Syllabus for Open Electives (OE) Offered by Department Of Mathematics Institute of Chemical Technology, Mumbai

Under the National Education Policy (NEP 2020)

A. List of Open Electives offered by the Department of Mathematics

Subject Code	Semester	Subject	Credit	Hours/ Week			Marks for various Exams				
				L	Т	Р	CA	MS	ES	Total	
MAT1302	III	Differential Equations and Numerical Methods	4	4	0	0	20	30	50	100	
MAT2232	III	Optimization Techniques	4	4	0	0	20	30	50	100	
MATXXXX	IV	Discrete Mathematics	2	2	0	0	20	30	50	100	
MATXXXX	IV	Statistical Inference	2	2	0	0	20	30	50	100	
MATXXXX	V	Machine Learning	2	2	0	0	20	30	50	100	
MATXXXX	V	Mathematical Modelling	2	2	0	0	20	30	50	100	

B. Eligibility criteria:

Subject Code	Semester	Subject	Open for	Comment
MAT1302	III	Differential Equations and Numerical Methods	Bachelor of Technology	
MAT2232	III	Optimization Techniques	Bachelor of Chemical Engineering	
MATXXXX	IV	Discrete Mathematics	Bachelor of Technology Bachelor of Chemical Engineering	
MATXXXX	IV	Statistical Inference	Bachelor of Technology Bachelor of Chemical Engineering	Not available for students enrolled in MDM in Machine Learning and Artificial Intelligence
MATXXXX	V	Machine Learning	Bachelor of Technology Bachelor of Chemical Engineering	Not available for students enrolled in MDM in Machine Learning and Artificial Intelligence
MATXXXX	V	Mathematical Modelling	Bachelor of Technology Bachelor of Chemical Engineering	

A.	Program Outcomes as defined by the National Board of Accreditation (NBA): 12 Graduat	e
	Attributes	

PO1	Engineering	Apply the knowledge of mathematics, science, engineering fundamentals, and an
101	knowledge	engineering specialization to the solution of complex engineering problems.
		Identify, formulate, review research literature, and analyze complex engineering
PO2	Problem analysis	problems reaching substantiated conclusions using first principles of
		mathematics, natural sciences, and engineering sciences
		Design solutions for complex engineering problems and design system
DO 2	Design/developme	components or processes that meet the specified needs with appropriate
PUS	nt of solutions	consideration for the public health and safety, and the cultural, societal, and
		environmental considerations
	Conduct	Use research-based knowledge and research methods including design of
PO4	investigations of	experiments, analysis and interpretation of data, and synthesis of the information
	complex problems	to provide valid conclusions.
		Create, select, and apply appropriate techniques, resources, and modern
PO5	Modern tool usage	engineering and IT tools including prediction and modeling to complex
		engineering activities with an understanding of the limitations
	The orgineer and	Apply reasoning informed by the contextual knowledge to assess societal, health,
PO6	society	safety, legal and cultural issues and the consequent responsibilities relevant to the
	society	professional engineering practice.
	Environment and	Understand the impact of the professional engineering solutions in societal and
PO7	custainability	environmental contexts, and demonstrate the knowledge of, and need for
	sustainability	sustainable development
POS	Ethics	Apply ethical principles and commit to professional ethics and responsibilities
100	Ethics	and norms of the engineering practice
POO	Individual and	Function effectively as an individual, and as a member or leader in diverse teams,
109	teamwork	and in multidisciplinary settings.
		Communicate effectively on complex engineering activities with the engineering
PO10	Communication	community and with society at large, such as, being able to comprehend and write
1010	Communication	effective reports and design documentation, make effective presentations, and
		give and receive clear instructions.
	Project	Demonstrate knowledge and understanding of the engineering and management
PO11	management and	principles and apply these to one's own work, as a member and leader in a team,
	finance	to manage projects and in multidisciplinary environments
PO12	Life long learning	Recognize the need for and have the preparation and ability to engage in
F012	Life-long learning	independent and lifelong learning in the broadest context of technological change.

C. Detailed Syllabus for Open Electives

	Course Code: MAT	Course Title: Differential Equation and Numerical	C	redit	ts = 4				
	1302	Methods	L	Т	Р				
	Semester: III (Open Elective) (Only for BTECH)	4	0	0					
		List of Prerequisite Courses							
Enginee	ering Mathematics (MAT 12	05) (For Bachelor of Technology courses only)							
	List of	Courses where this course will be prerequisite							
Courses in UG Engineering programs in ICT that require mathematical modelling and numerical computations									

Description of relevance of this course in the B. Tech. Program										
This is	an elective course which will give interested students an exposure to understand the f	oundations of								
applicat	ions of the differential equations and various numerical methods in engineering problems.									
	Course Contents (Topics and subtopics)	Hours								
	Differential Equations - I: Solution of Higher order ODE with constant and variable									
1	coefficients and its applications to boundary and initial value problems, Series solution	15								
	of differential equations, Bessel functions, Legendre Polynomials, Error function.									
	Differential Equations – II: Fourier series, Laplace Transforms and their application in									
2	differential equation (both ODEs PDEs). Partial Differential Equations, Classification of	15								
	higher order PDEs, Solution of parabolic equation using separation of variables									
	Numerical Methods - I: Solutions of system of linear equations (Gauss-elimination, LU-									
3	decomposition etc.), Numerical methods for solving non-linear algebraic / transcendental	15								
5	etc. Newton's method, Secant, Regula Falsi methods. Numerical solution set of linear	15								
	algebraic equations: Jacobi, Gauss Siedel, and under / over relaxation methods									
	Numerical Methods - II: Interpolation and extrapolation for equal and non-equal spaced									
	data (Newtons Forward, Newtons backward and Lagrange), Least squares method of									
4	approximation, Numerical integration (trapezoidal rule, Simpson's Rule) Numerical	15								
	methods for solution of initial values problems using RK method, Euler's method, and									
	Taylor series method.									
	Total	60								
	List of Textbooks/ Reference books									
E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley (1999). (Officially										
-	r prescribed)									
2	2 S. R. K. Iyengar, R. K. Jain, Advanced Engineering Mathematics Narosa.									
3	M. K. Jain, S R K Iyengar and R K Jain, Numerical Methods: For Scientific and	1 Engineering								
	Computation, New Age International Publication									
4	W. E. Boyce and R. DiPrima, Elementary Differential Equations (8th Edition), John Wiley	v (2005).								
5	R. V. Churchill and J. W. Brown, Fourier series and boundary value problems (7th Edition	on), McGraw-								
	Hill (2006).									
6	Dennis G. Zill, Advanced Engineering Mathematics, 6th Edition, Jones, and Bartlett Learn	ing (2016)								
	Course Outcomes (students will be able to)									
CO1	Solve higher order ordinary differential equations using different analytical and numerical	K1, K2, K3								
001	techniques	,,								
CO2	Apply Fourier and Laplace transform to solve ordinary and partial differential equations	K3. K4								
002	arising from various engineering problems	110,111								
	Build basic mathematical models governed by differential equations to formulate									
CO3	engineering problems and solve the equation using appropriate numerical or analytical	K2, K4, K5								
	techniques									
CO4	Solve the systems of linear equations using various numerical techniques	K2, K3								
CO5	Approximate appropriate mathematical functions from equal an unequally spaced data	K2, K3. K4								
	and perform integration using various numerical methods									
K1 -	Remembering, K2 – Understanding, K3 – Applying, K4 – Analyzing, K5 – Evaluating, K6	- Creating								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1	1	1	0	0	0	0	0	0	3		
CO2	2	2	1	1	1	0	0	0	0	0	0	3		
CO3	2	2	1	1	2	0	0	0	0	0	0	3		
CO4	2	2	1	1	1	0	0	0	0	0	0	3		

CO5	2	3	3	1	2	1	0	0	0	0	0	3

			С	s = 4					
	Course Code: MAT 2232	Course Title: Optimization Techniques	L	Т	Р				
	Semester: III (Open Elective) (Only for BCHEM ENG)	Total contact hours: 60	4	0	0				
		List of Prerequisite Courses							
Applie	d Mathematics – I (MAT 110	1), Applied Mathematics – II (MAT 1102)							
	List of	Courses where this course will be prerequisite							
NIL									
	De	scription of relevance of this course in the							
This co	ourse aims to provide students	with a deep understanding of large-scale computational tech	nique	s appl	lied to				
optimiz	zation problems in engineeri	ng. By focusing on both theoretical foundations and practi	cal a	pplica	tions,				
particip	pants will gain the skills nece	ssary to address complex challenges in various industry vert	icals.	The c	course				
encour	ages hands-on experience three	ough real-world projects, ensuring that students can apply the	eir kn	owlee	dge to				
solve e	ngineering optimization prob	ems effectively.	1						
	Course Contents (Topics and subtopics)								
1	Introduction to Optimization	problems and formulations		4					
2	One dimensional Optimiz	ation: Golden Section method, Fibonacci search Method,		8					
_	Polynomial interpolation me	thod, Iterative methods							
3	Classical optimization	Techniques: Unconstrained optimization, Constrained	8						
	Optimizations: Method of L	agrange multiplier, Kuhn-Tucker method							
1	Methods Duality Dual	Simpley Method, Integer Programming Problems and	10						
+	applications	Simplex Method, integer Programming Problems and		12					
	Unconstrained Optimizati	on Techniques: Direct search methods such as Powel's							
5	method, Simplex method, et	c		4					
	Gradient Search Method	s: Steepest descent method, Conjugate gradient method,		10					
6	Newton's method, Quasi-Ne	ewton's method, DFP, BFGS method etc		12					
7	Dynamic Programming Prob	blems		4					
8	Genetic Algorithms, Simula	ted Annealing, Ant Colony Optimization		8					
		List of Textbooks/ Reference Books							
1	Edvin K. P. Chong & Stanis	lab H. Zak, An Introduction to Optimization, John Wiley.							
2	Leunberger, Linear and Non	linear Programming, Springer							
3	Jorge Nocedal, Stephen J. W	right, Numerical Optimization, Springer							
4	S.S. Rao, Engineering Optin	nization: theory and practices, New Age International Pvt. Lto	ł,						
5	K. Deb, Optimization for En	gineering Design, Prentice Hall, India							
6	L. Davis, Handbook of gene	tic Algorithm, New York Van Nostrand Reinhold							
7	Z. Michaleuwicz, Genetic A	lgorithm+Data Structure=Evolution Programme, Springer-Ve	erlag						
8	R. K. Belew and M. D. Four	dations of Genetic Algorithms, Vose, San Francisco, CA: Mo	organ	Kauf	mann.				
	Co	urse Outcomes (students will be able to)							
CO1	Formulate optimization prob	lems.		K1, F	32				

UG MATH OPEN ELECTIVES NEP2020, ICT Mumbai

CO2	Understand the standard methods to solve unconstrained and constrained optimization problems.	K1, K2
CO3	Understand linear programming problems and apply in appropriate contexts	K2, K3
CO4	Solve optimization problems using various algorithms.	K3
CO5	Apply various algorithms in optimization techniques to solve real life problems.	K3

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1	1	1	0	0	0	0	0	0	3		
CO2	2	2	1	1	1	0	0	0	0	0	0	3		
CO3	2	2	1	1	3	0	0	0	0	0	0	3		
CO4	2	2	1	1	2	0	0	0	0	0	0	3		
CO5	2	3	3	1	2	1	0	0	2	0	0	3		

Course Code: MAT	Course Titlet Discrete Methometics	Credits = 2			
XXXX	L	Т	Р		
Semester: IV	Total contact hours: 30	2	0	0	
(Open Elective)	Total contact nours. 50	4	U	U	

List of Prerequisite Courses

Applied Mathematics – I (MAT1101) (For Bachelor of Chemical Engineering), Engineering Mathematics (MAT1205) (For Bachelor of Technology)

List of Courses where this course will be prerequisite

Description of relevance of this course in the UG programs in ICT Mumbai

This course will be useful in solving complex problems related to network analysis in engineering problems, computational chemistry, and simulations.

	Course Contents (Topics and subtopics)	Hours
1	Divisibility, Primes, Division Algorithm, GCD, Euclidean Algorithm, Fundamental Theorem of Arithmetic.	6
2	Linear Diophantine Equations, Congruences modulo n, Divisibility Tests, Wilson, Euler and Fermat Little Theorems with Applications	8
3	Graphs, Isomorphisms, Sub-Graphs, Degree, adjacency and incidence matrix	6
4	Paths, circuits, Eulerian graphs, connected graphs, shortest path algorithms	6
5	Dijkstra's Algorithm (introduction and examples only, Rubik's cube), Applications to Computational Modelling and Optimization problems in Chemical Engineering and Simulations	4
	Total	30
	List of Textbooks/ Reference Books	
1	J. A. Bondy and U. S. R. Murty: Graph Theory and Applications (Freely downloadabl website)	e from Bondy's
2	Agnarsson, Geir, and Raymond Greenlaw, Graph Theory - Modeling, Applications, a Pearson.	and Algorithms,
3	G.A. Jones and J.M. Jones: Elementary Number Theory, Springer.	

UG MATH OPEN ELECTIVES NEP2020, ICT Mumbai

4	David Burton, Elementary Number Theory, McGraw-Hill						
5	Thomas Koshy, Elementary Number Theory with Applications, 2 nd Edition, Elsevier, 2007						
Course Outcomes (students will be able to)							
CO 1	Understand basic concepts of arithmetic	K1					
CO 2	Collect and use numerical data to understand patterns and make conjectures for integers.	K2, K3					
CO 3	Understand basic concepts in Graph Theory and apply them to model real life problems	K1, K3					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	0	0	0	0	0	0	3
CO2	2	2	1	1	1	0	0	0	0	0	0	3
CO3	2	2	1	1	2	0	0	0	0	0	0	3

	Course Code: MAT	Course Title: Statistical Informac	Cre	dits =	= 2						
	XXXX	Course Title: Statistical Inference	L	Т	Р						
	Semester: IV (Open Elective)	Total contact hours: 30	2	0	0						
List of Prerequisite Courses											
Applied (MAT12	Mathematics – I (MAT1 05) (For Bachelor of Tech	101) (For Bachelor of Chemical Engineering), Engineerin pology)	ig Ma	thema	atics						
	List of	Courses where this course will be prerequisite									
Courses with state	in UG Engineering program istical modelling and real dat of statistical estimation the	ns in Institute of Chemical Technology (ICT) that that deals that analysis. This course is designed to clarify the fundamental pory and testing problems to the students									
concepts	Description of rel	evance of this course in the UG programs in ICT Mumbai									
This cou academia	urse is required for gradua	ting engineers to function effectively in real data analysis fr	rom in	dustr	y or						
	Course	Contents (Topics and subtopics)	H	lours							
1	Descriptive statistics: N	Numerical summaries of data, frequency distributions and		4							
	histograms, boxplots, pro	bability plots.		4							
2	Point estimation: Sample Unbiased estimation, Me of maximum likelihood, O	e and population, Estimators and their sampling distributions, an squared error of estimators, Method of moments, Method Central Limit theorem, Chi-square, t and F distributions		8							
3	Testing of hypothesis: C and alternative hypothesis distribution: tests of hypo sample size computation equality of variance, Tes interval and testing probl test for both single and two	General concepts related to statistical hypothesis testing, null , p-values, type $-I$ and type $-II$ error. Tests related to normal thesis for mean (one sided and two sided), type $-II$ error and , one sample and two sample t-test, paired t test, F test for sting for goodness of fit, Tests for proportion, Confidence em, Nonparametric tests: Sign Test, Wilcoxon Signed-Rank to sample problems.		8							
4	Linear regression: Corre- using least squares meth- interval for regression coer regression coefficients,	elation and simple linear regression, fitting regression model od, hypothesis test for simple linear regression, Confidence efficients, sampling distribution of least squares estimators of Regression diagnostics, Prediction of new observations:	10								

	prediction and confidence intervals, regression with multiple predictors: data analysis						
	and interpretations, Logistic regression and associated testing problems. Case studies						
	for both linear regression and logistic regression						
5	Demonstration using Python/R/Excel						
	Total	30					
	List of Textbooks/ Reference Books						
1	Douglas C. Montgomery and Hunter, W.G. Applied Statistics and Probability for Engine John Wiley & Sons, Inc. 2013	ers, 6th Edition,					
2	Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G., Statistics for Experimenters: Desand Discovery, 2 nd Edition, Wiley, 2005.	ign, Innovation,					
3	G. Casella and R. L. Berger, Statistical Inference, Second Edition, Duxbury.						
4	Daniel Sabanés Bové and Leonhard Held, Applied Statistical Inference: Likelihood and Bayes, Springer						
5	V. Robert Hogg, T. Allen Craig. Introduction to Mathematical Statistics, McMillan Publ	ication.					
	Course Outcomes (students will be able to)						
CO 1	Understand data visualization and various descriptive statistics concepts	K1, K2, K3					
CO 2	Compute sampling distribution of the estimators	K3, K4, K5					
CO 3	Estimate parameters of a population distribution using maximum likelihood and method of moments	K4, K6					
CO 4	Apply basic testing procedure to solve data analysis problems	K5, K6					
CO 5	Compute interval estimators for population parameters and apply it to solve real life problems.	K4					
CO 6	Apply linear and logistic regression models to solve real life data analysis problems	K5, K6					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	0	0	0	1	0	0	3
CO2	2	2	1	1	1	0	0	0	0	0	0	3
CO3	2	2	1	1	2	0	0	0	0	0	0	3
CO4	2	2	1	1	1	0	0	0	0	0	0	3
CO5	2	3	3	1	2	0	0	0	2	2	0	3
CO6	2	3	3	1	2	1	0	0	3	2	0	3

	Course Code: MAT	Course Title: Mashing Learning	Credits = 2							
	XXXX	Course Title: Machine Learning			Р					
	Semester: V (Open Elective)	Total contact hours: 30	2	0	0					
		List of Prerequisite Courses								
Statisti	cal Inference (MAT XXXX)									
	List of Courses where this course will be prerequisite									
NIL										
	Description of relevance of this course in the UG programs in ICT Mumbai									

Machine learning algorithms are at the core of modern computational techniques. This course helps the students to understand the mathematical and statistical concepts behind the machine learning algorithms. Students also get exposure to various challenges in solving real life problems.

	Course Contents (Topics and subtopics)	Hours							
1	Introduction to Machine Learning, Distinction between supervised and unsupervised learning problems, prediction accuracy, Training Error, Test Error, Bias-variance trade-off, Measuring the quality of fit. Regression techniques, Understanding the concept of model flexibility and prediction accuracy, Universal behaviour of Training and Test MSE. Case study of linear regression with K-nearest neighbour regression. (Emphasize on understanding the universal patterns using simulated realizations) Classification problems: Training and test error rates, Logistic regression, Linear and quadratic discriminant analysis	8							
2	Model Selection and Regularization: Multiple Linear Regression, Validation set approach, Leave-One-Out-Cross-Validation, K-fold cross validation, best subset selection, Forward Selection, Backward selection, Hybrid selection, shrinkage methods: Ridge regression, Lasso, Resampling methods and its application in real data analysis, Nonlinear regression and its engineering applications	12							
3	Decision Trees, Bagging and Boosting, Random Forests, Gradient Boosting	6							
4	Support Vector Machines: support vector classifier, SVM and for regression, Kernel tricks								
	Total	30							
	List of Textbooks/ Reference Books								
1	Andreas C. Müller and Sarah Guido, Introduction to Machine Learning with Python: David Barber A Guide for Data Scientists, O'Reilly Media.								
2	Hands on Machine Learning with R by Bradley Boehmke and Brandon Greenwell, CRC Pre-	ess.							
3	Introduction to Statistical Learning with Application in R by James, G., Witten, D., I Tibshirani, R.	Hastie, T. and							
4	All of Statistics: A concise course on Statistical Inference by Larry Wasserman.								
5	The Elements of Statistical Learning by Jerome H. Friedman, Robert Tibshirani, and Springer.	Trevor Hastie,							
6	Ethem Alpaydin, Introduction to Machine Learning, The MIT Press, Cambridge.								
7	Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining: Practical Machine Learning Tools a by Elsevier	nd Techniques							
8	Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learn Kevin P. Murphy.	ning series) by							
-	Course Outcomes (students will be able to)								
CO1	Understand advantages of machine learning algorithms.	K1, K2							
CO2	Apply machine learning techniques to solve regression problems involving real data.	K3, K4, K5							
CO3	Apply machine learning techniques to solve classification problems involving real data.	K3, K4, K5							
CO4	Apply ensemble learning methods to solve real life data analysis problems.	K5, K6							
CO5	Use software to build machine learning models and interpret the results.	K6							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	0	0	0	1	0	0	3
CO2	2	2	1	1	1	0	0	0	3	2	1	3
CO3	2	2	1	1	2	0	0	0	3	2	1	3

UG MATH OPEN ELECTIVES NEP2020, ICT Mumbai

CO4	2	2	1	1	1	0	0	0	3	2	1	3
CO5	2	3	3	1	2	0	0	2	3	2	1	3
CO6	2	3	3	1	2	1	0	3	3	3	2	3

	Course Code: MAT	Course Title: Methematical Medalling	C	redit	s = 2					
	XXXX	Course Thie: Mathematical Modennig	L	Т	Р					
	Semester: V (Open elective)	Total contact hours: 30	2	0	0					
List of Prerequisite Courses										
For B	For Bachelor of Technology: Engineering Mathematics (MAT1205), Differential Equations and Numerical									
Metho	ds (MAT 1302)									
For B	achelor of Chemical Engi	neering: Applied Mathematics – I (MAT1101), Applied Ma	then	natics	s – II					
(MAT)	1102)									
	List of	f Courses where this course will be prerequisite								
NIL										
	Description of rel	levance of this course in the UG programs in ICT Mumbai								
This co	ourse enables the students to	apply the theory of ordinary and partial differential equations to	sol	ve re	al life					
problei	ns arising from engineering,	biology, medicine etc.								
	Course	e Contents (Topics and subtopics)		Hou	rs					
	Introduction to Mathematic	cal modelling using linear and nonlinear discrete dynamical								
1	systems: qualitative analysis of discrete dynamical systems, One dimensional map, two									
	dimensional maps, Lyapunov exponents and chaotic attractor, examples from engineering									
	and natural sciences.	demotical models accounted by differential according. Discourse								
	Systems: Canonical forms	Figenvectors defining stable and unstable manifolds. Phase								
2	portraits Linearization and	Hartman's theorem Construction of phase plane diagram		8						
	Lyapunov functions, application	ations to natural and engineering sciences								
	Stability analysis for math	ematical models: Equilibrium points and their classifications,								
2	Lyapunov and asymptotic s	tability. Limit cycles: Existence and uniqueness of limit cycles		0						
3	in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from									
	chemical kinetics, ecology, disease models									
	Elements of bifurcation the	ory and applications to analyze mathematical models: diverse								
4	types of bifurcations a	nd their analysis using computational software tools		6						
	(Python/MATLAB)			•						
		Total		30	r					
		List of Textbooks/ Reference Books	1 1 1		CD C					
1	Sandip Banerjee, 2022, Mat	hematical Modelling: Models, Analysis and Applications, Second	1 Ed	ition,	CRC					
2	Stophan Lynch 2014 Dyng	might Systems with Applications using MATLAD Springer								
2	Stephen Lynch, 2014. Dyna Vuri A Kuznatsov 1008 E	linear Systems with Applications using MATLAB. Springer.								
3	I UII A. Kuziletsov, 1998. E	tions and Dynamical Systems. Vol. 7, 2rd Ed., Springer Verlag	1.							
+	Reinhard Illner C Sean Ro	hun Samantha McCollum Thea Van Roode 2005 Mathematica	1 M-	ndelli	ησ· Δ					
5	Case studies approach, Ame	erican Mathematical Society.		, 40111						
6	James T Sandefur, Discrete	dynamical systems Theory and applications, Clarendon press.								

7	M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic.							
8	R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, S	econd edition.						
0	American Mathematical Society, Rhode Island.							
9	Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed).							
10	Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Spring	er-Verlag New						
10	York.							
	Course Outcomes (students will be able to)							
CO1	Construct mathematical models for real life problems	K1, K2, K3						
CO^{2}	Analyse the qualitative features of mathematical models using techniques from dynamical	K3 KA K5						
02	systems	KJ, K4, KJ						
CO3	Perform local and global stability analysis of the mathematical models	K4, K6						
CO4	Perform local and global bifurcation analysis for nonlinear systems.	K5, K6						
CO5	Use symbolic mathematical software to analyze the mathematical models	K5, K6						

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	0	1	0	1	0	0	3
CO2	2	2	1	1	1	0	0	0	0	0	0	3
CO3	2	2	1	1	2	0	0	0	0	0	0	3
CO4	2	2	1	1	1	0	0	0	0	0	0	3
CO5	2	3	3	1	2	0	0	0	0	0	0	3
CO6	2	3	3	1	2	1	0	0	3	0	0	3