycerides, fat replacers and mimetics, keto diet, Cholesterol, Phytosterols, blood lipids (LDL, HDL, VLDL etc), essential fatty acids, their functions and deficiency, omega 3 and omega 6 PUFAs and their dietary sources, eicosanoids.	9 (6L+3T)
3	Role of proteins in Human Nutrition- essential/ non-essential amino acids, complete/ incomplete proteins, limiting amino acid, complementary proteins, physiological functions of proteins, daily	9 (6L+3T)

	<ul> <li>protein requirements, digestion absorption and utilization of proteins, common food sources of proteins, protein deficiency (PEM/PCM)-prevalence, causes, effects, remedial measures</li> <li>Concept and estimation of protein quality – <i>in vitro</i> (scoring methods, indices, microbiological methods, enzymatic methods) and <i>in vivo</i> methods (growth response methods like PER and Nitrogen balance methods like BV), PDCAAS;</li> <li>Anti-nutritional factors present in foods- antiproteins (trypsin inhibitor), antiminerals (phytate ), anti- vitamins (ascorbic acid oxioase) and others- their chemistry, occurrence in food sources, mechanism of anti-nutritional action, processing stability, and remedial measures to reduce them</li> </ul>	
4	Role of micronutrients (vitamins and minerals) in human health - physiological role, deficiency disease, food sources, factors affecting bioavailability and RDA's; Role of water in nutrition;	9 (6L+3T)
5	Principles of Diet Therapy and Therapeutic Nutrition; Formulation of diets and foods for special needs; Techniques of diet and health surveys; Assessment of nutritional status; Effect of food processing, preservation and storage on nutritional quality of foods; Food nutrification; Sports nutrition; Nutritiona' labelling of foods; Nutraceuticals and functional foods; Fortification – chemical & biofortification	9 (6L+3T)
	Total	45
	le la la la la la la la la la la la la la	

	List of Text Books / Reference Books
1	Maurice E. Shils, James A. Olson, Moshe Shike, A. Catherine Ross Modern Nutrition in Health & Disease by Young & Shils. Jones & Bartlett Learning; Subsequent edition. 1999. ISBN-10: 068330769X
2	Food, Nutrition and Diet Therapy by Krause and Mahan 1996, Publisher- W.B. Saunders, ISBN: 0721658350
3	Nutritive Value of Indian Foods by C. Gopalan, B. V. Rama Sastri, S. C. Balasubramanian Published by National Institute of Nutrition, Indian Council of Medical Research, 1989
4	Introduction to Human Nutrition by Gibney, Lahnam-New, Cassidy and Vorster, 2009, Nutrition Society Textbook Series, Second Edition, Wiley Blackwell Publisher
5	Molecular Basis of Human Nutrition by Sanders and Emery, 2003, Taylor & Francis Publication, ISBN 0-415-29917-9 (hbk)
6	Principles of Human Nutrition by M. Eastwood, 2003, Blackwell Science. ISBN 0-632-05811-0
	Course Outcomes (Students will be able to)
C01	Explain basic concepts of nutrition, compute energy value of foods and understand body's need for energy (K3)
CO2	Explain the role of different constituents of carbohydrates and lipids in human nutrition (K3)
CO3	Describe the role of proteins in human nutrition, explain concept of protein quality and methods of estimation and identify anti-nutritional factors in food sources (K2)

CO4	Describe the requirements and role of micronutrients (vitamins /minerals) in human health. (K2)	
	Explain formulation of diets, techniques of health surveys, nutritional assessment etc.	ľ

CO5 (

(K3)

		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO5	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours e	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cr	edits	= 2
	GEP1106	Electrical Engineering and Electronics Laboratory	L	Т	Ρ
	Semester: IV	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses		I	
Standar	d XII Physics and	Mathematics courses			
		t of Courses where this course will be prerequisite			
Various	Technology Cours	es and Professional Career			
		tion of relevance of this course in the B. Tech. Program			
The stud selection	dents will understand of different types	rill get an insight to the importance of Electrical Energy in Ch and basics of electricity alongside basic knowledge about Tra- s of drives for a given application process. They will get basic ir applications in Power supplies, amplificrs and other circuits.	ansfo kno	ormer wledg	r and ge o
		Course Contents (Topics and Subtopics)		equii Hour	
		periments out of the following will be conducted -			
1	Superposition Th			5	
2	Thevenin's Theo			5	
3	Series RL circuit			4	
4	Resonance in Se			5	
5	H.W. and F.W. R			4	
6	Cathode Ray Os			5	
7		characteristic of npn transistor in CE mode		4	
8	Load Test on Tra			4	
9	Three phase sta			4	
10	Three phase del			4	
11	Study of UJT rela			4	
12		elaxation oscillator		4	
13		hase induction motor		4	
14	Study of Thermo			4	
		Total		60	
		List of Textbooks/Reference Books			
1		ering Fundamentals by Vincent Deltoro			
2		es and circuits by Boylstead, Nashelsky			
3		nes by Nagrath, Kothari			
4		nes by P.S. Bhimbra			
5		blogy by B. L. Theraja, A.K.Therajavol I,II,IV			
<u>6</u> 7		eir applications by M. Ramamurthy			
1		S by P.S. Bhimbra Course Outcomes (Students will be able to)			
CO1		of basic working of D.C circuits (K2)			
CO1		c applications of single phase and three phase AC supply and c	ircui	te (K'	2)
CO2		ing and utility of transformers and motors used as various	JII CUI	13 (NA	-)
CO4		principles in electronic devices and circuits (K3)			

		Μ	appin	g of C	ourse	Outc	omes	(Cos)	with F	Progra	mme O	utcom	es (Pos)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	Κ														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ	З	3	2	2	2	3	3	3	3	3	3	2	3	3

								-				-	-	 
	3								_				0.7	
3, Str	ong C	contri	bution	i; 2, Mo	oderate	e Coni domai	tributio	on; 1, L	ow Co	ntribut	ion; - N	No Cont	ribution domain	
ς, κπι	Jwieu	ye ie	verno	nn cog	muve	uumai	п, А, А	AIIECUV		ain, 3,	FSych		Jonnain	
												0	-	
												07 300		
												e. (		
											6	2		
											2	ř.		
											0			
											2			
											5			
										0				
										O.				
									- 1					
									(	,				
									~~					
									~					
								- 2	1					
								-04h0-						
								õ						
							(	Ĵ.						
					LA.		1							
							5							
						1	5							
						0	7							
						8								
						6								
					(	5								
					V									
					2									
					0 '									
				2										
				UVed L										
				2										
			(	)										
			-											
			$\sim$											
			$\simeq$											
			ς											

	Course Code:	Course Title:	ωí	Cre	edits	
	MAP 1201	Engineering Application of Computers	> ^v	L	Τ	Р
	Semester: IV	Total Contact Hours: 64	_	0	0	4
		List of Prerequisite Courses				
HSC S		Applied Mathematics – I				
		Courses where this course will be prerequisite				
	s a basic Mathematics	course. This practical knowledge will be required	in se	veral	sub	jects
later.		6				
		of relevance of this course in the B. Tech. Progra				
		e basics of Python programming and get expos				
		nd Excel for numerical computations and stati				
		e students will also explore R-programming for R				
		f standard statistical inference. B. Tech programme is computer programmes to solve various problems it				
	ology fields.	computer programmes to solve various problems i		gine	enng	anu
Techni		Contents (Topics and subtopics)			Hour	
		adsheet Programmes, Use of formulae and Plot	tina	ſ	loui	5
1		nd Data Plotting in Excel	ung		4	
2		tics and Hypothesis Testing with Spreadsheet			4	
3		Linear and Non-Linear Equations in Excel			4	
4		R and R Studio, Data Nanagement in R			4	
5		Exploring Probability Distribution Function in R			4	
6	Hypothesis Testing in				4	
7	Basic Regression Ana				4	
		n, Installation of Python and jupyter notebook throu	uah		4	
8		n Python, Exploring math and cmath modules	ugn		4	
		onaries in Python, if else and elif statements, Creat	tina			
9	functions (using def a		ung		4	
		oops in Python, Use of break and continue stateme	nts			
10		g Python programmes using loops			4	
11		amme to solve problems in basic numerical analy	vsis			
		Numerical solutions of linear equations, Numer			4	
	integration, etc.	G				
12	Use of Numpy and Sc	ipy to deal with vectors, matrices and their operation	s		4	
13	Use of Numpy and Sc				4	
14	Plotting graphs using	matplotlib			4	
15	Use of Pandas for dat	a processing and analysis			4	
16	Linear and multilinear	regression using Python			4	
	Q.	То	otal		64	
	-	List of Textbooks/ Reference Books				
1	Carlberg, Conrad Geo	orge. Statistical analysis: Microsoft Excel 2016; Que (	(2018)	).		
2	Langtangen, Hans Pe	tter. A Primer on Scientific Programming with Pytho	n; 5 th	Ed.;	Sprii	nger-
	Verlag Berlin Heidelbe					
3		on Programming - Using Problem Solving Approach	h; Oxf	ford I	Unive	ersity
	Press (2017)					
4		s, Brian K. Python Cookbook: Recipes for Mastering	g Pyth	ion 3	8; O'F	₹eilly
	Media (2013)			<u> </u>		
5		thon Data Science Handbook: Essential Tools for We	orking	with	Dat	a; 1 st
	Ed.; O'Reilly Media (2					
6		ductory Statistics with R; 2 nd Ed.; Springer (2008)				
7		ning Statistics with R (2013)				
8		Student Companion; CRC Press (2012)				
9		R for Introductory Statistics; 2 nd Ed.; CRC Press (201	4)			
		rse Outcomes (Students will be able to)				
C01		atistical analysis using Excel (K3)				
CO2	perform basic statistic					
CO3	perform linear regress					
CO4	write Python programs	s to implement basic numerical methods (K4)				

CO5 | perform data processing and regression analysis using Python (K4)

		Μ	appin	g of C	ourse	Outc	omes	(Cos)	with F	Progra	mme O	utcom	es (Pos)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11.	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K										1	2			
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K										2				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K										5				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K									_					
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO5	K									0					
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K								- (	1					
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

ibuts .n; A, A).

## Semester V

	Course Code:	Course Title:	Cre	dits	= 3
	CET1401	Chemical Engineering Operations		Т	P
	Semester: V	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Proc	ess Calculations (C	ET1507), Transport Phenomena (CET1105)			
		List of Courses where this course will be prerequisite			
This	is a basic course. I	t is required in many other courses that involve physical processes			
		ription of relevance of this course in the B. Tech. Programme			
		I Engineering course. The principles learnt in this course are require and throughout the professional career of students.	ed in a	lmost	all
Sr. No.		Course Contents (Topics and Subtopics)		equir Hour	
1		amentals of flash-, batch- and continuous distillation, Distillation , Steam and azeotropic distillation	-	L2 – 1	5
2		raction: Solvent selection, Construction of ternary diagrams, ns, Types of extraction equipment		6	
3		hase diagram (temp/solubility relationship), Evaporative and tion, Introduction to different types of crystallizers		5	
4	pressure filtration	nism of filtration, Basic equation, Constant volume, Constant n, Rate expressions with cake and filter cloth resistances, d incompressible cakes, Introduction to various types of filters		5	
5	Drying: Drying mo dryers	echanism, Drying rate curves, Estimation of drying time, ypes of		5	
6	understanding pr	ther Aspects of Unit Operations: Content will be aimed towards actical and safety aspects of unit operations and/or introducing processes like: adsorption/ion exchange, membrane processes on, etc.		9 – 6	<b>)</b>
7	industry or equip	tudies: Interactive discussion with experienced professionals from oment vendors with emphasis on applicability, importance and erent unit operations		3	
		Total		45	
		List of Text Books/ Reference Books			
1		Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engined paration processes. Butterworth-Heinemann, Woburn, MA.	ering:	Partic	le
2	Seader, J.D., Heni	ey, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken	, N.J.		-
3	Svarovsky, L., 200	0. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA.			
4	McCabe, W., Smith Science/Engineering	n, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ng/Math, Boston.	ed. M	cGrav	v-Hill
5	Green, D., Perry, F Professional, Edinl	R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 e burgh.	ed. Mc	Graw	-Hill
6	Dutta, B.K., 2007. New Delhi.	Principles of Mass Transfer and Separation Process. Prentice-Hall o	of Indi	a Pvt.	Ltd,
	1	Course Outcomes (students will be able to)			
1	perform basic sizin	g of continuous and batch distillation columns (K3)			
2		ata and select systems based on requirements, estimate filtration ar erstand filter aids and their usage (K4)	ea for	giver	)
3	describe few indus	trial crystallization, filtration and drying equipment (K2)			
4		and importance of other separation processes like adsorption, ion e	xchar	ige ar	ıd

5 Apply the concept of unit operation in chemical industries (K3)

		Μ	lappin	g of C	ourse	Outc	omes	(COs)	with I	Progra	amme C	outcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3 🐋	3	2	3	3
CO2	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO5	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	K4									V	[				
е		3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain, S, Psychomotor domain

, Affe

	Course Code:	Course Title:	Credi	its =	3
	CET1201	Chemical Reaction Engineering	L	Т	Ρ
	Semester: V	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Phy	rsical Chemistry – I	(CHT1341) and - II (CHT1342), Transport Phenomena (CET1105	)		
		List of Courses where this course will be prerequisite			
	rironmental Enginee T <b>1504)</b>	ering and Process Safety, Chemical Project Engineering and Econ	omics		
	Desc	ription of relevance of this course in the B.Tech. Program			
very r & pet intern Bioch	elevant but not limi rochemicals, Pulp nediates, Oils, oleo	I with the utilization of chemical reactions on a commercial scale. ted to the following industries: Inorganic chemicals, organic chemi & paper, Pigments & paints, rubber, plastics, synthetic fibres, Fo chemicals, and surfactants, Minerals, clean sing agents, Polyme hnology, Pharmaceuticals and drugs, Microelectronics, energy fro sources, Metals	cals, p ods, D rs and	etrole Dyes I text	eum and iles,
Sr. No.		Course Contents (Topics and Subtopics)		quire ours	
1	Kinetics of homoge reactors including	eneous reactions, Interpretation of batch reactor data, Single ideal design aspects		10	
2		Temperature and pressure effects		5	
3		i-ideal flow, RTD measurements, Models to predict conversions		5	
4		I Heterogeneous Catalysic, Kinetics of Solid Catalyzed of gas – solid catalytic reactors		15	
5	Introduction to mul			5	
6	Mass Transfer with contactors	Chemical Reactions: Regimes of operation and Model		5	
		Total		45	
		List of Textbooks			
1	Elements of Chem	ical Reaction Engineering – H. Scott Fogler			
		List of Additional Reading Material / Reference Books			
1		actions, Vo'. I and II – L.K. Doraiswamy, M.M.Sharma			
		Course Outcomes (students will be able to)			
CO1	describe and apply	the principles of various types of reactors (K3)			
CO2	calculate rates of r	eactions based on given reaction scheme (K3)			
CO3	design various con	nponents of reactors used in industrial practice (K3)			
CO4	compare various re	eactors and select an appropriate reactor for a given situation (K4)			
		6			

		M	<b>appin</b>	g of C	ourse	Outc	omes	(COs)	with I	Progra	umme C	<b>Jutcom</b>	es (POs)		
		PO1	PC2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K4														
е		3	3	2	3	2	3	3	3	3	3	3	2	3	3

Course Code:	Course Title: SPL5: Food Engineering	0	Cre	dits =	4
FDT 1022		0	L	Т	P
Semester: V	Total Contact Hours: 60	$\sim$	3 1	1	0
• •	List of Prerequisite Courses	2	-		
SPL2: Principles of	Food Preservation (FDT1031)				
 List	of Courses where this course will be Prerequisi	te			
SPL8: Food Procest (FDP1026)	s Engineering <b>(FDT1027)</b> , Pr 8: Food Frocessing a	ınd Enç	ginee	ring	

De	escription of relevance of this course in the B. Tech. (Food Engg. & Tech.) Pro	gramme
1. 2. 3.	To apply the concept of material and energy balance in food operations. To apply the concept of fluid flow, heat, and mass transfer in food processes. To apply basic engineering principles to design mechanical operations in food proc	cessing.
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Material and Energy Balance: Principles of mass, material, and energy balance in food processing operations; Case studies like dehydration, crystallization, and evaporation; Thermodynamics concepts applied to food.	4
2	<b>Momentum Transport with respect to Foods:</b> Fluid dynamics; Newtonian and non-Newtonian fluid; Bernoulli's Theorem and friction factor; Flow measuring instruments; Velocity profile in different case studies like pipe, conduits; fluid flow between plates and outside a falling film; Fluid flow through porous media; Fluidization.	12
3	Heat Transfer in Food Operations: Steady state heat transfer in food systems; Transient heat transfer; Estimation of thermal conductivity; Dimensional analysis; Overall heat transfer coefficient estimation; Performance analysis of pasteurizer and sterilizer.	8
4	<b>Freezing and Thawing:</b> Freezing and Thawing calculations; Application of Plank's equation to specific food system; Reingeration system and thermodynamic aspects; Concept of cold storage design; Refrigeration load for chilling and freezing process.	10
5	Mass Transter in Food Operations: Basics of mass transfer and diffusion in food systems; Molecular diffusion and Fick's Law; Steady state diffusion; Diffusion through solids, liquids; Mass transfer coefficients and Permeability; Analogies between heat, momentum and mass transfer.	10
6	<b>Mechanical Operations in Food Processes:</b> Laws for size reduction; Sieving; Mixing; Homogenization; Centrifugation; Settling; Filtration; Extrusion.	10
7	<b>Thermal Operations in Food Processes:</b> Equipment and process for dehydration, evaporation, concentration, pasteurization, and sterilization.	6
	Total	60

	List of Text Books / Reference Books
1	Das, S.K., & Das, M. Fundamentals and Operations in Food Process Engineering; 1 st ed.; CRC Press; 2019.

2	Varzakas, T., Tzia, C. Food Engineering Handbook; 1 st ed.; CRC Press; 2015
3	Heldman, D.R. & Singh, R.P. Introduction to Food Engineering; 4 th ed.; Academic Press; Elsevier; 2009.
4	Geankoplis, J. Transport Processes and Separation Process Principles, Pearson Publisher; 4 th ed.; 2003.
5	Das, H. Food Processing Operations Analysis; Asian Books Pvt. Ltd.; 2008.
6	Stoecker, W.F. Industrial Refrigeration Handbook, McGraw-Hill Companies, Inc.; 1998.
	Course Outcomes (Students will be able to)
CO1	Apply and analyse the fundamental knowledge of material and energy as a basic tool in food engineering analysis (K4)
CO2	Analyse the performance of heat exchangers applied in food processes (K4)
СОЗ	Analyse the efficacy of different mass and momentum transfer operations in food processing (K4)
CO4	Design the cold storage and refrigerated vans in food operations (K3)
CO5	Analyse the performance of various mechanical operations applied in food industry (K4)

		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	К6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ				- C										
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	Κ				<u> </u>										
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	Κ			P	9										
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	Κ			01											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	Κ		0												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	Κ		Ó												
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

Course Code:	FDT 1032	Cr	edits :	= 3
FDT 1032	20	L	Т	P
Semester: V	Total contact hours: 45	2	1	0
	List of Prerequisite Courses			
			y UI F	JUUU
		′-I <mark>(CH</mark>	T1341	
Analytical Chemistry		/-I <b>(CH</b>	T1341	

	~	
D	escription of relevance of this course in the B. Tech. (Food Engg. & Tech.) Progr	
1. 2. 3.	To understand the interactions of different constituents within the food systems and the on processing, nutritional and sensory quality. To understand the various anti-nutritional factors, contaminants and toxicants present systems. To understand the generation of flavors in processed food systems	
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Interactions amongst food constituents including those between the constituents themselves and with each other (water, protein, lipids, carbohydrates, minerals, vitamins), and the consequences thereof on nutritional, safety & sensory quality such as color & texture of foods. Examples include starch-lipid complexes, protein-polysaccharide interactions, protein-protein interactions leading to unnatural amino acids and racemization of amino acids, starch-polyphenol complexes.	09
2	Interactions of food constituents with external agents such as with flavours, food additives; among food additives; packaging materials and flavours; and the consequences thereof on nutritional, safety and sensory quality of foods	06
3	Contaminants generated during food processing (acrylamide, benzene, hydroxymethyl furfural, nitrosamines) and those that find their way in to foods as environmental contaminants (polychlorinated biphenyls, polychlorinated aromatic hydrocarbons, dioxins and furans, pesticide residues)	06
4	Anti-nutritional factors of significance in foods (trypsin inhibitors, phytates, tannins, hemagglutinins) and ways to mitigate them in products as legumes and millets	03
5	Microbial toxins of concern in foods and the effect of food processing therein. Examples are aflatoxin, patulin, bacterial toxins, zearalenone and such others.	03
6	Browning reactions in foods – Caramelization, enzymatic, non-enzymatic, ascorbic acid induced, and approaches to mitigate them. Impact of food processing on browning reactions, Role of browning reactions in foods; beneficial and adverse impacts of browning reactions on food organoleptic properties, browning and food quality, impact of browning reactions on nutritive value of foods.	07
7	Natural colors in foods: chemical structure, extraction, stability in food products and during processing	02
8	Flavours in foods – classification of flavours (natural, nature-identical and artificial); chemical pathways for generation of flavours in thermally processed and biochemical pathways for generation of flavours in fermented foods; quality assurance of flavours; selection of flavours for different types of foods, e.g. bakery, confectionary, microwaveable foods etc; off flavours and taints in foods	09
	Total	45

List of Text Books / Reference Books										
1	Food Chemistry – Belitz H.D, Grosch W, and Schieberle. P.3rd Edn. Springer Berlin /									

	Heidelberg
2	Food Chemistry- Fennema O.R 2 nd Edn., Marcel Dekker, New york. (1985)
3	Principles of Food Chemistry by JM deMan, JW Finley, WJ Hurst, CY Lee. Springer Nature. Fourth Edition (2018). ISBN – 9783319636078
4	Ingredient interactions: Effects on food quality by AK Gaonkar, Andrew McPherson. CRC Press, 2 nd Edition (2016). ISBN 9780824757489
5	Interactions of food components, Dose DJ & Robertson A, Campden Food Preservation Research Association (1990).
6	Natural toxic compounds of foods by J Davidek. CRC Press (2018). ISBN 9781315895833
	Course Outcomes (Students will be able to)
CO1	Describe the chemical composition of various food commodities and the interactions of different constituents within the food systems (K2)
CO2	Describe the standards of identity based on authentic chemical composition and analytical techniques (K2)
CO3	Explain the various contaminants and toxicants present in the food systems (K2)
CO4	Describe the presence of different anti-nutritional factors in foods (K2)
CO5	Extrapolate the knowledge gained to judge the quality and authenticity of the food (K3)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K 2	3	2	1	2	8	3	3	3	3	3	3	1	3	2
CO4	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO5	К 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours e	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

Course Code:	Course Title: SPL7: Principles of	Food Analysis	Credits = 3			
FDT 1052		$\sim$	L	Т	P	
Semester: VII	Total contact hours: 60	0	2	1	0	
	List of Prerequisite Course	s M			_	
Technical analysi	s lab <b>(FDP1011)</b> Food analysis Lab	25				
		3				
List	of Courses where this course will b	e Prerequisite				
SPL 14: Food Sa	fety and Quality Regulations (FDT 10	28)				

	Description of relevance of this course in the B. Tech. (Food Engg. & 1 Programme	ēch.)										
1.	To comprehend the basic principles of physical, chemical, biological and in	strumental										
	techniques used in food analysis for quality assurance											
2.	Design labels for food products on the basis of food analysis											
3.												
	processing and storage											
4.	To ensure consumer safety through analysis of food contaminants and adu	lterants and										
	apply them in the light of regulatory requirements											
	To assess the environmental impact of products life from farm to fork.											
6.	To explain newer and relevant analytical techniques in food systems											
	2											
Sr. No.	<b>Course Contents (Topics and subtopics)</b>	Required Hours										
INO.	Tymps of complex analysis, stars in analysis, shoise of matheday	Hours										
	Types of samples analysed, steps in analysis, choice of methods;											
1	sampling procedures, considerations and sample preparation; Evaluation	8										
	of analytical data – accuracy and precision, sources of errors, specificity,											
	sensitivity and detection limits, regression analysis, reporting results Analysis of chemical constituents, their characterization and significance-											
2	,	7										
2	moisture, ash, minerals, lipids, fat, proteins, fibre, titratable acidity,	1										
	starch, reducing sugars											
3	Spectroscopic analysis of foods – basic principles, UV, visible,	14										
3	fluorescence. IR, AAS, MS, NMR. Chromatographic analysis of foods –	14										
	basic principles, HPLC, GC, GLC, principles and applications Analysis of vitamins, pigments, flavours, extraneous matter, pesticides											
4	and my ctoxins. Microscopic analysis of foods other methods-	13										
	potentiometry, enzymatic, immunoassays, thermal analysis, and											
	rheological profile. Analysis of genetically modified foods.											
5	Sensory analysis	3										
	Total	45										

	List of Text Books / Reference Books
1	AOAC International. 2003. Official methods of analysis of AOAC International. 17th Ed. Gaithersburg, MD, USA, Association of Analytical Communities

2	Kirk, RS and Sawyer, R. 1991. Pearson's Chemical Analysis of Foods. 9th Ed. Harlow, UK, Longman Scientific and Technical.
3	Leo ML.2004. Handbook of Food Analysis. 2nd Edition. Vol 1,2 and 3, Marcel Dekker.
4	Linden G. 1996. Analytical Techniques for Foods and Agricultural Products. VCH.
5	Nielsen, S.(Eds) 1994. Introduction to Chemical Analysis of Foods. Jones & Bartlett
6	Pomrenz Y & Meloan CE. 1996. Food Analysis - Theory and Practice. 3rd Ed. CBS.
7	Ranganna, S. 2001. Handbook of Analysis and Quarry Control for Fruit and Vegetable Products, 2nd Ed, Tata-McGraw-Hill Publ
8	Cruz RMS, Khmelinskii, I & Vieira MC. 2016. Methods in Food Analysis, CRC Press.
9	Galanakis CM (Editor). 2020. Innovative Food Analysis. Elsevier Science.
10	Gruenwedel. 2017. Food Analysis: Principles and Techniques (4 volumes). CRC Press.
11	Gentili A. & Fanali C. 2019. Advances in Food Analysis. MDPI AG.
	Course Outcomes (Students will be able to)
CO1	Describe the basic principles of physical, chemical, biological and instrumental techniques used in food analysis for quality assurance (K2)
CO2	Explain newer and relevant analytical techniques in food systems and design labels for food products on the basis of food analysis (K3)
CO3	Develop analytical techniques for on-line monitoring of food quality during processing and storage (K3)
CO4	Ensure consumer safety through analysis of food contaminants and adulterants and apply them in the light of regulatory requirements (K3)
CO5	Assess the environmental impact of products life from farm to fork (K4)
	Q'

<u>À</u>															
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	P03	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ		5												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ	4	0.1												
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	Κ														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	0.1	(	Credit	ts = 4
	MAT1106	Design and Analysis of Experiments	OV.	L	Т	Р
	Semester: V	Total Contact Hours: 60	~~~~	3	1	0
		List of Prerequisite Courses	V			
		cs, Applied Mathematics – I (MAT1101), Computer	Applicatio	ns		
	atory (MAP1201)	at of Courses where this course will be prerequ	icito			
	LIC	st of courses where this course will be prerequ	ISILE			
	Descrip	tion of relevance of this course in the B. Tech.	Program			
This c		or graduating technocrats to function effectively		iently	y in I	Industry
	mia and other Profe	ssional Spheres.				
Sr. No.	c	ourse Contents (Topics and subtopics)		Red	quire	d Hours
		(Statistical Theory of Design of Experiments)				
1	Experimentation, principles, Guidelin	Typical applications of experimental design nes for designing experiments	, Basic		2	2
2	Review of Prob random variable, function, Sample median and mod	ability and Basic Statistical Inference: Com- Probability, Density function cumulative dis and population, Measure of central tendency e, Measures of variability, Concept of confidence utions: Normal, Log Normal & Weibull distr	stribution v, Mean, ce level,		4	Ļ
3	Experiments with Fixed effect model Contrasts, Orthogo of normality assum	a Single Factor: Analysis of Variance - and Random effect model, Model adequacy check onal contrasts, Regression Models and ANOVA, Vie option: Kruskal-Wallis test designs, Latin square designs, Balanced incomple	olation		8	3
4	response curves a		, Fitting		4	ŀ
5	The 2 ^k Factorial de	e II (Data Analysis using Software (R/Python)) esign, Blocking and confounding in the 2 ^k Factoria 2 ³ designs, Blocking and confounding in the 2k			8	}
6	¥	nethods, Central Composite Design (CCD)			4	Ļ
7		cs, Probability Distribution and Testing of Hypothe	sis using		6	5
8		niques, Diagnostic checks, ANOVA using contrasts	R and		6	6
9		lanced Incomplete Block Designs and data analys	sis using		6	6
10		al designs using R, Understanding output and inter	pretation		6	; ;
11		Data analysis and interpretation.			6	6
	<u>v</u> .		Total		6	0
	-	List of Textbooks/ Reference Books				
1	(2017)	glas C. Design and Analysis of Experiments; 9 th E	-	-		-
2	Discovery; 2 nd Ed.;		•			ion, and
3		sign and Analysis of Experiments with R; 1 st Ed.; C				
4	CRC Press (2011)					
5		on for Probability, Statistics, and Machine Learning				
6		christine M.; Montgomery, Douglas C.; Myers, Ray cess and Product Optimization using Designed				
7		alas C. Introduction to Statistical Quality Control; 7 ^t	^h Ed.; Wile	y (20	009)	
8		Design of Experiments in Chemical Engineering				1 st Ed

	Wiley-VCH (2005)
	Course Outcomes (Students will be able to)
CO1	Explain the basic principles of design of experiments (K2)
CO2	perform statistical analysis of single experiments and do post hoc analysis (K3)
CO3	conduct experiment and analyse the data using statistical methods (<4)
CO4	choose an appropriate design given the research problem (K5)
CO5	perform statistical analysis of different designs using R and interpret the results (K5)

6

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1	PO2				PO6				P010		PO12	PSO1	PSO2
							K3+S			K2+A				
001 1/0	K3	K4	K6	K5	K6	K3		K3			K3	K6+A+S	K3	K4
CO1 K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2 K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3 K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4 K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5 K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours K5														
e	3	3	3	3	3	3	3	3					3	3
3. Strong C	Contrib	ution:	2. Moc	lerate	Contri	bution	: 1. Lo	w Con	tributio	n: – No	Contri	bution		

Descri	SPL 2: Princi ption of relev To understar water sample To select the To demonstra	appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	<mark>Prog</mark> vith s tical p	<mark>Jram</mark> suga probl	<mark>me</mark> r &		
Descri	V None Lis SPL 2: Princi ption of relev To understar water sample To select the To demonstra To use differe	List of Prerequisite Courses st of Courses where this course will be Prerequisite ple of Food Preservation (FDT1031), Food Analysis - I Lab (F vance of this course in the B. Tech. (Food Engg. & Tech.) nd the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods and	<b>DP1</b> <b>Prog</b> vith s	018) Jram suga probl	me r &		
Descri	Lis SPL 2: Princi ption of relev To understar water sample To select the To demonstra To use differe	st of Courses where this course will be Prerequisite ple of Food Preservation (FDT1031), Food Analysis - I Lab (F vance of this course in the B. Tech. (Food Engg. & Tech.) nd the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	<mark>Prog</mark> vith s tical p	<mark>Jram</mark> suga probl	<mark>me</mark> r &		
Descri	Lis SPL 2: Princi ption of relev To understar water sample To select the To demonstra To use differe	ple of Food Preservation (FDT1031), Food Analysis - I Lab (F vance of this course in the B. Tech. (Food Engg. & Tech.) and the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	<mark>Prog</mark> vith s tical p	<mark>Jram</mark> suga probl	<mark>me</mark> r &		
Descri	SPL 2: Princi ption of relev To understar water sample To select the To demonstra To use differe	ple of Food Preservation (FDT1031), Food Analysis - I Lab (F vance of this course in the B. Tech. (Food Engg. & Tech.) and the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	<mark>Prog</mark> vith s tical p	<mark>Jram</mark> suga probl	<mark>me</mark> r &		
Descri	SPL 2: Princi ption of relev To understar water sample To select the To demonstra To use differe	ple of Food Preservation (FDT1031), Food Analysis - I Lab (F vance of this course in the B. Tech. (Food Engg. & Tech.) and the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	<mark>Prog</mark> vith s tical p	<mark>Jram</mark> suga probl	<mark>me</mark> r &		
Descri	ption of relev To understar water sample To select the To demonstra To use differe	vance of this course in the B. Tech. (Food Engg. & Tech.) nd the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	<mark>Prog</mark> vith s tical p	<mark>Jram</mark> suga probl	<mark>me</mark> r &		
• • •	To understar water sample To select the To demonstra To use differe	nd the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	vith s tical p	suga probl	r &		
• • •	To understar water sample To select the To demonstra To use differe	nd the principles behind analytical techniques associated v e. appropriate analytical technique when presented with a pract ate practical proficiency in a food analysis laboratory ent analytical techniques to find out the properties of foods an	vith s tical p	suga probl	r &		
	waste sample	5					
Sr. No.		Course Contents (Topics and subtopics)		equir Iour:			
	Estimation of	Glucose by Lane and Eynon's & Willstatter's Method	<u>                                      </u>	4			
-		Sucrose by Lane and Eynon's Method		4			
3	Estimation of	Sucrose and Lactose		4			
4	Estimation of	Reducing Sugar by Bertard's Volumetric Method	4				
		Glucose and Maltose by Sichert and Bleyer's Method		4			
		mino Nitrogen by Sorenson's Formal Titration	4				
	-	nalysis of Sugar		4			
		nalysis of I-ats	<u> </u>	8			
		nalysis of Foods	-	12			
		of Sugars & amino acids by Paper Chromatography		8			
	Hardness of	pitation Reaction		4			
		ess by Soap Titration		4			
		Alkalinity of Water	1	4			
		f Sulphates in Water		4			
		Chloride by Mohr's Method		4			
		nalysis of Amino Acid		4			
18	Estimation of	f Copper		4			
	Estimation of			4			
	Estimation of			4			
	Estimation of	The second second second second second second second second second second second second second second second se	4				
	Estimation of		4				
	Estimation of		4				
		ygen Demand	4				
25	BIOCHEMICAL	Oxygen Demand Total		8 <b>120</b>			

List of Text Books / Reference Books

1	Ranganna, S. (1986). <i>Handbook of analysis and quality control for fruit and vegetable products</i> . Tata McGraw-Hill Education.							
2	Kirk, S., & Sawyer, R. (1991). <i>Pearson's composition and analysis of foods</i> (No. Ed. 9). Longman Group Ltd							
	Course Outcomes (Students will be able to)							
C01	Perform and demonstrate the analytical techniques associated with sugar & water samples (K3)							
CO2	Demonstrate the analytical techniques associated with mineral estimation in food samples (K3)							
CO3	Select the appropriate analytical technique when precented with a practical problem (K4)							
CO4	Demonstrate practical proficiency in a food analysis laboratory (K3)							
CO5	Categorize and recommend suitable analytical technique to find out the properties of foods and food waste samples (K4)							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K							~							
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K						$\sim$								
	3	3	3	2	2	2	(3	3	3	3	3	3	2	3	3
CO3	K					-									
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	K					05									
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K				9	2									
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K				$\nabla$										
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code:	Course Title: PR4: Food Chemistry Lab	Credits = 2								
	FDP 1015	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L	Т	Р						
	Semester: V	: V Total contact hours: 60									
		List of Prerequisite Courses		-	-						
	Technical Analysis Chemistry (FDT10	(FDP1011), Technical Analysis I, Technical Analysis I 32)	II, Fo	bc							
		22									
List of Courses where this course will be Prerequisite											
	Food Analysis, Analysis of Foods (Chemical), SPL 7 [.] Principle of Food Analysis (FDT1052), PR5: Food Processing and Product Development (FDP 1034)										

Description of relevance of this course in the B. Tech. (Food Engg. & Tech.) Programme

**1**. To train the students with hands on experience with chemical compositions of foods

2. To assist them in analysis of various fcod constituents, additives present in the food such as nutrients (vitamins), antinutritional factor (tannins, anthocyanins, flavonoids) etc

Sr. No.	Course Contents ( ropics and subtopics)	Required Hours
1	Estimation of sulphur dioxide (KMS)	04
2	Estimation of sodium benzoate	04
3	Estimation of sorbic acid and sorbate	04
4	Estimation of Propyl gallate	04
5	Estimation of iodine in iodized salt	04
6	Identification of hydrocolloids	04
7	Estimation of chlorophyll and carotenoids and their separation on column chromatography	04
8	Estimation of tin in canned foods	04
9	Detection of food adulteration	04
10	Demonstration experiments on isolation of starch, proteins and hydrocolloids	04
11	Estimation of lipid oxidation parameters	04
12	Estimation of damaged starch in cereal flour	04
13	Antioxidant Assay (DPPH/FRAP)	04
14	Estimation of anti-nutritional factors	04
15	Sensory analysis of foods	04
	Total	60

	List of Text Books / Reference Books
1	Handbook of food analysis. Volume I- Nollet, Leo M. L., Toldrá, Fidel. CRC Press: ISBN – 9781482297843 (Third edition - 2005)
2	Food Analysis- S. Suzanne Nielsen. Springer Food Science Text Series: ISBN – 9783319457741 (5th ed. 2017)
3	Food Analysis Laboratory Manual- S. Suzanne Nielsen. Springer International Publishing Food Science Text Series: ISBN – 9783319441276 (3 rd Ed. 2017)
4	Methods in Food Analysis- Rui M. S. Cruz, Igor Khmelinskii, Margarida Vieira. CRC Press: ISBN – 9781482231953 (2014)
5	Handbook of food analysis- Leo M L Nollet. Marce! Dekker-Food science and Technology Series: ISBN – 9780824750381 (2 nd Ed 2004)
	Course Outcomes (Students will be able to)
CO1	Understand the principles of different analytical techniques associated with food and demonstrate practical proficiency in a food analysis laboratory (K4)
CO2	Identify the appropriate analytical technique when presented with a practical problem (K3)
CO3	Describe and use principal analytical methods used for quantifying the composition and reactions of food components (K3)
CO4	Interpret and report data derived from chemical experiments/analysis in a meaningful way (K4)
CO5	Apply basic statistical methods to sampling/testing and the analysis of experimental data (e.g., relate this to QC or HACCP) (K3)

						C.F.									
		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K				2										
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	K			0											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ			2											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	Κ		0												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO5	Κ	-	~												
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

## il 107 001 40 102 020 202 020 202 020 202 020 202 020 202 020 112 Semester VI

Course Code:		Cre	Credits = 4		
FDT 1027	Course Title: SPL8: Food Process Engineering	L	Т	Р	
Semester: VI	Total Contact Hours: 60	3	1	0	
	List of Prerequisite Courses				
	· · · · · · · · · · · · · · · · · · ·				
SPL2: Principles ( (FDT1022)	of Food Preservation <b>(FDT1031)</b> , SPL5: Food Engine	eerin	g		
(FDT1022)	of Food Preservation (FDT1031), SPL5: Food Engine Courses where this course will be Prerequisite	eerin	g		

	Pr 8: Food Processing and Engineering (FDP1026)								
	K								
	Description of relevance of this course in the B. Tech. (Food Engg. & 1 Programme	ēch.)							
1.	To acquaint the students with different thermal and mechanical operations processing and its integration to actual process design.	in food							
2.	2. To design and analyse the performance of food processing equipment such as dryer and evaporators.								
Sr. No.	Course Contents (Topics and subtopics)	Required Hours							
1	<b>Product &amp; Process Development:</b> Important aspects of produce and process development. Basic flow sheet development for food processing	4							
2	<b>Boiler &amp; Heat Exchanger:</b> Thermodynamic properties of steam; Steam as heating medium in Food operations; Fire and water tube boiler; Design of heat exchangers for food operations.	8							
3	<b>Thermal Processing &amp; Equipment:</b> design and equipment aspects of Thermal processing; Continuous sterilization; Canning and retort processing. Equipment design aspects of pasteurizer, evaporators, and concentrators. Nonthermal processes.	12							
4	<b>Mechanical Operations &amp; Equipment:</b> Process design aspects of homogenizer, centrifugal separators, extruder, filtration system, Bakery Machines and Equipment: Sheeting, mixing and blending	10							
5	<b>Dryer and their Design Parameters:</b> Tray dryer, spray dryer, fluidized bed dryer, heat-pump assisted dryer, and freeze dryer	10							
6	<b>Freezing &amp; Cold Storage:</b> Construction of cold storages and refrigerated vans. Types of freezers and their design parameters – plate contact freezer, air blast freezer, cryogenic freezer.	10							
7	<b>Plant Layout and Costing:</b> Food processing Plant layout, CGMP, material of construction and corrosion, waste utilization, Process control, optimization and preliminary project costing.	6							

Total

	' V
	List of Text Books / Reference Books
1	Toledo, R.T. Fundamentals of Food Process Engineering, Chapman and Hall; 2000,
2	Watson, E.L., & Harper, J.C. Elements of Food Engineering, The Avi Publishing Co.; 1989
3	Heldman, D.R. & Singh, R.P. Introduction to Food Engineering; 4 th ed.; Academic Press; Elsevier; 2009.
4	Geankoplis, J. Transport Processes and Separation Process Principles, Pearson Publisher; $4^{th}$ ed.; 2003.
5	Das, H. Food Processing Operations Analysis; Asian Books Pvt. Ltd.; 2008.
6	Meyers, F.E. & Stephens, M.P. Manufacturing Facilities, Design and Material Handling, Pearson Education Inc.; 2013
	Course Outcomes (Students will be able to)
C01	Explain and develop basic flow sheet in food processing operations (K3)
CO2	Analyse the design aspects of different thermal processes and equipment (K4)
CO3	Design different non-thermal processes and bakery equipment (K3)
CO4	Explain the cooling technology in food processing and design the cold storage and refrigerated vans (K3)
CO5	Analyse the critical process control parameters and develop plant layout of a food industry (K4)

		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ		~												
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Κ														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	Κ														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

, O

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

Course Code:	Course Title: SPL9: Food Additiv	Credits = 4									
FDT 1012	Ingredients	N	L	Т	Р						
Semester: VI	Total contact hours: 60	tal contact hours: 60									
List of Prerequisite Courses											
SPL 1: Chemistry of Food Constituents (FDT 1011), Introduction to Food Systems											
	1	2									
List of	Courses where this course will be Pro	erequisite									
Tubers (FDT 1017 SPL13: Technolog	ts and Vegetables, SPL10: Technology o ), Technology of Dairy, Animal Products a y of Dairy and Animal products (FDT 103 and Oilseeds (FDT 1023) SPL14: Food 1028)	and Plantatic 3), SPL12: 1	on Pro Techno	ducts. ology	,						

	Description of relevance of this course in the B. Tech. (Food Engg. & T	ſech.)
	Programme	
	To understand the classification of foce additives and ingredients.	faad
Ζ.	To understand the significance of different food additives and ingredients in quality, preservation and storage	1 1000
2	To understand the safety of use of food additives and ingredients	
	To understand their Maximum Permissible Limit (MPL) of additives and ing	redients in
	foods.	realents in
5.	To understand the effect of different process conditions on stability of food and ingredients.	additives
6.	To understand the process of preparation of food additives and ingredients	
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Additives in food processing and preservation, their functions and safety	02
2	Safety and quality evaluation of additives and ingredients, acute and chronic studies, LD50	02
3	Analytical methods, chemical and instrumental	02
4	Various additives such as preservatives (4), antioxidants and sequestrants (4), colours and flavours and flavor enhancers (4), emulsifiers (3), humectants (3), hydrocolloids (6), stabilizers and sweeteners (3), acidulants etc (3), with respect to chemistry, food uses and functions in formulations. New emerging additives, regulations as per CODEX and FSSAI	30
5	Indirect food additives	02
6	Colour additives in foods and their stability	04
7	Classification of flavours and the process of preparing including extraction, distillation, fractionation and purification; Stability of flavours	06
8	Ingredients used in food production e. g. sugars, starches, proteins/protein hydrolysates/isolates, fats, prebiotic oligosaccharides, pectin, chitin, and their technology of production and application, unusual protein sources such as insect proteins, mycoproteins	12
	Total	60

	List of Textbooks / Reference Books
1	Food Additives, 2nd and, AL Brannen, PM Davidson, S Salminen, JH Thorngate III, 2002 (eds). Marcel Dekker Inc, New York, pp. 1-9
2	Handbook of Food Additivies, 2nd edn, TE Furia, 1972, (ed) CRC Press, Cleveland, Ohio.
3	Functional Foods – Designer Foods, Pharma Foods, Nutraceuticals, Israel Goldberg (Editor) (1994), Chapman and Hall, New York.
4	The chemistry of food additives and preservatives, Titus A. M. Msagati, (2012)
5	Natural food additives, ingredients, and flavourings, D Baines, R Seal, (2012), Woodhead Publishing Series in Food Science, Technology and Nutrition.
6	Indirect Food Additives and Polymers: Migration and Toxicology, Victor O. Sheftel, CRC Press (2000)
7	The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness, Charis M. Galankis, Academic Press (2019)
8	Essential guide to food additives, Mike Saitmarsh, 4 th Edition, Royal Society of Chemistry, UK (2019).
	Course Outcomes (Students will be able to)
CO1	Describe the various additives and ingredients used in food industries (K2)
CO2	Describe the mechanisms of focd additives involved in foods and explain their significance in food quality, preservation, and storage (K2)
CO3	Describe the safety of use of food additives and ingredients (K2)
CO4	Extrapolate the knowledge gained on food additives and ingredients in food industries (K3)
CO5	Describe the process of preparation of food additives and ingredients (K2)

					_										
					5										
		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	FO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ		2	2											
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ		6												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K	-	$\leq$												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	Κ														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title: SPL10: Technology of Fruits,	Cr	edit 3	s =
	FDT 1017	Vegetables and Tubers	L 2 od d Che Food Progr	Т	P
	Semester: VI	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses	•		8
	Preservation (FD	of Food Constituents <b>(FDT1011)</b> , SPL 2: Principles of Fo <b>T1031)</b> , SPL5: Food Engineering <b>(FDT1022)</b> , SPL6: Food 9: Food Additives and Ingredients <b>(FDT1012)</b>		emis	try
	•	1			
	List of	f Courses where this course will be Prerequisite			
		essing and Product Development Lab (FDP1034), Spl 14:	Foo	d	
		nd Regulations (FDT1028)			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Desci	ription of relevand	ce of this course in the B. Tech. (Food Engg. & Tech.) I	Prog	ram	me
201100		<u>S</u>			
	e objectives	S			
1	. To know overall	development and quality of fruits, vegetables and tubers.			
2	. To understand the	ne post-harvest handling, storage and ripening process.			
3	. To understand d	lifferent methods/techniques for processing of fruits.			
4	. To understand d	lifferent methoos/techniques for vegetable processing.			
5	. To understand d	lifferent methods/techniques for processing of different tub	ers.		
6		ious by-products from fruit, vegetable and tuber processin		lustr	v.
7		plications of honey, sugar, saccharine in products and soft	-		,
			unn		
<u> </u>		2	Do		
Sr. No.	Co	ourse Contents (Topics and subtopics)		lour	
1		tables: and composition, development, maturity indices, ance and overall quality of fruit and vegetables for		05	
2	Post-harvest Pre Handling, storage etc. of fruits and	e, ripening and control of ripening, chemical changes		05	
3	Fruits: Processing techn spoilage, Method	niques, juices, juice extraction process, causes of juice Is of juice preservation, concentrates, preserves, es, Squashes/cordials, Candied Fruits Fruit Bar, and		12	
4	Chutneys, Soup products. Dried Cauliflower and c	niques, vegetable juices, preservation, Ketchup/sauces, powders, pickles, fermented pickles and other traditional powders (Onion, garlic, potato, carrot starch), dried cabbage: Sauerkraut, Pickles, Dried Leafy Vegetables. reek, Coriander leaves, Curry leaves). Bitter gourd: er gourd.		10	

5	Tubers: Processing and products (Potato, Sweet potato, turnips, beetroot, Taro, yam and others)	06
6	Dehydrated and specialty products and by-products of fruits and vegetables	04
7	Honey, Sugars and saccharine products. Soft drinks, fermented pickles.	03
	Total	45

	Total 45
	5
	List of Text Books / Reference Books
1	Handbook of Fruits Science and Technology: Production, Composition, Storage and Processing by Salunkhe D.K. and Kadam S.S. (1995) CRC press
2	Handbook of Vegetable Science and Technology: Production, Composition, Storage and Processing, Salunkhe D.K. and Kadam S.S., (1998) CRC press
3	Preservation of Fruits and Vegetables – Girdhari Lal, Siddhapa and Tondon, ICAR, New Delhi.
4	Hand Book of Analysis and Quality Control of Fruits and Vegetable Products – S. Ranganna Tata McGraw Hill, New Delhi.
5	Commercial Vegetable Processing–Wood Roof and Lue.
6	Commercial Fruit and Vegetable Processing–W.V. Cruses.
7	Y. H. Hui, S. Ghazala, D.M. Graham, K.D. Murrell & W.K. Nip Handbook of Vegetable Preservation and Processing Marcel Dekker (2003).
	Course Outcomes (Students will be able to)
C01	Explain and develop basics of Fruits and vegetables processing operations (K3)
CO2	Analyse the process protocols of different fruit and vegetable based products and quality (K4)
СОЗ	Describe the mature η indices, methods, their importance during harvesting and processing (K2)
CO4	Explain the tuber processing, various products process protocol and design the novel food products out of them (K3)
CO5	Analyse the quality characteristics of importance in fresh and processed fruit, vegetable and tuber products in food industry (K4)

		M	apping	g of C	ourse	Outco	omes ((COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Κ														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K	3	3	2	3	2	3	3	3	3	3	3	2	3	3

			1			1		1	1	~	1	
4 , Strong Contri	hution: 2	Anderate	Contri	hution [.]	1 1 0	w Con	tributic	n. – No	Contri	bution		
, knowledge le	vel from co	ognitive d	lomain;	A, Affe	ective	domai	n; S, F	Psychon	notor a	omain		
-		-							. /	/		
									0			
								9USK	7			
								- 2	~			
								5				
								Ó.				
							_	3				
							X	(°				
							0,0 4.					
						,	0					
						9						
					Uh Cii							
					18							
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
					S							
				, C	5							
				$\bigcirc$								
			۰.	0								
			5									
			S	he								
			X									
		1	ř									
			ĩ									
		VAC.										
		2										
		Q.										
	5	>										
	Į,											
	Nobroven.											
	5											
	2											
-	2											
	ç											

	Course Code:	Course Title: Industrial Psychology and Human	(	Credit	
	HUT1103	Resource Management	L	Τ	P
	Semester: VI	Total Contact Hours: 45	2	1	0
None		List of Prerequisite Courses			
NULLE		List of Courses where this course will be prerequisite			
Techno		he forthcoming semesters			
		ription of relevance of this course in the B. Tech. Program			
		ents with human resource management skills to be able to fund	ction		
effectiv	ely in their profes	sional careers.			
		Course Contents (Topics and Subtopics)	Re	quired	d Hours
1	Introduction and			2	
2		eories eber, Hawthorne; Basic types of structures; Span of Control, ority, Responsibility		4	
3	Recruitment Philosophies, Dif	ferent methods of attracting candidates		3	
4	Selection Application blank	s, Interviews, Induction		2	
5	Rating errors	cess, Performance appraisal methods, Appraisal interviews,		3	
6		opment ng needs, Training methods (on the job and off the job luation of training		3	
7	Olmosk change	e, Theories of change management, Hurdles to change, strategies		3	
8		rtance and benefits of Knowledge Management, Framework		3	
9		ies motives, Various theories (Maslow, Herzberg, ERG, Vroom, a's 4 drive model)		4	,
10		odel, Hersey Blanchard Model, Michigan Model		3	
11		, Understanding and influencing cultures		3	1
12	resolution	nent lict, Types of conflict and sources of conflicts, Conflict		3	
13	2.5	Politicking strategies		3	
14		onality, Behaviour and personality styles		3	
15	Perception Perception versu	is sensation, Perceptual process, Perceptual errors		3	
		Total		4	)
1	Innovation and F	List of Textbooks/Reference Books Intrepreneurship, Peter Drucker			
2		anizational Behaviour, Stephen P. Robbins			
3	-	ehaviour, Luthans			
4		es and articles for review			
5	Innovation and E	ntrepreneurship, Peter Drucker			
		Course Outcomes (Students will be able to)			
CO1	explain the funda (K2)	amental concepts of industrial psychology and human resource	e mar	agem	ient

CO2analyze practical solutions (K4)CO3provide applicable solutions (K3)

		M	annin	a of C	ourse	Outc	omes	(COs)	with I	Progra	mme C	Jutcom	es (POs)		
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)           PO1         PO2         PO3         PO4         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02														
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K2	3	2	1	2	1	3	3	3	3	3 Վ	3	1	3	2
CO2	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	K4										0				
е		3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution K, knowledge level from cognitive domain; A, Affective domain: S, Psychomotor domain

	Course Code:	Course Title: Environmental Science and Technology		-	; = 3
	HUT1106		_	T	Ρ
	Semester: VI	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Variou		urses in previous semesters			
		st of Courses where this course will be prerequisite			
Variou		urses in the forthcoming semesters			
		ption of relevance of this course in the B. Tech. Program			
appred be exp unders	ciating impact of o	ful for the future Chemical Engineers and Technologists for chemical processes and technologies on the Environment. The y-gritties of the impact of design principles on the Environment technology aspects is going to help in innovative solution ent.	he stuo nent. T	dent Thor	ts will ough
•		Course Contents (Topics and Subtopics)		qui our	red ′s
	Introduction to a	all prevailing international standards of Health, Safety, and			
1	Environment (H	SE); Environmental laws and regulations; Standards (air		3	
	quality, noise, w	ater), ISO14000+			
2		npact assessment, Life cycle assessment (LCA)		3	
3		tion in chemical manufacturing, eifluent valorization		2	
		ir pollutants: sources (specific pollutants), effects, and			
4		elling, air pollution, air quality, pollutants minimisation and		4	
		emissions (source and control), Noise pollution			
5		tment; Groundwater and surface water pollution, removal of		4	
<u> </u>		ontaminants; Solid weste; Hazardous waste			
		Major disasters (e.y. Flixborough, UK; Bhopal, India;		_	
6		Pasadena, Texas; Texas City, Texas; Jacksonville, Florida;	5		
	Port Wentworth,				
7	Toxicology; Indu			2	
8		Toxic release and dispersion models		5	
9		sions; Concepts to prevent fires and explosions		3 2	
10	Chemical reactive				
11		fs sizing; Hazard identification; Risk assessment		4	
12	Safety procedur			4	
13	Some case histo			4	
		Total List of Textbooks/Reference Books		45	
1	Environmontal				
2		itudies by R. Rajagopalan, Oxford University Press. vironmental Studies by Kurian Joseph & Nagendran, Pearson	<u> </u>		
3	0	wable Energy by Godfrey Boyle, Oxford Publications			
4		Invironmental Studies, by Kaushik and Kaushik, New Age			
5		vironmental Studies by Anandita Basak, Pearson Education			
6		ironmental Studies by Dave and Katewa, Cengage Learning			
7		Studies by Benny Joseph, Tata McGraw Hill			
8		ironmental studies by Erach Books Bharucha, University Pres	S.		
-		Course Outcomes (Students will be able to)			
CO1	Calculate BOD / (K3)	COD for a given composition of effluent stream, estimation of	f bio Ki	neti	CS
CO2	Calculate adiaba	atic lapse rate and determine conditions for suitability of atmos tive stack height, chimney design (K3)	spheric		
<u></u>	Calculate conce	ntrative of pollutant at any point in the neighborhood of emissi	on give	en	
CO3		ditions like wind, dispersion, environmental factors, etc. (K3)			
CO4	Calculate size/ti	me/power required for primary clarifier, secondary treatment, t of different types of Biological treatments etc (K3)	ertiary		
CO5		in a given process and assess the same and provide solution	s for o	pera	ating

													1 miles		
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	F012	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K4										2				
е		3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

L ectiv. K, knowledge level from cognitive domain; A, Affective domain; S, F sychomotor domain

	Course Code:	Course Title: Institute Elective I: Food Biotechnology	Credits = 3				
	FDT1026	Course fille. Institute Elective I. Pood Biotechnology	L	Т	F		
ſ	Semester: VI	2	1	0			
		List of Prerequisite Courses					
Τ	Biochemistry (BST	1102), Microbiology (BST 1109)					
_							
	List	of Courses where this course will be Prorequisite					
T	None	T					
		2					
		0					

D	Description of relevance of this course in the B. Tech. (Food Engg. & Tech.) Programme										
Course	objectives										
1.	To describe the fundamentals of molecular biology, chemistry, biology and different of DNA, RNA and protein synthesis	mechanisms									
2. 3. 4.	<ol> <li>To describe tissue culture, microalgae, genetically modified foods and nutritional genomics applied in food biotechnology</li> </ol>										
5.	To describe the various industrial applications of enzymes	Deguired									
Sr. No.	Course Contents (Topics and subtopics)	Required Hours									
1	Introduction to Food of Biotechnology with applications in Industry, Basics of Molecular Biology - Chemistry and Biology of DNA, RNA and proteins, DNA	9 (6L+3T)									
2	Regulation of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology with examples	9 (6L+3T)									
З	Introductory aspects of biochemical engineering and bioreactor designs; Application of genetic control mechanisms in industrial fermentation processes; Principles of submerged and solid-state fermentations; Fermentation media and sterilization; Basics of strain improvement techniques.	9 (6L+3T)									
4	Basic concepts of Plant tissue culture and its applications in Biotechnology; Use of microalgae in biotechnology, Animal tissue culture as a tool of biotechnology; Genetically modified foods – plant and animal origin; Nutritional genomics	9 (6L+3T)									
5	Applications of enzymes in industry with case studies	9 (6L+3T)									
	Total	45									
	List of Text Books / Reference Books										
1	1Basic molecular and Cell Biology 3rd edition Ed. David Latchman. BMJ Publishing Group 1997.11st Indian reprint 2006.										
2	Gene cloning and DNA analysis. An Introduction 4 th edition. T.A.Brown. Publishers Sciences Ltd. UK 2001.	Blackwell									

	D ::
3	Introduction to plant biotechnology. H.S. Chawla 2 nd edition. Publishers Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi. 2009.
4	Cell and tissue culture; laboratory procedures in biotechnology. A. Doyle and J.B. Griffiths. John Wiley & Sons, Chichester, UK. 1998.
5	Fermentation Biotechnology: Principles, Processes and Products, Ward OP, 1989, Prentice-Hall.
	Course Outcomes (Students will he able to)
C01	Describe the fundamentals of molecular biology, chemistry, biology and different mechanisms of DNA, RNA and protein synthesis (K2).
CO2	Explain the regulations in gene expression in prokaryotes and eukaryotes and recombinant DNA technology (K2)
СОЗ	Describe different techniques and mechanisms involved in industrial fermentation processes (K2)
CO4	Describe and apply tissue culture and microalgae techniques as a tool of food biotechnology and describe the facts of genetically modified foods and nutritional genomics (K3)
CO5	Describe various applications of enzymes in industrial processes (K2)

						-									
		M	apping	g of C	ourse	Outco	omes (	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K	0	_		4		_		0		•	0		_	
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K				2										
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K			>											
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K			0											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K		10												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K	1	5												
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
2 Strop		ontrin	ution	2 Moc	lorato	Contri	hution	· 1 1 0	N Con	tributic	$n \cdot - Nc$	Contri	hution		

	Course Code:	Course Title: Seminar	N	Cr	edits =	= 2
	FDP 1033	Course fille. Sellinai	0.	L	Т	Ρ
	Semester: VI	Total contact hours: 60	V	0	1	4
		List of Prerequisite Courses				
	None	1				
<b>!</b>		S				
	List	of Courses where this course will be Prerequisit	te			
	Project I (FDP 1027)	, Project II (FDP 1025)				
D	escription of releva	nce of this course in the B. Tech. (Food Engg. &	Tech.) F	Prog	ramme	•
Course	e objectives	~				
1.	Develop a systema	tic thinking about a topic related to food technology				
2.	Develop skills for p	resenting a topic in food science effectively				
Sr. No.	(	Course Contents (Topics and subtopics)			Requ Hou	
1	chapters etc. and p seminar topic.	onduct literature survey, collect full papers, reviews, repare presentation and written review report on the written report of the seminar will be evaluated.			6	D
		2	То	tal	6	D
		No.				

	Course Outcomes (Students will be able to)							
CO1	Develop a protocol for literature survey about a certain topic (K4)							
CO2	Evaluate the literatures and interpret the scientific content (K5)							
CO3	Apply the concept of food technology on a selected topic (K3)							
CO4	Develop skills for presenting a scientific topic in food science (K6)							
CO5	Develop skills for writing a scientific document (K6)							
	2							

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)	_	
		PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K	Z													
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	K														
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K														
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	K														
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours	K														
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title: PR5: Food Processing and Product	Cre	dits	= 2
	FDP 1034	Development	L	Т	Р
	Semester: VI	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
	SPL2: Principles of	Food Preservation (FDT1031), SPL5: Food Engineering (FDT1	.022)		
		22			
	List	of Courses where this course will be Prerequisite			
	SPL8: Food Proces	s Engineering (FDT1027)			
		0			
D	escription of releva	nce of this course in the B. Tech. (Food Engg. & Tech.) Pro	gram	me	
2. To 3. To	o design and develop o design the product a	ion of processing in food formulations the process flow chart for any product development. and process formulations in food industry sing cost of any developed product			
Sr. No.	c	Course Contents (Topics and subtopics)	Required Hours		
1	Preparation of vario	us degree brix Syrups (rose syrup and almond syrup)		04	
2	Preparation, packag different fruits	jing, sensory and evaluation of Jam, jelly marmalade from	08		
3	Preparation of Ketcl	hup, Sauces and chutneys		08	
4	Preparation of Soura			08	
		ashes (lemon squash, orange squash, pineapple squash)		00	
5		ashes (lemon squash, orange squash, pineapple squash) ty of pickles (lemon, mango, chilli, mixed etc)		08	
5		ty of pickles (lemon, mango, chilli, mixed etc)			
	Preparation of varie	ty of pickles (lemon, mango, chilli, mixed etc) ent types of breads		08	
6	Preparation of varie Preparation of differ Preparation of differ	ty of pickles (lemon, mango, chilli, mixed etc) ent types of breads		08 08	
6 7	Preparation of varie Preparation of differ Preparation of differ	ty of pickles (lemon, mango, chilli, mixed etc) rent types of breads rent types of cakes rent types of biscuits		08 08 08	

	List of Text Books / Reference Books
1	Fuller, G.W. (2011). New Food Product Development: From Concept to Marketplace, 3rd

	land and the second second second second second second second second second second second second second second
	ed, CRC Press, UK.
2	Theodoros Varzakas, Constantina Tzia. (2015). Handbook of Food Processing: Food Safety, Quality, and Manufacturing Processes, CRC Press, UK.
3	Giridhari Lal, G.S. Siddappa, G.L. Tandon. (1998). <i>Preservation of Fruits and Vegetables</i> , ICAR, New Delhi.
4	Khurdia DS. (1995). Preservation of fruits and vegetables. Indian Council of Agriculture Research, New Delhi.
5	Ramaswamy H and Marcott M. (2005). Food Processing Principles and Applications. CRC Press.
6	The Food Safety and Standards Act along with Rules and Regulations (2011). Delhi: Commercial Law Publishers (India) Pvt Ltd.
	Course Outcomes (Students will be able to)
CO1	Explain and develop basic flow sheet in food processing operations (K3)
CO2	Analyse the major food processing steps applied during various food preparations (K4)
CO3	Describe and design novel fcod products (K3)
CO4	Use different food processing equipment for product development (K3)
CO5	Analyse the developed food products (K4)
	<i>Q</i> ,

				and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s											
		M	apping	g of C	ourse	Outco	omes (	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours e	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	1					
	Course Code: FDP 1018	Course Title: PR6: Food Analysis - I	2		edits =	1
	Semester: VI	Total Contact Hours: 60	~~	L 0	Т 0	P 4
	Semester: VI	List of Prerequisite Courses	5	0	0	4
	PR 3: Technical Ar	nalysis (FDP1011), PR 4: Food Chemistry (FDF101				
		C/2				
	List	t of Courses where this course will be Prerequisi	te			
	PR 7: Food Analys	sis-II (FDP1021), SPL 14: Food Safety, Quality and F	Regulatio	ns <mark>(FD</mark>	T1028	3)
D	escription of releva	ance of this course in the B. Tech. (Food Engg. &	Tech.) P	Progra	mme	
р	rotein, fiber, ash and	ds on training on chemical analysis or food composit I carbohydrate) determinations of wide range of fruit, roducts available in the market				
		laboratory skills required for performing a range of o lyses of food components	hemical a	and		
3. То	ο train them for the ι	understanding of nutritional labelling				
Sr. No.	с	course Contents (Topics and subtopics)			equire Iours	d
1	Analysis of tea and	d coffee		04		
2	Analysis of liquid r	nilk, condensed milk and skim milk powder			08	
3	Analysis of honey	and golden syrup			04	
4	Analysis of wheat	flour			04	
5	Analysis of beer a	nd wine			08	
6	Analysis of jam, je	lly and squash			08	
7	Analysis of fish				04	
8	Analysis of spices	8			04	
9	Analysis of vinega	r			04	
10	Analysis of ghee a	and edible oil		04		
11	Analysis of bread				04	
12	Analysis of Cake,	Biscuits		04		
			Total		60	

List of Text Books / Reference Books

1	Sehgal S. (2016). A Laboratory Manual of Food Analysis. I.K. International Publishing House Pvt. Ltd.
2	Nielsen, S. Suzanne (2017). Food Analysis Laboratory Manual II. (Ed.) 5th edition. Springer, New York
3	The Food Safety and Standards Act along with Rules and Regulations (2011). Delhi: Commercial Law Publishers (India) Pvt Ltd.
	Course Outcomes (Students will be able to)
C01	Apply the fundamental knowledge in the analysis of plantation crops/animal-based products/dairy based products (K3)
CO2	Analyse the unit operations involved in the processing of different plantation crops/animal products/milk and dairy products (K4)
СОЗ	Select and demonstrate a suitable extraction/isolation technique for high value compounds from plantation crops/milk/animal products (K4)
CO4	Develop new products and processes for value-addition of plantation crop/dairy/animal products (K4)
CO5	Develop strategies related to processing of dairy/plantation crops/animal based products and do troubleshooting (K4)
	Ú.

.

						-									
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)           PO1         PO2         PO3         PO4         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS01														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	К 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K	0	0	-		-			0						
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	Κ			6											
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	Κ		õ												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO5	Κ		0												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	K		-												
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

## Secondo VII

	Course Code:	Course Title:	0	Cr	edit	s = 3
	CET1703	Chemical Process Control	0	L	Т	Ρ
	Semester: VII	Total Contact Hours: 45	$\sim$	2	1	0
	· · ·	List of Prerequisite Courses	0			
(MA ⁻		ance Calculations, Applied Mathematics, , Chemical Engineering Operations (CET140				
	List	of Courses where this course will be prer	equisite			
Che		pratory (CEP1714), Projects [Project   (FDP 10		ct II	(FDF	<mark>1025 י</mark>
of th envir oper	ess control plays a ver ne core chemical engin ronment, process is o ation from the designed	n of relevance of this course in the B. Tech y critical role in the context of actual operation neering courses focus on the steady state continuously subjected to various disturban d steady state. This course specifically prepar s and equip them with the tools available to ta	n of a proce operation. I nces which res students	n the dev to a ituat	e rea iates sses ions.	al-life 5 the s the
Sr. No.	Cour	rse Contents (Topics and Subtopics)		F	tequ Hou	
1	Flow and compositio	ciples of measurement; Pressure, Temperatu n measuring devices; Introduction to controll Introduction to control valves, Types of contr eristics	ers (PLC,		9	
2	systems, First, secor Definition of terms s	em dynamics, Concept of dynamic response and and higher order system, Systems with d such as transfer function, Time constant, Ga I examples Response of processes to standar	ead-time, ain of the		9	
3	open loop control, F zeros of the transfer f Basic control actions	ess Control: Set point, disturbance, closed eedback and feed-forward configurations, F functions (ON/OFF, P, I and D), Effects of controller Offset, closed-loop gain, controller gain	oles and action on		6	
4	Stability analysis of fe	eeuback systems, Notion of stability, Criteria fo	or stability		6	
5	controlled, manipulat. outputs	gn: Introduction to controller design Identification and disturbance variables, Pairing of inputs for pressure, flow, temperature, level and co	s and		9	
6		aditional Advanced Control Systems: Cascad forward control, Selective control, Split-rang			6	
	2		Total		45	5
1	Chamier Drawer C	List of Text Books/ Reference Books	Charabase	<u>ala:</u>		
1		ontrol: An Introduction to Theory and Practice,			sG.	
2	-	imulation, and Control for Chemical Engineers			0.00	
3	F.J.	nd Control, Seborg, D.E. and Mellichamp, D.A	. anu ⊨ugai	, ו.⊢	and	Doyle
4	Process Control: Mo	deling, Design, and Simulation, Bequette, B.W	Ι.			
5		umentation Technology, Johnson, C.D.				
	Cour	se Outcomes (Students will be able to	)			
<u>1</u> 2		instrumentation and control elements for a pa transfer function models for dynamics of proc		ess (	K3)	
3		amics and stability of processes based on ma		analy	sis (	K5)
4	Design and tune proc	cess controllers (K6)				
5	Specify the required	instrumentation and control elements for a pa	rticular proc	<u>ess (</u>	K3)	

													N		
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ											~			
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Κ										6				
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	Κ										0				
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	Κ									-	~				
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	K									0					
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ								ん						
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

tribution, rain; A, Affec.

	Course Code:	Course Title: SPL11: Technology of Plantat	ion	Credits		= 3
	FDT 1024	Products	0.1	L	Т	P
	Semester: VII	Total Contact Hours: 45	· V	2	1	0
		List of Prerequisite Courses	2		-	-
	SPL 1: Chemistry of	Food Constituents (FDT 1011). SPL 6: Food Cher	mistry (FI	DT103	82)	
	•	S				
	List	of Courses where this course will be Prerequis	ite			
-	PR8: Food processi	ng and Engineering (FDP 1026)				

Description of relevance of this source in the P	Tech (Food Enga & Tech) Drogramma
Description of relevance of this course in the B.	Tech. (Food Engg. & Tech.) Frogramme

## Course objectives

- 1. To understand the process of cocoa fermentation and unit operations involved in extracting cocoa butter and producing cocoa powder
- 2. To describe cocoa butter replacement fats and the method of manufacture of chocolate-based confectionery
- 3. To understand tea/coffee cultivation, composition, processing, products and analysis
- 4. To describe spices, their chemical constituents and post-harvest handling and processing
- 5. To describe different types of sugar-based confections including manufacturing process, equipment used and physico-chemical analysis

Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Cultivation of cocoa, microbiolcgy/biochemistry of cocoa bean fermentation, development of cocoa flavour precursors, drying, roasting, alkalization (Dutching),	9 (6L+3T)
2	Cocoa butter replacement fats (CBS and CBE fats and other fats), antibloom fat, lecithin as emulsifier in chocolate; Chocolate based confectionery-Bulk chocolate manufacture: raw materials, milk chocolate process including milk crumb process, melangeuring, refining, pasting, conching; tempering, moulding, enrobing, panning.	9 (6L+3T)
3	Tea cultivation, constituents of tea leaf, fermentation and black tea manufacture, characteristics and quality of tea beverage, types of tea- black tea, green tea, oolong tea, speciality teas, herbal teas; analysis of tea Coffee varieties, cultivation, coffee bean composition, processing of berries (wet and dry process), roasting, grinding, brewing, instant coffee manufacture, decaffeination; analysis of coffee and chicory	9 (6L+3T)
4	Varieties of spices/condiments grown and consumed in various countries including India, nomenclature, properties and culinary uses, preservative action, medicinal uses, analysis of spices, post-harvest handling/ storage/ preservation/ processing of spices, spice-based products, major individual spices- turmeric, cardamom, asafoetida, cinnamon, cloves, nutmeg, capsicum, pepper, ginger, saffron, anise, ajwain, coriander, cumin, celery, caraway, dill, fenugreek, fennel etc.	9 (6L+3T)
5	Sugar based confectionery- ingredients used including sugar and alternative sweeteners, description of types of confections like HBC, toffee, fudge, gums and jellies, aerated confectionery, sugar panned confections, chewing gum etc, manufacturing process and equipment, structure of sugar confection, chemical analysis and quality assurance. Indian confectionery- types, description of characteristics, method of preparation	9 (6L+3T)
	Total	45

	List of Text Books / Reference Books
1	Chocolate, cocoa and confectionery: Science and Technology – $3^{d}$ Edition 1989 Minifie B.W.
2	Industrial Chocolate Manufacture and Use, Edited by Stephen Beckett, 4 th Edition Publisher Wiley Blackwell, ISBN: 978-1-4051-3949-6
3	Science of Tea Technology by PS Ahuja, A Gulati, RD Singh, RK Sud & RC Boruah. Scientific Publishers (2013). ISBN-13: 978-8172338312
4	Coffee: planting, production and processing by S K Mangal. Gene-Tech Books. 1 st Edition (2007). ISBN: 9781441653093
5	Handbook of herbs and spices by KV Peter. Woodhead Publishing Limited. 2 nd Edition, Vol II (2012)
6	Spices by JW Purseglove, EG Brown, CL Green & SRJ Robbins. Longman Group Ltd. Vol. 2 (1981) (pp. 447-813).
7	Sugar Confectionery and Chocolate Manufacture by R. Lees and E. B. Jackson. Springer US. 1 st Edition (1995). ISBN: 9781468414950
	Course Outcomes (Students will be able to)
CO1	Explain the process of cocoa termentation and unit operations involved in extracting cocoa butter and producing cocoa powder (K2)
CO2	Describe cocoa butter replacement fats and analyse the method of manufacture of chocolate-based confectionery (K4)
CO3	Explain tea/coffee cultivation, composition, processing, products and analysis (K2)
CO4	Describe spices, their chemical constituents and solve the problems related to post- harvest handling and processing (K3)
CO5	Describe different types of sugar-based confections including manufacturing process, equipment used and analysis (K2)
	No. of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	K														
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2

cours	K												07		
Stron	4	3 ontrib	3	2	3	2 Contri	3	3	3	3	3	3 Cont	2 ribution	3	3
, know	vledą	ge lev	el fron	n cogn	itive d	omain;	A, Affe	ective	domai	n; S, P	sychon	notor c	omain		
												0			
												4			
											2	3			
											gust .				
											On Ch				
										-	2				
										X					
										5					
									1	<u> </u>					
									$\sim$						
								1.2	1						
								0	ĩ						
								S							
							ć	2							
							G								
							6								
							5								
						5									
						2									
					1	2									
					0	ř.									
					Y										
					7										
				1	2.										
				0											
				Ved P.											
				)											
			5												
		1	$\sim$												
		V	~												

	Course Code:	Course Title: SPL12: Technology of Cereals, Legumes	Cre	dits	= 3
	FDT 1023	and Oilseeds	L	Т	Р
	Semester: VII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses	-		
	(FDT1031), SPL5: F	Food Constituents (FDT1011), SPL 2: Principles of Food Pres Food Engineering (FDT1022), SPL6: Food Cremistry (FDT103 Ingredients (FDT1012)			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	List	of Courses where this course will be Prerequisite			
	PR 8: Food Process Regulations (FDT10	sing and Engineering (FDP1026), Spl 14: Food Safety, Quality 028)	and		
	· · · ·	0			
D	escription of relevar	nce of this course in the B. Tech. (Food Engg. & Tech.) Pro	gram	me	
	•	C			
	e objectives	19 19 19 19 19 19 19 19 19 19 19 19 19 1			
1.		post-harvest handling, storage of cereals, grains, legumes and			
2.	To give them the co	oncept related to changes taking place in them during proces	sina	and	on
	processing to value cereals etc	e-added products such as flours, extruded products, noodle	es, br	eakfa	ast
3.	processing to value cereals etc To acquaint studen	e-added products such as flours, extruded products, noodle its with production trends, structure, composition, quality evaluation of various certains and value addition of various certains for product development and value addition of various certains for product development and value addition of various certains and value additions additions and value additions additions additions and value additions additi	es, br aluati	eakfa on a	ast .nd
3. Sr. No.	processing to value cereals etc To acquaint studen processing technolo and oilseeds.	e-added products such as flours, extruded products, noodle	es, br aluati reals, Re	eakfa on a	ast .nd .es ed
Sr.	processing to value cereals etc To acquaint studen processing technolo and oilseeds.	e-added products such as flours, extruded products, noodle its with production trends, structure, composition, quality eva ogies for product development and value addition of various cer Course Contents (Topics and subtopics)	es, br aluati reals, Re	on a puls	ast .nd .es ed
Sr. No.	rocessing to value cereals etc To acquaint studen processing technolo and oilseeds. Cereals and millets Morphology: physice value Wheat: Milling (chakki, rolie Maida, suji, chakki a	e-added products such as flours, extruded products, noodle the with production trends, structure, composition, quality evalues ogies for product development and value addition of various cer Course Contents (Topics and subtopics)	es, br aluati reals, Re	on a puls	ast .nd .es ed
Sr. No.	processing to value cereals etc To acquaint studen processing technolo and oilseeds. Cereals and millets Morphology: physice value Wheat: Milling (chakki, rolie Maida, suji, chakki a damaged starcn, Qu variety of products Rice: Paddy processing a operations, milling r	e-added products such as flours, extruded products, noodle ats with production trends, structure, composition, quality eva- bagies for product development and value addition of various cer- Course Contents (Topics and subtopics) s: ochemical properties; chemical composition and nutritional att, extraction rate and its effect on flour composition;	es, br aluati reals, Re	on a puls	ast .nd .es ed
Sr. No. 1	processing to value cereals etc To acquaint studen processing technolo and oilseeds. Cereals and millets Morphology: physica value Wheat: Milling (chakki, rolie Maida, suji, chakki a damaged starcn, Qu variety of products Rice: Paddy processing a operations, milling r characteristics influe Parboiling: Parboiling of rice, R	e-added products such as flours, extruded products, noodle the with production trends, structure, composition, quality eva- bagies for product development and value addition of various cer- Course Contents (Topics and subtopics) s: ochemical properties; chemical composition and nutritional r) break system, purification system and reduction system; atta, extraction rate and its effect on flour composition; uality characteristics of flour and their suitability for baking und rice milling: conventional milling, modern milling nachines, milling efficiency, byproducts of rice milling. Quality encing final milled products. ice bran stabilization and its methods; Aging of rice; methods; processed foods from rice – breakfast cereals,	es, br aluati reals, Re	on a puls	ast .nd .es ed
Sr. No. 1	processing to value cereals etc To acquaint studen processing technolo and oilseeds. Cereals and millets Morphology: physice value Wheat: Milling (chakki, rolie Maida, suji, chakki a damaged starcn, Qu variety of products Rice: Paddy processing a operations, milling r characteristics influe Parboiling of rice, R Enrichment – need, flakes, puffing, canr Corn: Corn milling – dry a	e-added products such as flours, extruded products, noodle the with production trends, structure, composition, quality eva- bagies for product development and value addition of various cer- Course Contents (Topics and subtopics) s: ochemical properties; chemical composition and nutritional r) break system, purification system and reduction system; atta, extraction rate and its effect on flour composition; uality characteristics of flour and their suitability for baking und rice milling: conventional milling, modern milling nachines, milling efficiency, byproducts of rice milling. Quality encing final milled products. ice bran stabilization and its methods; Aging of rice; methods; processed foods from rice – breakfast cereals,	es, br aluati reals, Re	on a puls	ast .nd .es ed
Sr. No. 1 2 3	processing to value cereals etc To acquaint studen processing technolo and oilseeds. Cereals and millets Morphology: physica value Wheat: Milling (chakki, rolie Maida, suji, chakki a damaged starcn, Qu variety of products Rice: Paddy processing a operations, milling r characteristics influe Parboiling: Parboiling of rice, R Enrichment – need, flakes, puffing, canr Corn: Corn milling – dry a ad modified starche Barley: Pearling / m	e-added products such as flours, extruded products, noodle ts with production trends, structure, composition, quality eva- bagies for product development and value addition of various cer- Course Contents (Topics and subtopics) s: ochemical properties; chemical composition and nutritional r) break system, purification system and reduction system; atta, extraction rate and its effect on flour composition; uality characteristics of flour and their suitability for baking and rice milling: conventional milling, modern milling machines, milling efficiency, byproducts of rice milling. Quality encing final milled products. ice bran stabilization and its methods; Aging of rice; methods; processed foods from rice – breakfast cereals, ning and instant rice nd wet milling, starch and gluten separation, milling fractions	es, br aluati reals, Re	on a puls on a p	ast .nd .es ed

7	Millets: Importance of Millet, composition, processing of millets for food uses, major and minor millets	02
8	Bakery Products : Breads, Cakes, Biscuits, Different types of biscuits, short, hard and fermented Biscuits (02), Advanced bakery products such as croissants, puffs, muffins and filled cookies and muffins, Different functional ingredients used in baking, Gluten free, multigrain products	08
9	Processing and technology of legumes and oilseeds: Moong, Channa, Arhar, Urd, whole as well split dal. Technology of pilseeds such as peanut, sesame, sunflower etc, Utilisation in food industry as protein and oil source and their use in Indian diet.	08
	Total	45

	List of Text Books / Reference Books
1	The chemistry and technology of cereals as food and feed, Matz S.A., 1991
2	Cereal Processing and Technology, Gavin Owens, CRC Press, 2001
3	Wheat – Chemistry and Technology, Pomeranz, Y, 1991
4	Cereals and Cereal Products: Technology and Chemistry, Dendy, David A.V., Dobraszczyk, Bogdan J., Springer, 2001
5	Handbook of Cereal Science and Technology, Karel Kulp, CRC Press, 2000
6	Principles of Cereal Science and Technology, Jan A. Delcour, R. Carl Hoseney, 2010
7	Food and Feed from Legumes and Oilseeds, J. Smartt, Emmanuel Nwokolo, Chapman & Hall, 1996
	Course Cu comes (Students will be able to)
CO1	Explain the uniqueness of cereal grain, legume and oilseed and inter-relationships of the key constituents (K2)
CO2	Infer about the quality of finished baked products, ingredient function, product formulation and processing, and molecular mechanisms (K4).
CO3	Apply different processing operations applied to legume and oilseed-based products (K3)
CO4	Describe the processing methods applied for wheat, malt and their products (K2)
CO5	Apply the technology involved in baked, extruded, puffed and fermented cereal, legumes and oilseeds products and Indian traditional products (K3)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	202	PO3			1		PO8		PO10	P011	P012	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO5	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours e	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

Course Code:	Course Title: Institute Elective II: Nutraceuticals and	Credits = 3			
FDT 1051	Functional Foods	L	Т	Р	
Semester: VII	Total Contact Hours: 45	2	1	0	
	List of Prerequisite Courses		•		
SPL1: Chemistry o (BST 1102), Gut p	f Food Constituents (FDT 1011) , SPL4: Nutrition (FDT 1015 hysiology), Bioo	chemi	stry	
	0				
List	of Courses where this course will be Prerequisite				
None	2				

De	scription of relevance of this course in the B. Tecn. (Food Engg. & Tech.) Programme
Course	e objectives
1.	To understand the fundamental knowledge on various nutraceuticals and functional foods and their mechanism of action
2.	To explain the basics of nutrigenomics and its relation with nutraceuticals
3.	To be aware of safety/ toxicity aspects of nutraceuticals and interactions with drugs
4.	To describe the basic terminologies and regulatory issues in the field of their applications
5.	To explain the roles of various nutraceuticals in different physiological/disease conditions
6.	To know the manufacturing of different nutraceuticals and functional foods
	S

Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Introduction to nutraceuticals: definitions, synonymous terms, basis of claims for a compound as a nutraceutical, regulatory issues for nutraceuticals including	9 (6L+3T)
2	Clinical testing of nutraceuticals and functional foods; interactions of prescription drugs and nutraceuticals; adverse effects and toxicity/safety of nutraceuticals	9 (6L+3T)
3	Nutraceuticals/ functional foods for life-style associated diseases such as atherosclerosis, hypertension, heart disease, stroke, obesity, type 2 diabetes, and diseases associated with smoking, alcohol and drug abuse and their mechanisms of action, dosage levels, contraindications if any.	9 (6L+3T)
4	Nutraceuticals/ functional foods for aging associated diseases such as cancer, arthritis, cataract, osteoporosis, Alzheimer's disease, age related macular degeneration and their mechanisms of action, dosage levels, contraindications if any.	9 (6L+3T)
5	Manufacturing aspects of selected nutraceuticals such as lycopene, isoflavonoids, prebiotics and probiotics, glucosamine, phytosterols etc.; formulation of functional foods containing nutraceuticals, stability, and analytical issues, labelling issues	9 (6L+3T)
	Total	45

	List of Text Books / Reference Books
1	Joyce I. Boye, Nutraceuticals and Functional Food Processing Technology, Wiley-Blackwell 2014.
2	Aluko Rotimi E. Functional Foods and Nutraceuticals, Food Science Text Series, Springer 2012.

3	Brian Lockwood, Nutraceuticals: A Guide for Healthcare Professionals, Pharmaceutical Press, 2007
4	Robert E.C. Wildman, Robert Wildman, Taylor C. Wallace Handbook of Nutraceuticals and Functional Foods, Second Edition, CRC Press 2006.
5	Geoffrey P. Webb. 2006. Dietary supplements and functional foods. Blackwell Publishing
6	Losso, J. N. Angi-angiogenic functional and medicinal foods. CRC Press 2007.
	Shi J.2007. Functional Food Ingredients and Nutraceuticals: Processing Technologies. Taylor & Francis Publ. CRC Press.
8	Robert E.C. 2006. Handbook of Nutraceuticals and Functional Foods. 2 nd Ed. Wildman.
9	Brigelius-Flohé, J and Joost H.G. 2006. Nutritional Genomics: Impact on Health and Disease. Wiley-VCH
10	Neeser J.R. and German B.J. Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals. Marcel Dekker, 2004.
11	Gibson, GR and William, CM. Functional foods - Concept to Product. Woodhead, 2000.
	Course Outcomes (Students will be able to)
CO1	Describe the fundamental knowledge on various nutraceuticals and functional foods and their mechanism of action and manufacturing aspects (K2)
CO2	Explain the basics of nutrigenomics and its relation with nutraceuticals (K2)
CO3	Explain the safety/ toxicity aspects of nutraceuticals and interactions with prescribed drugs (K3)
CO4	Describe the basic terminologies and regulatory issues in the field of their applications (K2)
CO5	Explain the roles of various nuraceuticals in different physiological/disease conditions (K2)
	Ï

		M	apping	g of C	ourse	Outco	omes ((COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K			-											
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K			0											
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K		10												
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K	1	Ņ												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO5	K	1													
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:		0	Cr	edits :	= 6	
	FDP 1035	Course Title: In-plant Training	ng		т	P	
	Semester: VII	Total duration: 12 weeks		0	0	0	
		List of Prerequisite Courses	2				
	None		1				
			2				
	Lis	t of Courses where this course will be Prer	equisite				
	Project I (FDP 1027), Project II (FDP 1025)					
D	escription of releva	ance of this course in the B. Tech. (Food En	gg. & Tech.)	Prog	ramme	;	
Cours	e objectives	1					
1.	Develop a systema	atic thinking about an industria! oroblem					
2.	Develop skills for a an industrial enviro	communication, networking personal grooming pomment	y & professio	nal cor	nduct w	vithin	
3.	Develop the attitud	le for individual and teamwork					
Sr. No.		Course Contents (Topics and subtopics)			Requ wee		
1	 Each Student will be involved in R & D/ manufacturing (QA / QC / Plant Engineering /Stores and Purchase)/ marketing / finance/ consultancy/ Technical services/ Engineering / Projects, etc. Oral presentation & written report of the in-plant training will be evaluated along 						
	with industry feedb		т	otal	12		

	Course Outcomes (Students will be able to)
CO1	Apply the concept of project & production management in further planning (K3)
CO2	Develop critical thinking regarding the various operations involved in food industry (K4)
CO3	Solve certain industrial challenges in food processes (K6)
CO4	Present and communicate an industrial problem effectively (K6)
CO5	Write a scientific report on the training (K6)

	A^*														
		M	apping	g of C	ourse	Outco	omes ((COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K														
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K														
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	K														
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	K														
	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours	K														
е	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

		\sim			
	Course Code:		Cr	edits =	: 4
	HUT1105	Course Title: Industrial Management	L	Т	Р
	Semester: VII	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
None		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Nono	L	ist of Courses where this course will be prorequisite			
None	Descri	iption of relevance of this course in the B. Tech. Program			
This co		effective and holistic functioning of students in their professiona	l caree	r	
		Course Contents (Topics and Subtopics)	R	equire Hours	
1		of Organization Life Cycle hanistic structures		3	
2	Marketing Manag			7	
3	Introduction to the Product, Price, Pl	e 4Ps of Marketing lace, Promotion		11	
4	Concept of pro	Operations Management oductivity, World class manufacturing, Business process anban, JIT, Poka Yoke system, Maintenance practices		10	
5		nent uality, Quality control, acceptance sampling and SQC s, TQM, Insights into ISO-9000, ISO -14000, ISO-50000		6	
6	Financial Manage Accounting syste ratios an insight,	em, Balance-sheet evaluation, Fund-flow analysis, financial	15		
7	Materials Manage Value analysis, inventory control	Purchasing and vendor development, Warehousing and		4	
8	Maintenance Mar Classifications, F shut downs and t	buipment and plant reliability and availability, Management of		4	
	,0	Total		60	
	0	List of Textbooks/Reference Books	-		
1		ement–I, Jhamb L. C. and Jhamb S.			
2		ement, Spriegel U.S.	t 1000	20	
3	Nicholas Acquilar				
4		ufacturing - A strategic Perspective, B.S. Sahay, K.B.C. Saxena	, Ashis	h Kum	ar
5	-	ance, Varanasay Murthy			
6		nagement,Koontz			
7	Principles of Mark	and Analysis, Juran			
8		ement, Prasanna Chandra			
	-	ement, R. M. Srivastava			
10	-	s and articles for review			
		Course Outcomes (Students will be able to)			
CO1	explain the funda	mental concepts of Marketing management and the various asp	ects th	erein	(K2)

CO2	describe the fundamental concepts of Finance and analyse the balance shcet (K4)
CO3	explain various productivity techniques that when combined with engineering knowledge can be applied successfully in the industry (K2)
CO4	study real life practical problems, constraints and will be able to think in terms of various alternative solutions (K3)

											1000				
		N	lappin	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcome	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	FO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO4	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

iribution. air; A, Affec

	Course Code:	Course Title:	Cre	dits :	= 2
	CEP1714	Chemical Engineering Laboratory	L	Т	Ρ
	Semester: VII	Total Contact Hours: 60	0	0	4
	•	List of Prerequisite Courses			
		ET1507), Transport Phenomena (CET1105), Chemical Engineerin eaction Engineering (CET1212)	ig Op	eratio	ns
	L	ist of Courses where this course will be prerequisite			
Other	B. Tech. courses i	n this and the last semester			
	Desci	iption of relevance of this course in the B. Tech. Program			
equipr dynam	nents and servers	also exposes them to practical versions of typical chemical s as a bridge between theory and practice. This particular lab foc ration, drying and sedimentation.	uses	on flu	uid
Sr. No.		Course Contents (Topics and Subtopics)		quire lours	
1	4 - 6 Experimen	ts on fluid dynamics and heat transfer		24	
2		ts on Chemical Engineering Operations		16	
3	2 – 4 Experimer	ts on Reaction Engineering		12	
4	1 – 3 Experimer	its on process dynamics and control		8	
		Total		60	
		List of Text Books/ Reference Books			
1		mith J.C., and Harriot، P. Unit Operations in Chemical Engineering	g, 201	4	
2		art W.E., and Lightfoot, E.N. Transport Phenomena, 2007			
3		ichardson J.F., and Sinnott, R.K. Coulson & Richardson's Chemica eering design, 1990.	al Enç	ginee	ring:
4	Green D. and Pe	erry R. Perry's Chemical Engineers' Handbook, Eighth Edition, 20	07.		
		Course Outcomes (students will be able to)			
CO1	Learn how to ex	perimentally verify various theoretical principles (K3)			
CO2	Visualize practic	al implementation of chemical engineering equipment (K4)			
CO3	Develop experin	nental skills (K4)			
		à			

		M	apping	of C	ourse	Outco	mes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3				<u> </u>	PO8		PO10	P011	· · · ·	PSO1	PSO2
		K3	K4	KG	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	К3	K4
CO1	K		1	1											
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Κ		0												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	Κ	1	1												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Courses Titles Food Anglusia II (Instrumentation)	Cro	edits =	= 2
	FDP 1021	Course Title: Food Analysis II (Instrumentation)	L	Т	Р
	Semester: VI	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
	PR3: Technical An Analysis I <mark>(FDP10</mark>	nalysis Lab (FDP1011) , PR4: Food Chemistry Lab (FDP1015) 18)	, PR6:	Food	
	1	t of Courses where this course will be Prerequisite			
	SPL7: Principle of	Food Analysis (FDT1052)			
		2			
D	escription of relev	vance of this course in the B. Tech. (Food Engg. & Tech.)	Progra	amme	
 To co /li>	onstituents train them toward vstem and availabilit explain the princip food analysis	various basics and advanced methods of analysis of major ds the selection of correct method based on the precision ty les of various types of chromatographic and spectroscopic te les of thermal analysis, food rheology, colour measurements a	n, accu chniqu	uracy, Ies sui	food
Sr. No.		Course Contents (Topics and subtopics)		Requi Hou	
1	Analysis of food s	amples for calorific value using bomb calorimeter		4	
2	UV-Vis Spectro-pł	notometric analysis of a carotenoid		4	
3	Hunter Lab colorir	netric studies of food samples.	Γ	4	
4	Texture analysis o	f food samples.		4	
5	Rheology of food	samples		4	
6	Sensory evaluatio	n of foods		4	
7	Gas chromatograp	ohic analysis of food constituents		4	
8	Densitometric (HF	PLTC) assay of food constituents		4	
9	HPLC separation	of food constituents		4	
10	Differential scanni	ng calorimetry (DSC) for food samples		4	
11	Polarimetric estim	ation of sugars		4	
12	Conductometric a	nalysis of polyelectrolytes in solution		4	
13	Atomic absorption	spectroscopic analysis of heavy metals in foods		4	
		Τα	tal	60	

	List of Text Books / Reference Books
1	Neilsen Suzanne S., Food Analysis, Fourth Edition, Springer; 2010.

2	Günzler H. and Williams A., Handbook of Analytical Techniques, Wiley-VCH Verlag GmbH Publishing; 2001
3	Otles S., Handbook of Food Analysis Instruments; 1 st ed.; CRC Press, Elsevier; 2008.
	Course Outcomes (Students will be able to)
C01	Select the appropriate instrumental method when presented with a practical problem (K5)
CO2	Demonstrate practical proficiency in a food analysis laboratory using advanced instruments (K3)
CO3	Evaluate the basic methods of instrumental and subjective sensory evaluation, including when certain methods might be used, the type of data derived, and how that data might be used in decision-making (K5)
CO4	Demonstrate practical proficiency in chromatographic techniques applied in food analysis (K3)
CO5	Choose appropriate techniques for foods and when/how to use them in a food processing environment/situation such as QA&/QC (K5)
	C ^Q

		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ					05									
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	Κ				1	2									
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K				1										
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	Κ				2										
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	Κ			\geq											
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours	K		-	0											
е	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title: Project -I	N	Credits	= 2
	FDP 1027		0.	Т	P
	Semester: VII	Total contact hours: 60	0	1	4
-		List of Prerequisite Courses	0		
	Seminar (FDP 1033	3)	1		
			5		
	Lis	t of Courses where this course will be Pre	equisite		
Î	Project II (FDP 102	5)			
	accordination of roles	anas of this course in the D. Tech. (Food Fr			_
U	vescription of relev	ance of this course in the B. Tech. (Food Er	igg. & iech.) Pro	gramm	e
1.	Develop a skill to s	solve a research problem related to food techn	ology		
2.	Develop skills for	presenting a research work effectively			
Sr.		0		1	
-		Course Contents (Topics and subtopics)			uirec urs
1	based on interest a Engineering and T - Each student bas is allotted a superv - Review of literatu methodology, poss experimental trials	municate various research project topics to all and facilities available and relevance to the are echnology. sed on his/her interest and merit selects the res	ea of Food search topic and , objectives, entation,	Ho	uirec urs 60

	Course Outcomes (Students will be able to)
CO1	Develop critical thinking to identify the research gap for the project (K5)
CO2	Formulate a scientific question and approach to solve it (K6)
CO3	Plan the experimental methodology for the project (K5)
CO4	Develop skills to communicate the research plan effectively (K6)
CO5	Develop skills for writing a scientific document on the research work (K6)

	_	Μ	apping	g of C	ourse	Outco	omes	(COs)	with F	rogra	mme O	utcom	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K 6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	K 5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	K 6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	K 6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours e	K 6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

S, Psychonotor demo

Semester bbroved by Acade. VIII

	Course Code:	Course Title: Cru	edits :	= 3
	CET1504	Chemical Project Engineering and Economics	Т	Ρ
	Semester: VIII	Total Contact Hours: 45 2	1	0
		List of Prerequisite Courses	· · ·	
Mate	erial and Energy Ba	lance Calculations, Equip Design and Drawing I, Energy Engineering	, Indus	stria
Engi	neering Chemistry			
	Liet	t of Courses where this course will be prerequisite		
Llom		tor courses where this course will be prerequisite		
пош	e Papers I and II	of relevance of this course in the B. Tech. Programme		
Thie	-	for the future professional career.		
	•	52	Requ	uire
Sr. No.		Course Contents (Topics and Subtopics)		urs
	Introduction to the	e green field projects and global nature of the projects Impact		
		ations on Project justification and cash flows Concepts of 'Quality		
1		ing typical design deliverables Understanding constructability,	e e	6
		aintainability during all stages of project execution		
		ct Engineering, various stages of project implementation	┝───	
		veen price of a product and project cost and cost of production, EV		
	Analysis.	of production, manitoring of the come in a plant		
		of production, monitoring of the same in a plant nistrative expenses, sales expenses, etc.		
2	5	arious components of project cost and their estimation Introduction	8	8
		ation, location index and their use in estimating plant and machinery		
	cost	alon, looalon index an anen doe in collinaling plant and maoninery		
	Various cost indic	ces		
	Project financing,	debt:equity ratio, promoters, contributors, shareholders contribution,		
		, time value of money		
		st, time value of money, selection of various alternative equipment or		_
4		this concept. Indian norms, EMI calculations	7	7
		cept, Indian norms and their utility in estimate of working results of		
	project. working (capital concept and its relevance to project		
	Estimate of work	king results of proposed project. Capacity utilization, Gross profit,		
		profit before tax, Corporate tax, dividend, Net cash accruals. Project		
5		Ilative cash flow analysis Break-Even analysis, incremental analysis,		7
		alysis, Discounted cash flow analysis		
6	Drogoco Solootio	n, Site Selection, Feasibility Report	<u> </u>	4
0		otion to Commissioning: milestones, Project execution as	<u> </u>	+
		of technical and nontechnical activities, contractual details. Contract:		
7		is, Types of contract. Lump- sum Turnkey (LSTK), Eng, Procurement	6	6
•		on(EPC),Eng, Procurement and Construction Management		-
	(EPCM). Mergers	and Acquisitions		
0	Reading of balanc	e sheets and evaluation of techno-commercial project		 >
8	reports	· ·		3
9	PERT, CPM, Bar-o	charts and network diagrams	4	4
		Total	4	5
		List of Text Books/ Reference Books		
1		Economics, MahajaniV.V.andMokashi SM.		
2		Economics for Chemical Engineers,Peters M.S.,TimmerhausK.D.		
3		d Equipment Cost Estimation, Kharbanda O.P.		
001		purse Outcomes (students will be able to)		
CO1	-	capital requirement for a given project (K3)		
CO2		equipment used in a plant total project cost (K3)		
CO3		w from a given project (K3)		
<u>CO4</u>		ne project from given alternatives (K4)		
CO5	list out various m	ilestones related to project concept to commissioning (K2)		

													N 1		
		Μ	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K											~			
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K										6				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO3	K										0				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K									5	~				
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO5	K									5					
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	K								L						
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

ntribution nain; A, Affer.

Course Code:	Course Title: SPL13: Technology of Dairy and Animal Products		Cr	edits :	s = 4	
FDT 1033	Animal Products Total contact hours: 60	0.	L	Т	Р	
Semester: VI	Total contact hours: 60		3	1	0	
	List of Prerequisite Courses	0				
SPL1: Chemistry of F	Food Constituents (FDT 1011). SPL6: Food Che	mistry <mark>(F</mark>)T103	2)		
•	S					
List	of Courses where this course will be Prerequ	isite				
PR8: Food Processir	ng and Engineering (FDP 1026)					

5

D	escription of relevance of this course in the B. Tech. (Food Engg. & Tech.) Pro	gramme
1. 2. 3. 4.	To understand the role of chemical constituents on the raw material quality and nur processing, sensory, and storage quality as of a wide range of dairy and animal ba To understand the vulnerability of dairy and animal based products to microbial con and steps to mitigate them To understand the steps involved in the processing of dairy and animal based products significance thereof To get an idea of the regulatory aspects of dairy and animal based products	sed products ntamination
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
Dairy ⁻	Technology	
1	Milk components, composition and types; raw milk quality and processing (HTST/UHT, homogenization). CIP/COP/distribution/packaging/fermented milks/bulk starter cultures	04
2	Manufacture of milk-based products - condensed and evaporated milk, milk powder, cheese, ice-cream, cream, butter, ghee; their evaluation and quality parameters, defects encountered during production, packaging and storage.	14
3	Non-dairy milk and milk products; Casein and caseinates, lactose, whey protein concentrates and isolates, milk co-precipitates, and other specialty products	06
4	Traditional dairy products, milk confections such as yoghurt, <i>dahi, khoa, burfi, kalakand, gulab jamun, rosogolla, shrikhand, chhana, paneer, ghee, lassi</i> etc. Probiotic milk products.	06
	Total	30
Anima	I Products	
1	Slaughter of food animals: Plan and layout of slaughterhouse, Religious and scientific methods of Slaughter of Food animals; Principle and Methods of Stunning of Food Animals	02
2	Handling and Transport of Food Animals: Animal welfare and pre-slaughter care, handling and transport of meat animals including poultry. Stress and Meat quality (DFD and PSE conditions)	01
3	AM and PM and Dressing of Food Animals: Procedures of Ante-mortem and post mortem examination of meat animals, Emergency and casualty slaughter;	02
4	Structure, Composition and Nutritive Value of Meat, Postmortem changes in meat: Conversion of muscle to meat, Ageing of meat	03
5	Meat Quality: Factors affecting microbial growth, spoilage of meat; Physicochemical parameters of meat, colour, texture, Sensory evaluation of meat and meat products	02
6	Meat Processing, preservation and packaging : Meat processing- Basic processing techniques of meat viz. Smoking and Curing, emulsification; Preparation of meat products including fermented meats, Preservation of meat and meat products; Packaging of meat and meat products.	04

7	Meat plant hygiene: GMP and HACCP. National and International Laws related to meat	01
8	Slaughterhouse by products: By-products from meat industries and their utilization	02
9	Meat trade: Statistics of meat industry in India	01
10	Poultry meat and Egg: Composition and nutritional value of poultry meat and eggs, Processing of poultry meat and eggs; Preparation of different poultry and egg products, Evaluation of external and internal quality of egg; Egg preservation, Utilization of poultry by products, Microbial Spoilage and control.	05
11	Fish and Fish Products: Classification of freshwater fish and marine fish; Commercial handling, storage and transport of raw fish. Average composition of fish; Freshness criteria and quality assessment of fish; Spollage of fish. Methods of processing and preservation of fish- Canning, Freezing, Drying, Smoking and Curing. Fish products – fish meal, fish protein concentrate, fish liver oil, fish sauce and surimi; Fish processing industries in India.	04
12	Cultured meats and plant-based alternatives	03
	Total	30

	List of Text Books / Reference Books
1	Aneja et al. 2002. Technology of Indian Milk Products. Dairy India Publ. De S.1980. Outlines of Dairy Technology. Oxford Univ. Press
2	Rathore,NS et al. 2008.Fundamentals of Dairy Technology- Theory & Practices. Himanshu Publ
3	Walstra et al. 2006. Dairy Science and Technology. 2nd Ed. Taylor & Francis.
4	Spreer E. Milk and dairy product technology. CRC Press, (2017).
5	Sebnem Ozturkoglu Budak and H. Ceren Akal, (Eds). Microbial cultres and enzymes in dairy technology. IGO Global (2018).
6	Goyal MR & Charan RS (Eds). Technological interventions in dairy science: Innovatives approaches to processing, preservation and analysis of milk products, Apple Academic Press (2018).
7	Meghwal M. Goyal MR & Chavan RS (Eds). <u>Dairy Engineering: Advanced Technologies and</u> <u>Their Applications, Apple Academic Press (2017).</u>
8	Web BH. et al. 1987. Fundamental of Dairy Chemistry. 3rd Ed. AVI Publ.
9	Walstra et al. 1999. Dairy Technology. Marcel Dekker.
10	Sharma BD. Modern Abattoir Practices and Animal by Products Technology, Jaypee Publisher (2003).
11	Sharma BD. Outlines of Meat Science and Technology, Jaypee Publisher (2011).
12	Aberele ED, Forrest JC, Gerrard, D. E., & Mills, E. W. Principles of Meat Science, Kendll Hunt (2001).
13	Warris, PD. Meat Science- An Introductory Text. CABI Publsihing, 2nd Edition (2010)

14	Kinsman, DM, Kotula DW & Btendstein BC. Muscle Food. destein, Marcel Dekker Inc. (1994)
15	Ockerman HW & Hansen CL. Animal By-product Processing and Utilization. CRC Press, 1st Edition (1999).
16	Toldra F. Handbook of Meat Processing, Wiley Blackwell (2010)
17	Gracey G, Collins DS & Huey R. Meat Hygiene, W.B. Saunders Company Ltd., CRC Press (1999).
18	Mountney GJ & Parkhurst CR. Poultry Products Technology. Haworth Press, 3rd edition (1995).
19	Feiner G. Meat Products Handbook, Woodhead Publishing (2006).
20	Lawrie RA. Lawrie's Meat Science, CRC Press 8th edition (2017)
21	Meilgaard, M, Civille GV & Thomas Carr B. Sensory Evaluation Technique, , CRC Press (2016)
	Course Outcomes (Students will be able to)
C01	Explain fundamental knowledge on dairv-based and animal-based products (K2)
CO2	Explain the facts and unit operations/fiow sheet of manufacture and technologies involved in the processing/food plant sanitation of different animal products/milk and dairy products (K2)
СОЗ	Apply techniques suitable for the extraction/isolation of high value compounds from milk/animal products (K3)
CO4	Develop/design/modify new products/processes for value-addition of dairy/animal products (K3)
CO5	Explain the causes related to any aspect of quality/spoilage and processing of dairy/animal based products and do troubleshooting (K3)

		M	apping	g of C	ourse	Outco	omes ((COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K.4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ		0												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ	1	\leq												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO5	Κ														
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
Cours	Κ														
е	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

>

Course Code:	Course Title: SPL14: Food Safety and Quality	Cr	Credits = 3			
FDT 1028	Regulations	Credits = 3LTP210				
Semester: VIII	Total contact hours: 45	2	1	0		
	List of Prerequisite Courses		•			
None	25					
	2					
List	of Courses where this course will be Prerequisite					
None	X					

De	escription of relevance of this course in the B. Tech. (Food Engg. & Tech.) Progr	amme
1. 2.	To explain the functional role and safety issues or food contaminants, food adulterati To describe the hygiene and sanitation in food processing plant, equipment, storage handling	
3.	To explain the various quality attributes of food and emphasizing on microbial quality	control in
4.	food and water quality To conduct a food safety-based risk assessment at different stages of production of f thereby designing the HACCP, VACCP and TACCP system	ood and
5.	To explain the role, standard and law set by Indian and global regulatory authorities v respect to food quality control	with
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	India Regulations Overview of FSSAI. Detail of FSS Regulations relevant to products and labelling. (FSS Licensing & amp; Registration including Schedule IV, Product Standards & amp; Additives, Labelling & amp; Display, Advertisement & amp; Claims) Introduction to food safety and security: Hygienic design of food plants and equipment,	15
2	Food quality : Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.	8
3	Food Safety Management System : Food Safety, Threat and Fraud Management based on international standards (HACCP / VACCP / TACCP)?	14
4	Global regulations: FAO, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection, Convention (IPPC) Codex Alimentarius Commission - Codex India – Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India – ToR, Functions, Shadow Committees etc. Overview of US and EU regulations for food	8
	Total	45

	List of Text Books / Reference Books
1	Handbook of Food Toxicology by S. S. Deshpande
2	The Food Safety Information Handbook by Cynthia A. Robert, 2009
3	Nutritional and Safety Aspects of Food Processing by Tannenbaum SR
4	Microbiological Safety of Food by Hobbs BC, 1973
5	Food Safety Handbook by Ronald H. Schmidt, Gary E. Rodrick
	Course Outcomes (Students will be able to)
CO1	Describe the functional role and safety issues of food contaminants, food adulteration, food additives, food packaging & labelling (K2).
CO2	Design the hygiene and sanitation in food processing plant, equipment, storage, and handling (K3)
CO3	Analyse the various quality attributes of food and especially on microbial quality control of food and water in Food Processing Industry (K4)
CO4	Identify and analyze the critical quality control point in different stages of production of food and thereby designing the HACCP system. (K4)
CO5	Explain the role, standard and iaw set by Indian and global regulatory authorities with respect to food quality control (K2)
	×

		M	apping	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K				9										
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Κ			2											
	3	3	3	02	2	2	3	3	3	3	3	3	2	3	3
CO3	Κ		1												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	K		10												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO5	K	4	0												
	2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours	Κ														
е	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code: FDT	Course Little' SPL 15' Food Packading	N	Credits = 3				
	1019 Course True. SPL15. Food Packagin Semester: VIII Total Contact Hours: 45	0.	L	Т	Р			
	Semester: VIII	Total Contact Hours: 45	V	2	1	0		
		List of Prerequisite Courses)		-	-		
	SPL1: Chemistry of F	ood Constituents (FDT 1011), SPL3: Food Microb	oiology <mark>(</mark>	-DT 1	014)			
	<u> </u>	NS I						
	List o	f Courses where this course will be Prerequisit	te					
٦	SPL2: Principles of F	ood Preservation (FDT 1031)						

Description of relevance of this course in the B. Tech. (Food Engg. & Tech.) Programme

Course objectives:

- 1. To understand the role of food packaging in food preservation
- 2. To understand the nature of different materials used in food packaging
- 3. To understand the various food packaging applications with respect to various food commodities
- 4. To understand different types of package testing methods employed to evaluate quality, performance and safety of food packaging materials
- 5. To understand various food-package interactions and environmental issues related to packaging
- 6. To understand newer food packaging application technologies

Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Introduction to food packaging, Causes of food spoilage; Factors affecting food spoilage; Packaging as a method for preservation of foods; Functions of food	9 (6L+3T)
2	Different materials used in food packaging such as paper, board, glass, metal containers, aluminium foil, plastics, composites, traditional materials and their physico –chemical characteristics, their advantages and limitations, method of manufacture	9 (6L+3T)
3	Testing of various packaging materials and packages for evaluation of quality, for identification, for evaluation of barrier and strength properties for transport- worthiness, for biodegradability, for migration etc; Criteria for selection of packaging materials; Shelf-life testing of packaged foods	9 (6L+3T)
4	Food and Paclraging material interactions including migration, scalping of flavour; biodegradable packaging; application of nanotechnology in food packaging; environmental concerns and lifecycle assessment Packaging of various food commodities including fresh produce (fruits and vegetables), meat, fish, poultry, milk, cereals and processed foods.	9 (6L+3T)
5	Newer packaging technologies- CAP/MAP packaging; aseptic processing and packaging; irradiated packaging; retort pouch; microwaveable packaging; packaging for high pressure processing; active packaging; intelligent packaging	9 (6L+3T)
	Total	45

	List of Text Books / Reference Books
1	Packaging Media by Paine F.A. Publisher: Blackie and son Ltd., Bishop Briggs (1977)
2	Food and Packaging Interactions by Risch.S.H. Publisher American chemical society,

	Washington (1991).
3	Handbook of Food Packaging by F.A. Paine and H.Y. Paine Publisher: Blackie and Son Ltd. London. (1983)
4	Food Packaging Technology by G Bureau and JL Multon, VCH, New York (Vol.1 & 2) (1996). ISBN: 1560819324, 9781560819325
5	Food Packaging and Shelf Life: A Practical Guide by Gordon L. Pobertson. CRC Publication. Edition 1 (2009). ISBN: 9781420078442
6	Food Packaging - Principles and Practice (3rd Edition) by Gordon L. Robertson. Taylor & Francis. Edition 3 (2013). ISBN: 9781628706529
7	Innovations in Food Packaging by Jung H. Han. Academic Press- Food Science and Technology International Series. Edn 1 (2005. ISBN: 9780123116321)
	Course Outcomes (Students will be able to)
CO1	Discuss and analyze the role of food packaging in food preservation (K4)
CO2	Describe different food packaging materials, properties, and interactions (K2)
CO3	Apply the concept of packaging with respect to various food commodities (K3)
CO4	Explain and interpret various tests used in evaluating quality and safety of food packaging materials (K2)
CO5	Describe newer food packaging technologies (K2)

						1,	S								
		Μ	appin	g of C	ourse	Outco	mes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	К6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K 3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K 2	3	2	21	2	1	3	3	3	3	3	3	1	3	2
CO5	K 2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Cours e	K 4	3	3	2	3	2	3	3	3	3	3	3 Contri	2	3	3

	Course Code:	Course Title: Program Elective: Waste Management in	Credits = 3					
	FDT 1053	Food Processing	LTP					
	Semester: VIII	Total Contact Hours: 45	2 1 0					
		List of Prerequisite Courses						
	None							
	•							
	Lis	t of Courses where this course will be Prerequisite						
	None	2						
		2						
D	escription of releva	ance of this course in the B. Tech. (Food Eugg. & Tech.) Pro	gramme					
•	-	cribe different terminologies in wastewater treatment						
•		ent treatment methods used in wastewater treatment						
•	To explain waste r	nanagement strategies for food processing industries						
•	•	overy of biological from various food wastes						
•	To design and dev	velop waste treatment protocol for different food wastes						
Sr.		Occurre Occutents (Tenics and editories)	Required					
No.		Course Contents (Topics and subtopics)	Hours					
		tment and recycle. BOD, COD and definitions, Discharge limits						
1	for effluents. Primary treatment, secondary and tertiary treatments by physical,							
	chemical and biological methods.							
2		waste utilization food processing industry by biological	9					
_	methods – for SCP, biogas and other products							
3	Waste management strategies and value added products from of agri-food 9							
4	processing industry							
4		gical from dairy, meat, fish and poultry processing industry	8					
5	Case studies: Cane Sugar waste, molasses for alcohol, bagasse for paper pulp, chemicals, bioethanol, cogeneration. Other processes including vermiculture.							
		and, cogeneration. Other processes including verniculture.	45					
		Total	40					

List of Text Books / Reference Books					
1	Wastewater Engineering; Treatment and Reuse, Metcalf & Eddy, Fourth Edition, Tata McGraw- Hill Edition				
2	Wastewater treatment for pollution Control and Reuse, Soli. J Arceivala & Shyam. R Asolekar Third Edition, Tata McGraw-Hill Edition, 2006.				
3	Arvanitoyannis !., Waste Management for the Food Industries, 1st Edition, Academic Press, 2007.				
4	Lawrence K. Wang, Yung-Tse Hung, Howard H. Lo, Constantine Yapijakis, Waste Treatment in Food Processing Industries, Taylor and Francis, 2005.				
5	Handbook of Waste management and co-product recovery in Food Processing – Vol.1- Keith Waldron, 2009.				
	Course Outcomes (Students will be able to)				
C01	Describe and interpret about different terminologies in wastewater treatment (K3)				
CO2	Explain and analyse different treatment methods used in wastewater treatment (K4)				
CO3	Develop waste management strategies for food processing industries (K4)				
CO4	Explain and recommend the strategies for the recovery of biological from various food wastes (K5)				

CO5	Design and develop waste treatment protocol for different food wastes (K4)
CO5	Design and develop waste treatment protocol for different food wastes (K4)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	F011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A.	K3	K6+A+S	K3	K4
CO1	K										5				
	3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K										0				
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K									d	14				
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	Κ									1					
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	Κ								~						
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Cours	Κ								~						
е	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

Lontribu, omain; A, A.

Course Code:	Course Title: PR8: Food Processing and		Credits = 4				
FDP 1026	Engineering	L	Т	Р			
Semester: VIII	Total Contact Hours: 60	0	0	8			
-	List of Prerequisite Courses						
SPL2: Principles of Food Preservation (FDT1031), SPL5: Food Engineering (FDT1022), SPL8: Food Process Engineering (FDT1027).							
List of Courses where this course will be Prerequisite							
2							

Description of relevance of this course in the B. Tech. (Food Engg. & Tech.) Programme

1. To evaluate the performance of thermal and mechanical operations in food processes

2. To analyse the integration of experimental design in food processing and formulations

Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Particle size and sieve analysis of cereal and wheat flour	4
2	Efficacy of size reduction process through hammer and ball mill	4
3	Milling of grains: Estimating the milling efficiency	4
4	Milk homogenization: Effect of product and process variables	8
5	Effect of process parameters on viscosity of liquid food	8
6	Rheological study of food slurry, paste and dough	8
7	Estimating the mixing index in a food mixture (solid and liquid)	4
8	Kinetic in thermal process design: Pasteurization of liquid food	8
9	Thermal death time in Canning of fruits and vegetables	8
10	Retort processing of vegetable products	4
11	Effect of process and product parameters on baking of bread	8
12	Effect of process and product parameters on baking of biscuit	8
13	Effect of material and air properties on tray drying of food materials	8
14	Effect of material and air properties on spray drying of food materials	8
15	Freezing of food material (rate and time of freezing)	8
16	Study of extraction of oleoresins from spices using liquid carbon dioxide	4
17	Use of experimental design and sensory evaluation in product formulation: Beverage (fermented and non-fermented); premix	12

18	Non-thermal processing of food	N	4
	0	Total	120

	List of Text Books / Reference Books
1	Ibarz, A., & Barbosa-Canovas, G. V. Unit Operations in Food Engineering. CRC Press, UK; 2002.
2	Barbosa-Cánovas, G. V., Ma, L., & Barletta, B. J. Food Engineering Laboratory Manual. CRC Press. UK; 1997.
3	Heldman, D.R. & Singh, R.P. Introduction to Food Engineering; 4 th ed.; Academic Press; Elsevier; 2009.
4	Stoecker, W.F. Industrial Refrigeration Handbook, McGraw-Hill Companies, Inc.; 1998.
5	Das, H. Food Processing Operations Analysis; Asian Books Pvt. Ltd.; 2008.
6	Fuller, G.W. New Food Product Development: From Concept to Marketplace, 3rd ed, CRC Press, UK; 2011.
	Course Outcomes (Students will be able to)
C01	Analyse the different unit operations in developing a process specific to food products (K4)
CO2	Analyse different thermal processes for food preservations (K4)
СОЗ	Analyse and evaluate the effect of different process variables on the quality of food product (K5)
CO4	Analyse and evaluate the effect of compositional variables on quality of food products (K5)
CO5	Develop and optimize the food process and products using the experimental design concept (K5)

				0											
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K 4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	Κ		2												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO2	Κ	-	5												
	4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K														
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	Κ														
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	Κ														
	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours	K														
е	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

· · · ·													
	Course Code:	Course Title: Project -II	~	Credits = 4									
	FDP 1025		0.	L	Т	Р							
	Semester: VIII Total contact hours: 120 0												
		List of Prerequisite Courses	0										
	Project I (FDP 1027)		4										
<u> </u>		6											
	l ist	of Courses where this course will be Prerec	wisite										
	None	2											
	Description of releva	nce of this course in the B. Tech. (Food Eng	g. & Tech.)	Progra	amme								
	-	2											
1	. Develop a skill to ex	kecute & solve a research problem in food tech	nology										
2	. Develop skills for pr	resenting a research outcome effectively											
Sr. No.	Course Contents (Topics and subtopics)												
1	The topic of the research with defined objectives and hypothesis should be explored by scientifically planned rational experiments. Students should have actual experimental data collected on the chosen research topic.												
2	-Oral presentation of proposed research work with data generated during actual trial targeted towards the objectives -Submission of report of research proposal												
	Total												

Course Outcomes (Students will be able to)									
CO1	Perform experiments & troubleshoot to generate reliable data (K5)								
CO2	Apply different statistical tools for scientific data analysis (K4)								
CO3	Evaluate critically the experimental data and draw meaningful inferences (K5)								
CO4	Develop skills to communicate the research outcome effectively (K6)								
CO5	Develop skills for writing a complete document on the project work (K6)								

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K 5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K 4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO3	K 5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	K 6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	K 6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours e	K 6	3	3	3	3	3	3	3	3	3	3	3	3	3	3