# Revised Syllabus for Two Years Program (Under the New Education Policy, NEP 2020) in

M.Sc. in Engineering Mathematics (2023-2024)



## **DEPARTMENT OF MATHEMATICS INSTITUTE OF CHEMICAL TECHNOLOGY**

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) <u>www.ictmumbai.edu.in</u>, Tel: (91-22) 3361 1111, Fax: 2414 5614

### A. Preamble:

Due to the emergence of modern computing facilities, the applications of mathematics in all branches of engineering, medical sciences, and financial sectors, etc. have become extremely important. As a result, there has been an extraordinary demand for technically qualified professionals having sound mathematical skills. However, most of the courses available in the country are devoted to either pure mathematics or some combination of pure and applied mathematics with a bit of computer programming knowledge.

The master's program entitled "M.Sc. in Engineering Mathematics", offered by the Department of Mathematics, Institute of Chemical Technology, Mumbai, is designed to create professionals who are equipped with practical knowledge of Mathematics, Statistics and Computer Programming. This is a two-year programme consisting of four semesters. The programme was started as a five-year project under UGC Innovative Schemes in 2011. The first revision of the syllabus took place in the academic year 2017-2018. The second revision has been done during the academic year 2021-2022. This is the third revision which will be implemented from the academic year 2023 – 2024. The revision has been carried out as per the guidelines of the National Education Policy 2022.

The course is an optimal blend of mathematical theory and its applications. Subjects related to Applied Mathematics, Statistics and Machine Learning will train the students on the use of modern computational tools to solve real life problems which are relevant to industry and society. These applied courses are complemented by some foundation courses in pure mathematics. Students having gone through this course will have sound working knowledge with a strong mathematical base which is necessary to address computational and statistical challenges encountered in the different areas of science and technology. During the course, students also work on a yearlong project during the third and fourth semester under the supervision of faculty members of the department and most often the projects are carried out in collaboration with people from industry.

After completing this course students will have career opportunities both in industry and academia. Almost all the career paths open to graduates in Mathematics are also available to the students.

## B. Regulations Related to the Degree of Master of Science in Mathematics (M. Sc. in Engineering Mathematics) Degree Course

### • Intake

20 candidates shall be admitted every year. The distribution of seats shall be as per the Institute's norms.

### Admission

- a. Candidates who have taken the post-H.S.C. 3-year/4-year degree course of Bachelor of Science with 6 units of Mathematics at the third year of the course and any two of chemistry, physics, and statistics as the two other subjects at the first and second years of University of Mumbai or of any other recognized University; and passed the qualifying examination with at least 55% of the marks in aggregate or equivalent grade average. (50% for the backward class candidates only from Maharashtra State are eligible to apply).
- b. Candidates who have passed B.Sc. in Statistics or B.Tech./B.E. with at least four mathematics papers as part of the coursework from a UGC/AICTE recognized University/ Institute are also eligible for admission.
- c. The admissions will be done strictly based on merit; the marks obtained in entrance test conducted by ICT.
- d. The candidates who have cleared the qualifying examination in one sitting will be preferred.

### • Course structure

- a. The course is a credit-based 4-semester (2-year) course.
- b. The course has an exit option after one year with a "Diploma" as per the guidelines of NEP 2020.

- c. There will be two semesters in a year:
  - i. Semester I and Semester III (July to December)
  - ii. Semester II and Semester IV (December to May)
  - Each semester will consist of 15-16 weeks of instructions including seminars / projects/assignments.
- d. The On Job Training (OJT) will be at the end of second semester (during summer) for 8 10 weeks and carries 4 credits.
- e. At the end of each semester the candidates will be assessed as per the norms of the Institute.
- f. Semesters will be governed by academic calendar of the institute.
- g. The requirement of attendance of the students shall be as per the norms of the Institute.
- h. All the relevant academic regulations of the Institute shall be applicable to the course.
- i. Assessment of the students will be done as per the norms of the Institute.
- j. In case of any difficulty regarding any assessment component of the course, the Departmental Committee shall take appropriate decision, which will be considered final.

### k. Electives:

- i. Three elective courses will be offered during the programme and the list of electives will be made available to the students.
- ii. Open electives will also be offered which may be of two types: (a) students can take it from well-established MOOC courses with prior approval from the department (b) it may be proposed by a faculty with detailed syllabus and get prior approval from the department.

### 1. Research Project:

- i. At the end of the Second semester, the Head of Department in consultation with the Departmental Committee will assign topics for the Research Projects (4 credits) to the students and assign the supervisors.
- ii. The students will do the Research Projects (6 credits) in semester IV on the topics assigned under the supervision of the assigned faculty member.
- iii. The students shall submit the project report before the prescribed date which will be a date before the last date of the semester IV. The report shall be submitted with soft binding.
- iv. The project report will be examined by the supervisor along with one other internal/external referee to be appointed by the Departmental committee. The referees shall give marks to the report as per the norms.
- v. The students will make presentation on the work in front of the Project Evaluation Committee (PEC) appointed by the Departmental Committee, in open defence form. The PEC will give marks to the presentation.
  - The comments received from the referees as well as given by the PEC need to be incorporated in the final project report in consultation with the supervisor.

### Programme Outcomes (POs) for M.Sc. Engineering Mathematics

| PO1  | Fundamental knowledge of pure mathematics: Apply the fundamental concepts of pure mathematics to understand the concepts in Applied Mathematics, Statistics and Computational Mathematics and empowering students to engage in research and development in future into top industries and institutions.                        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO2  | Foundation of Applied Mathematics: Strong foundation of Applied Mathematics which is directly connected to solving real life problems in different domains by means of mathematical modelling and being able to apply them in solving complex problems relevant to the society and industry.                                   |
| PO3  | Foundation of Statistics and Data Science: Strong foundation of Mathematics and Statistics of Data science and good hold on various statistical methodologies including probability theory, estimation, and testing of hypothesis etc. and being able to apply them in solving real life problems.                             |
| PO4  | Foundation of Machine Learning and AI: Understand and employ modern computational methods in Machine Learning including Deep Learning and Artificial Intelligence and use them effectively using free and proprietary advanced computational platforms for solving large scale problems arising from different research areas. |
| PO5  | Research based Teaching Learning: An innovative teaching framework to engage students in both academic and industrial research and open up multiple future paths in different verticals including preparation to qualifying national level tests like NET/GATE etc and creation of future leaders in teaching.                 |
| PO6  | Conduct investigations of complex problems: Use research-based knowledge in machine learning and artificial intelligence and research methods including design of experiments, analysis and interpretation of data to unfold complex problems from industry and academia and provide working solutions.                        |
| PO7  | Problem analysis: Identify, formulate, review research literature, and analyze complex real life problems using mathematics, statistics, and computational methods.                                                                                                                                                            |
| PO8  | Societal Applications of Mathematics: Apply reasoning informed by the existing knowledge pool to convert into a quantitative framework, collect relevant information and address various societal issues using modelling and statistical data analytics tools including deep learning and artificial intelligence.             |
| PO9  | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the practice of mathematics, statistics, and data sciences in all verticals of industry and society.                                                                                                                      |
| PO10 | Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                                                 |
| PO11 | Communication: Communicate effectively on complex industrial/natural problems and understand the functional requirements, identify the gaps and being able to provide solutions using modern tools and technologies offering advanced data sciences and machine learning techniques.                                           |
| PO12 | Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning, acquire appropriate skills in Mathematics and its application for the benefit of humankind.                                                                                                   |

Programme Specific Outcomes (PSOs) for M.Sc. Engineering Mathematics

| PSO1 | Foundations of Mathematics: Gain a thorough understanding of fundamental principles of mathematical sciences and learn how to apply mathematical reasoning in a wide range of theoretical and applied mathematical problems                                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO2 | Practical Applications of Mathematics: Strong foundation of Applied Mathematics which is directly connected to solving real life problems in different domains by means of mathematical modelling and being able to apply them in solving complex problems.                                   |
| PSO3 | Foundations of Statistics and Data Science: Gain a strong understanding on the Statistical foundations of Data Science and Machine Learning and apply them to effectively quantify the uncertainty in decision making in real life problems.                                                  |
| PSO4 | Foundations of Scientific Programming: Strong foundations on mathematical and probabilistic computations using free and open-source software and develop algorithmic thinking to address computational challenges.                                                                            |
| PSO5 | Real World applications of Machine Learning and AI: Communicate effectively AI concepts and methodologies and gain proficiency in applying them in addressing real world problems coming from various domains such as healthcare, finance, environment and climate related applications, etc. |
| PSO6 | Collaborative and Interdisciplinary Problem Solving: Function effectively as an individual, and as a member in large scale data science projects in interdisciplinary research involving both academia and industry.                                                                          |
| A    | pprove by Academic Count                                                                                                                                                                                                                                                                      |

### M.Sc. in Engineering Mathematics (Under NEP 2020) Institute of Chemical Technology, Mumbai

|              | Semester-I                                                |          |    |   |   |    |    |    |       |  |  |  |  |
|--------------|-----------------------------------------------------------|----------|----|---|---|----|----|----|-------|--|--|--|--|
| Subject Code | bject Code Subject Credits Hrs/Week Marks for various Exa |          |    |   |   |    |    |    |       |  |  |  |  |
|              |                                                           | L T P CA |    |   |   |    |    |    | Total |  |  |  |  |
| MAT 2201     | Applied Linear Algebra                                    | 4        | 4  | 0 | 0 | 20 | 30 | 50 | 100   |  |  |  |  |
| MAT 2230     | Real and Complex Analysis                                 | 4        | 4  | 0 | 0 | 20 | 30 | 50 | 100   |  |  |  |  |
| MAT 2326     | Statistical Computing                                     | 4        | 4  | 0 | 0 | 20 | 30 | 50 | 100   |  |  |  |  |
| HUT2102F     | Research Methodology                                      | 4        | 4  | 0 | 0 | 20 | 30 | 50 | 100   |  |  |  |  |
|              | Elective-I                                                | 4        | 4  | 0 | 0 | 20 | 30 | 50 | 100   |  |  |  |  |
| MAP 2523     | Computational Mathematics                                 | 2        | 0  | 0 | 4 |    | 50 | 50 | 100   |  |  |  |  |
|              | Lab – I                                                   |          |    | - |   |    |    |    |       |  |  |  |  |
|              | Total                                                     | 22       | 22 | 0 | 4 |    |    |    | 600   |  |  |  |  |
|              |                                                           |          |    |   |   |    |    |    |       |  |  |  |  |

|                                                                                  |                                       |    |    |   |   | 6  | •  |     |       |  |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------|----|----|---|---|----|----|-----|-------|--|--|--|--|
| Semester-II                                                                      |                                       |    |    |   |   |    |    |     |       |  |  |  |  |
| Subject Code     Subject     Credits     Hrs/Week     Marks for various Examples |                                       |    |    |   |   |    |    |     |       |  |  |  |  |
|                                                                                  |                                       |    | L  | Т | Р | CA | MS | ES  | Total |  |  |  |  |
| MAT 2235                                                                         | <b>Differential Equations</b>         | 4  | 4  | 0 | 0 | 20 | 30 | 50  | 100   |  |  |  |  |
| MAT 2231                                                                         | Modern Algebra                        | 4  | 4  | 0 | 0 | 20 | 30 | 50  | 100   |  |  |  |  |
| MAT 2327                                                                         | Machine Learning                      | 4  | 4  | 0 | 0 | 20 | 30 | 50  | 100   |  |  |  |  |
|                                                                                  | Elective-II                           | 4  | 4  | 0 | 0 | 20 | 30 | 50  | 100   |  |  |  |  |
| MAP 2524                                                                         | Computational Mathematics<br>Lab – II | 2  | 0  | 0 | 4 |    | 50 | 50  | 100   |  |  |  |  |
| MAP 2811                                                                         | On Job Training (OJT)                 | 4  |    |   |   |    |    | 100 | 100   |  |  |  |  |
|                                                                                  | Total                                 | 22 | 18 | 0 | 4 |    |    |     | 600   |  |  |  |  |
|                                                                                  |                                       |    |    |   |   |    |    |     |       |  |  |  |  |

# Exit option after the second semester with PG Diploma Degree

| Semester III |                                                                              |    |    |   |    |    |    |     |       |  |  |  |
|--------------|------------------------------------------------------------------------------|----|----|---|----|----|----|-----|-------|--|--|--|
| Subject Code | Subject Code     Subject     Credits     Hrs/Week     Marks for various Exam |    |    |   |    |    |    |     |       |  |  |  |
|              |                                                                              |    | L  | Т | Р  | CA | MS | ES  | Total |  |  |  |
| MAT 2229     | Measure, Integration and<br>Functional Analysis                              | 4  | 4  | 0 | 0  | 20 | 30 | 50  | 100   |  |  |  |
| MAT 2232     | Optimization Techniques                                                      | 4  | 4  | 0 | 0  | 20 | 30 | 50  | 100   |  |  |  |
| MAT 2328     | Deep Learning and Artificial<br>Intelligence                                 | 4  | 4  | 0 | 0  | 20 | 30 | 50  | 100   |  |  |  |
|              | Elective – III                                                               | 4  | 4  | 0 | 0  | 20 | 30 | 50  | 100   |  |  |  |
| MAP 2704     | Research Project (RP)                                                        | 4  |    |   | 8  |    |    | 100 | 100   |  |  |  |
| MAP 2525     | Computational Mathematics<br>Lab – III                                       | 2  | 0  | 0 | 4  |    | 50 | 50  | 100   |  |  |  |
|              | Total                                                                        | 22 | 18 | 0 | 12 |    |    |     | 600   |  |  |  |

| Semester – IV                                                              |                                 |   |    |    |    |     |    |    |       |  |  |  |
|----------------------------------------------------------------------------|---------------------------------|---|----|----|----|-----|----|----|-------|--|--|--|
| Subject Code     Subject     Credits     Hrs/Week     Marks for various Ex |                                 |   |    |    |    |     |    |    |       |  |  |  |
|                                                                            |                                 |   | L  | Т  | Р  | CA  | MS | ES | Total |  |  |  |
| MAT 2233                                                                   | Advanced Differential Equations | 0 | 20 | 30 | 50 | 100 |    |    |       |  |  |  |

| MAT 2329 | Advanced Statistical Computing | 4  | 4  | 0 | 0  | 20 | 30 | 50  | 100 |
|----------|--------------------------------|----|----|---|----|----|----|-----|-----|
| MAP 2705 | Research Project (RP)          | 6  | 0  | 0 | 12 |    |    | 100 | 100 |
| MAT 2234 | Mathematical Modelling         | 4  | 4  | 0 | 0  | 20 | 30 | 50  | 100 |
|          | Elective – IV                  | 4  | 4  | 0 | 0  | 20 | 30 | 50  | 100 |
|          | Total                          | 22 | 16 | 0 | 12 |    |    |     | 500 |

In each semester, the department will offer electives from the following list of topics.

|              | List of Electives                     |         |      |      |   |     |          |        |       |  |  |  |  |
|--------------|---------------------------------------|---------|------|------|---|-----|----------|--------|-------|--|--|--|--|
| Subject Code | Subject                               | Credits | Hrs/ | Week | c | Mar | ks for v | arious | Exams |  |  |  |  |
|              |                                       |         | L    | Т    | Р | CA  | MS       | ES     | Total |  |  |  |  |
| MAT 2651     | Graph Theory                          | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2612     | Combinatorics                         | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2606     | Financial Mathematics                 | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2603     | Number Theory                         | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2605     | Groups and Symmetries                 | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2607     | Matrix Computations                   | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2621     | Cryptography                          | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2608     | Topology                              | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2609     | Stochastic Process                    | 4       | - 4  | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2630     | Coding Theory                         | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2649     | Advanced Modern Algebra               | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2622     | Finite Element Method                 | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2642     | Integral Transforms                   | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2627     | Mathematical Biology                  | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2628     | Signal Processing                     | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2629     | Momentum, Heat and Mass<br>Transfer   | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2650     | Representation Theory                 | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2610     | Advanced Mathematical Finance         | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2625     | Multivariate Analysis                 | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2626     | Design and Analysis of<br>Experiments | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2623     | Operation Research                    | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2644     | Geometry of Curves and<br>Surfaces    | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2645     | Convex Optimization                   | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2646     | Time-Series Analysis                  | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2611     | Computational Fluid Dynamics          | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
| MAT 2647     | Operator Theory                       | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |
|              | *Open Elective                        | 4       | 4    | 0    | 0 | 20  | 30       | 50     | 100   |  |  |  |  |

**\*Open electives** may be of two types: (i) students can take it from MOOC (Swayam/NPTEL etc.) course with prior approval from the department (ii) it may be proposed by a faculty with complete details of syllabus and get prior approval from the department.

# SEMESTER I Approve by Acade

|            | Course Codes MAT 2201                                                         | Course Title: Applied Lincon Algebra                         | Cre        | dits=  | - 4 |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|------------|--------|-----|--|--|--|--|--|--|
|            | Course Code: MA1 2201                                                         | Course Thie: Applied Linear Algebra                          | L          | Т      | Р   |  |  |  |  |  |  |
|            | Semester: I                                                                   | Total contact hours: 60                                      | 4          | 0      | 0   |  |  |  |  |  |  |
|            |                                                                               |                                                              |            |        |     |  |  |  |  |  |  |
|            |                                                                               | List of Prerequisite Courses                                 |            |        |     |  |  |  |  |  |  |
| Basics     | of matrix algebra and determine                                               | nant of square matrix, vector spaces                         |            |        |     |  |  |  |  |  |  |
|            |                                                                               |                                                              |            |        |     |  |  |  |  |  |  |
|            | List of C                                                                     | ourses where this course will be prerequisite                |            |        |     |  |  |  |  |  |  |
| It is a f  | foundation course which will b                                                | e prerequisite for all the course studied in this program    |            |        |     |  |  |  |  |  |  |
|            | Description of relevance of                                                   | f this course in the M.Sc. Engineering Mathematics Pro       | gram       | 0      |     |  |  |  |  |  |  |
| This is    | a course further built up on a                                                | nd in continuation with undergraduate level course on linea  | ar algeb   | ra. Tl | his |  |  |  |  |  |  |
| course     | reviews the major concept                                                     | s of linear algebra and introduces advanced concepts         | with r     | eal l  | ife |  |  |  |  |  |  |
| applica    | ations. Introduced concepts wh                                                | nich will be used in almost all the later courses with speci | al empl    | nasis  | on  |  |  |  |  |  |  |
| Machin     | ne Learning and Deep Learning                                                 | g concepts.                                                  | <u> </u>   |        |     |  |  |  |  |  |  |
|            | Course (                                                                      | Contents (Topics and subtopics)                              | H          | lours  | ;   |  |  |  |  |  |  |
| 1          | Review of Vector Spaces, S                                                    | ubspaces, Linear dependence and independence, Basis an       | d          | 6      |     |  |  |  |  |  |  |
| -          | dimensions.                                                                   |                                                              |            | 0      |     |  |  |  |  |  |  |
|            | Basic concepts in Linear T                                                    | ransformations; Use of elementary row operations to fin      | d          |        |     |  |  |  |  |  |  |
| 2          | coordinate of a vector, char                                                  | nge of basis matrix, matrix of a linear transformations an   | d          | 8      |     |  |  |  |  |  |  |
|            | subspaces associated with matrices.                                           |                                                              |            |        |     |  |  |  |  |  |  |
| 3          | Inner Product Spaces, Orthogonal Bases, Gram-Schmidt Orthogonalization, QR 12 |                                                              |            |        |     |  |  |  |  |  |  |
|            | Factorization, Normed Linear Spaces.                                          |                                                              |            |        |     |  |  |  |  |  |  |
| 4          | Matrix Norm, condition numbers and applications.                              |                                                              |            |        |     |  |  |  |  |  |  |
|            | Eigenvalue and Eigenvector                                                    | s, Diagonalization and its applications to ODE, Dynamica     | ıl         |        |     |  |  |  |  |  |  |
| 5          | Systems and Markov Cha                                                        | ains, Positive Definite Matrices and their applications      | 8,         | 10     |     |  |  |  |  |  |  |
|            | Computation of Numerical E                                                    | ligenvalues.                                                 |            |        |     |  |  |  |  |  |  |
| -          | Singular Value Decompositi                                                    | ion, Matrix Properties via SVD, Projections, Least Square    | S          | 10     |     |  |  |  |  |  |  |
| 6          | Problems, Application of S                                                    | SVD to Image Processing, Principal Component Analysi         | S          | 10     |     |  |  |  |  |  |  |
|            | (PCA).                                                                        |                                                              |            |        |     |  |  |  |  |  |  |
| 7          | Structure of Linear Maps                                                      | Adjoint operators, Normal, Unitary, and Self-Adjoin          | nt         | 10     |     |  |  |  |  |  |  |
| 1          | operators, Spectral theorem                                                   | for normal operators, Jordan Canonical Forms and it          | :S         | 10     |     |  |  |  |  |  |  |
|            | applications.                                                                 | List of Torothe ales / Defense on healer                     |            |        |     |  |  |  |  |  |  |
| 1          | C. Varmannan, Lincon Alash                                                    | List of Textbooks/ Reference books                           |            |        |     |  |  |  |  |  |  |
| 1          | S. Kumaresan, Linear Algeo                                                    | ra – A Geometric Approach, Prentice Hall India.              |            |        |     |  |  |  |  |  |  |
| 2          | David C Lay, Linear Algebra                                                   | a and its Applications, Addition-westey.                     |            |        |     |  |  |  |  |  |  |
| 3          | C. Strong Vinger Algebra on                                                   | d its Applications, Hencourt Press, Journish                 |            |        |     |  |  |  |  |  |  |
| 4          | G. Strang, Linear Algeora and                                                 | a its Applications, Harcourt Brace Jovanish.                 | m1/fala    | htmal) |     |  |  |  |  |  |  |
| 5          | Corl D. Meyer, Metrix Analy                                                   | vis and Applied Linear Algebra, SIAM                         | IIII/ICIa. | num)   | )   |  |  |  |  |  |  |
| 0          | Carl D. Mayer, Matrix Allary                                                  | Asis and Applied Linear Algebra, SIAM.                       |            |        |     |  |  |  |  |  |  |
| /          | G. C. Cullen, Linear Algebra                                                  | a Outcomes (students will be able to)                        |            |        |     |  |  |  |  |  |  |
| COL        | Understand concents in Line                                                   | se Outcomes (students will be able to)                       |            |        |     |  |  |  |  |  |  |
|            | Understand concepts in Line                                                   | al Transformations and filler Product spaces                 |            |        |     |  |  |  |  |  |  |
| <u>CO2</u> | Understand basic concepts in                                                  | Eigenvalues-Eigenvectors and Structure of Linear maps.       |            |        |     |  |  |  |  |  |  |
| CO3        | Apply opplied line unit                                                       | arrous matrix factorization.                                 |            |        |     |  |  |  |  |  |  |
| C04        | Apply applied linear algebra                                                  | concepts to solve real life problems.                        |            |        |     |  |  |  |  |  |  |
| 005        | Apply concepts in eigenvalue                                                  | es-eigenvectors to solve real life problems.                 |            |        |     |  |  |  |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |
| CO1 | 3                                                              | 3   | 3   | 3   | 2   | 1   | 1   | 0   | 3   | 1    | 0    | 3    |  |

| CO2 | 3 | 3 | 3 | 3 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 3 | 3 | 3 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 3 |
| CO4 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 1 | 3 | 2 | 2 | 3 |
| CO5 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 |

| I   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |  |
| CO1 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO2 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO3 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO4 | 1                                                                        | 3    | 1    | 1    | 2    | 0    |  |  |  |  |  |  |  |
| CO5 | 1                                                                        | 3    | 1    | 1    | 2    | 0    |  |  |  |  |  |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution

| Course Code: MAT 2230   Course Title: Real and Complex Analysis   Credit:     L   T    | ts = 4                                                                                                               |                                                                                     |      |    |        |  |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------|----|--------|--|--|--|--|--|
|                                                                                        | Course Code: MA 1 2250                                                                                               | Course The: Real and Complex Analysis                                               | L    | Т  | Р      |  |  |  |  |  |
|                                                                                        | Semester: I                                                                                                          | Total contact hours: 60                                                             | 4    | 0  | 0      |  |  |  |  |  |
|                                                                                        |                                                                                                                      |                                                                                     |      |    |        |  |  |  |  |  |
|                                                                                        |                                                                                                                      | List of Prerequisite Courses                                                        |      |    |        |  |  |  |  |  |
| Basic c                                                                                | ourse in Calculus                                                                                                    |                                                                                     |      |    |        |  |  |  |  |  |
|                                                                                        | List of C                                                                                                            | Courses where this course will be prerequisite                                      |      |    |        |  |  |  |  |  |
| Measu                                                                                  | re, Integration and Functional                                                                                       | l Analysis (MAT 2229), Advanced Differential Equations                              | (M   | AT | 2233), |  |  |  |  |  |
| Operate                                                                                | or Theory (MAT 2647)                                                                                                 |                                                                                     |      |    |        |  |  |  |  |  |
|                                                                                        | Description of relevance of                                                                                          | of this course in the M.Sc. Engineering Mathematics Prog                            | ram  |    |        |  |  |  |  |  |
| It is a f                                                                              | It is a foundation course which is prerequisite for all the pure and applied mathematics topics including statistics |                                                                                     |      |    |        |  |  |  |  |  |
| in upco                                                                                | in upcoming semesters                                                                                                |                                                                                     |      |    |        |  |  |  |  |  |
| Course Contents (Topics and subtopics)                                                 |                                                                                                                      |                                                                                     |      |    |        |  |  |  |  |  |
| Sequences and series of functions, uniform convergence and its relation to continuity, |                                                                                                                      |                                                                                     |      |    |        |  |  |  |  |  |
| 1                                                                                      | differentiation, and integration                                                                                     | on. Weierstrass approximation theorem.                                              |      | 1  | 0      |  |  |  |  |  |
|                                                                                        | Functions of several variabl                                                                                         | es, Convergence of sequences of several variables, Limits                           |      |    |        |  |  |  |  |  |
| 2                                                                                      | and continuity, Directional                                                                                          | derivatives, Differentiability of functions from $\mathbb{R}^n$ to $\mathbb{R}^m$ , | 20   |    | 0      |  |  |  |  |  |
| _                                                                                      | Higher order derivatives, 7                                                                                          | Taylor's theorem and application, Local Maxima, Local                               |      |    |        |  |  |  |  |  |
|                                                                                        | Minima, Saddle points, Statio                                                                                        | onary points.                                                                       |      |    |        |  |  |  |  |  |
| 3                                                                                      | Analytic functions and Ca                                                                                            | uchy's theorems, Cauchy's integral formula, Liouville's                             |      | 2  | 0      |  |  |  |  |  |
|                                                                                        | theorem.                                                                                                             |                                                                                     |      |    | -      |  |  |  |  |  |
| 4                                                                                      | Taylor and Laurent series                                                                                            | s, isolated singularities and residues, Classification of                           |      | 1  | 0      |  |  |  |  |  |
|                                                                                        | singularities, Residue theory                                                                                        |                                                                                     |      |    | -      |  |  |  |  |  |
|                                                                                        |                                                                                                                      | List of Textbooks / Reference books                                                 |      |    |        |  |  |  |  |  |
| 1                                                                                      | T. Apostol, Mathematical An                                                                                          | halysis, 2nd Edition, Narosa, 2002.                                                 |      |    |        |  |  |  |  |  |
| 2                                                                                      | W. Rudin, Principles of Math                                                                                         | nematical Analysis, 3rd Edition, McGraw-Hill                                        |      |    |        |  |  |  |  |  |
| 3                                                                                      | Ajit Kumar and S. Kumaresa                                                                                           | n, A Basic Course in Real Analysis, CRC Press.                                      |      |    |        |  |  |  |  |  |
| 4                                                                                      | S. Kumaresan, A Pathway to                                                                                           | Complex Analysis, Techno World Publications                                         |      |    |        |  |  |  |  |  |
| 5                                                                                      | T. M. Apostol, Calculus Vol.                                                                                         | II, 2nd Ed., John Wiely& Sons.                                                      |      |    |        |  |  |  |  |  |
| 6                                                                                      | J. E. Marsden, A. Tromba,                                                                                            | and A. Weinstein, Basic Multivariable Calculus, Springer-Ve                         | rlag | •  |        |  |  |  |  |  |
| 7                                                                                      | Susane Jane Colly, Vector Ca                                                                                         | alculus, 4th Edition, Pearson.                                                      |      |    |        |  |  |  |  |  |
| 8                                                                                      | J. B. Conway, Functions of C                                                                                         | One Complex Variable, 2nd Edition, Narosa, New Delhi.                               |      |    |        |  |  |  |  |  |
| 9                                                                                      | T.W. Gamelin, Complex Ana                                                                                            | alysis, Springer International Edition.                                             |      |    |        |  |  |  |  |  |
|                                                                                        | Cour                                                                                                                 | rse Outcomes (students will be able to)                                             |      |    |        |  |  |  |  |  |
| CO1                                                                                    | Understand the pointwise and                                                                                         | d uniform convergence of sequence and series of functions.                          |      |    |        |  |  |  |  |  |

| CO2 | Understand the notion of differentiability from R <sup>n</sup> to R <sup>m</sup> .    |  |
|-----|---------------------------------------------------------------------------------------|--|
| CO2 | Obtain Taylor series expansions of functions of several variables and compute maxima, |  |
| 03  | minima and saddle points.                                                             |  |
| CO4 | Understand analytic functions and apply Cauchy's theorem to compute complex           |  |
|     | integrals.                                                                            |  |
| CO5 | Classify singularities of a function.                                                 |  |

|     |     | Mapp | ing of C | Course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3      | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 3   | 3    | 0        | 1        | 2      | 0       | 2        | 1      | 3       | 1        | 0    | 3    |
| CO2 | 3   | 3    | 1        | 2        | 2      | 0       | 1        | 1      | 3       | 1        | 0    | 3    |
| CO3 | 3   | 3    | 1        | 2        | 2      | 1       | 2        | 0      | 3       | 0        | 0    | 3    |
| CO4 | 3   | 3    | 1        | 1        | 2      | 2       | 3        | 1      | 3       | 1        | 0    | 3    |
| CO5 | 3   | 3    | 0        | 1        | 2      | 2       | 3        | 1      | 3       | 0        | 0    | 3    |

| I   | Mapping of Cou | rse Outcomes (C | COs) with Progr | amme Specific | Outcomes (PSO | s)   |
|-----|----------------|-----------------|-----------------|---------------|---------------|------|
|     | PSO1           | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 | 3              | 0               | 0               | 0             | 0             | 0    |
| CO2 | 3              | 0               | 0               | 0             | 0             | 0    |
| CO3 | 3              | 0               | 0               | 0             | 0             | 0    |
| CO4 | 3              | 0               | 0               | 0             | 0             | 0    |
| CO5 | 3              | 0               | 0               | 0             | 0             | 0    |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution



|          | Course Code: MAT 2326 Course Title: Statistical Computing                                             |                                                            | C   | <b>Credits</b> = 4 |       |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----|--------------------|-------|--|--|--|--|--|
|          | Course Code: MA 1 2520                                                                                | Course The: Statistical Computing                          | L   | Т                  | Р     |  |  |  |  |  |
|          | Semester: I                                                                                           | Total contact hours: 60                                    | 4   | 0                  | 0     |  |  |  |  |  |
|          |                                                                                                       |                                                            |     |                    |       |  |  |  |  |  |
|          | 10                                                                                                    | List of Prerequisite Courses                               |     |                    |       |  |  |  |  |  |
| Basic c  | course on Calculus                                                                                    |                                                            |     |                    |       |  |  |  |  |  |
|          | List of (                                                                                             | Courses where this course will be prerequisite             |     |                    |       |  |  |  |  |  |
| Machin   | Machine Learning (MAT 2327), Advanced Statistical Computing (MAT 2329), Deep Learning and Artificial  |                                                            |     |                    |       |  |  |  |  |  |
| Intellig | Intelligence (MAT 2328), Stochastic Process (MAT 2609), Computational Mathematics Lab – II (MAP 2524) |                                                            |     |                    |       |  |  |  |  |  |
| L.       | Description of relevance                                                                              | of this course in the M.Sc. Engineering Mathematics Progr  | am  |                    |       |  |  |  |  |  |
| This co  | ourse is a foundation course of                                                                       | covering major concepts of Probability and Estimation Theo | ry. | Intro              | duced |  |  |  |  |  |
| concep   | ts which will be used in all Ma                                                                       | achine Learning and Deep Learning courses.                 |     |                    |       |  |  |  |  |  |
|          | Course C                                                                                              | Contents (Topics and subtopics)                            |     | Hou                | ırs   |  |  |  |  |  |
| 1        | Introduction to Probabili                                                                             | ty: Random experiment, Probability space, Conditional      |     | 6                  |       |  |  |  |  |  |
| 1        | Probability and Independenc                                                                           | e, Bayes Theorem                                           |     | 0                  |       |  |  |  |  |  |
|          | Random Variables and Th                                                                               | eir Probability Distributions: Random variables and their  |     |                    |       |  |  |  |  |  |
| 2        | distributions, Discrete and Continuous random variables, Functions of random variables                |                                                            |     |                    |       |  |  |  |  |  |
| 2        | and their distribution, Comm                                                                          |                                                            | 10  | )                  |       |  |  |  |  |  |
|          | Distribution of Functions of                                                                          | random variables (emphasis on transformation formula).     |     |                    |       |  |  |  |  |  |

|                                     | Moments and Generating Functions: Moments of distribution function, generating              |                  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------|------------------|--|--|--|--|
|                                     | functions (moment generating function, probability generating function, characteristic      |                  |  |  |  |  |
| 3                                   | function, cumulant generating function, factorial moment generating functions) and their    | 4                |  |  |  |  |
|                                     | applications, Moment Inequalities.                                                          |                  |  |  |  |  |
|                                     | Multiple Random Variables and Sampling distributions: Joint distribution,                   |                  |  |  |  |  |
|                                     | Independence, functions of several random variables, Covariance, Correlation and joint      |                  |  |  |  |  |
|                                     | moments. Conditional Expectation. Concept of Random sampling. Sample                        |                  |  |  |  |  |
| 4                                   | characteristics and their distribution, Chi-Square, t-, and F-Distributions: Exact Sampling | 10               |  |  |  |  |
|                                     | Distributions; Sampling from Normal distribution, Order Statistics, and their               |                  |  |  |  |  |
|                                     | distributions                                                                               |                  |  |  |  |  |
| ~                                   | Limit theorems: Convergence concepts, Weak Law of Large Numbers and Strong Law              |                  |  |  |  |  |
| 5                                   | of Large numbers, Central Limit Theorem                                                     | 6                |  |  |  |  |
|                                     | Elements of Estimation theory: Parametric Point estimation: Finding estimators using        |                  |  |  |  |  |
|                                     | method of moments, maximum likelihood. Properties of estimators: Sufficiency,               |                  |  |  |  |  |
| 6                                   | factorization theorem, Rao-Blackwell theorem. Unbiased estimates and uniformly              | 10               |  |  |  |  |
|                                     | minimum variance unbiased estimators. Fisher Information and Cramer-Rao inequality,         |                  |  |  |  |  |
|                                     | comparing estimators based on risk function.                                                |                  |  |  |  |  |
| 7                                   | Elements of Hypothesis testing: Likelihood Ratio tests, Wald tests, Error probabilities     | 6                |  |  |  |  |
| /                                   | and the power function, most powerful tests.                                                | 0                |  |  |  |  |
|                                     | Tests related to normal distribution: Sampling from normal distribution and test for        |                  |  |  |  |  |
| 8                                   | mean, tests on variance, tests on several means, and tests on several variances with        | 4                |  |  |  |  |
|                                     | practical problems and applications.                                                        |                  |  |  |  |  |
| 9                                   | Interval Estimation: Inversion of test statistics, Size and coverage probability,           | 4                |  |  |  |  |
| Connection to Testing of hypothesis |                                                                                             |                  |  |  |  |  |
| 10                                  | Software component for module 8 and 9 will be covered in Research Methodology in            |                  |  |  |  |  |
|                                     | Mathematical Sciences (HUT2012F)                                                            |                  |  |  |  |  |
|                                     | List of Textbooks / Reference Books                                                         |                  |  |  |  |  |
| 1                                   | P.G. Hoel, S.C. Port and C.J. Stone, Introduction to Probability, Universal Book Stall, Ne  | w Delhı.         |  |  |  |  |
| 2                                   | K. Md. Ensanes Saleh and V. K. Rohatgi. An Introduction to Probability and Statistics. W    | iley.            |  |  |  |  |
| 3                                   | G. Casella and R. L. Berger. Statistical Inference. Duxbury Press.                          |                  |  |  |  |  |
| 4                                   | W. W. Hines, D. C. Montgomery, Probability and Statistics in Engineering. John Wiley.       |                  |  |  |  |  |
| 5                                   | V. Robert Hogg, T. Allen Craig. Introduction to Mathematical Statistics, McMillan Public    | ation.           |  |  |  |  |
| 6                                   | Vijay K. Rohatgi and A. K. Md. Ehsanes Saleh, An Introduction to Probability and            | Statistics, John |  |  |  |  |
|                                     | Wiley & Sons, inc.                                                                          |                  |  |  |  |  |
| 7                                   | A. M. Mood, F. A. Graybill and D. C. Boes, introduction to The Theory of Statistics, Th     | ird Edition, Mc  |  |  |  |  |
| 0                                   | Oraw Hill Education.                                                                        | ould Duogo       |  |  |  |  |
| <u> </u>                            | A. M. Gun, M. K. Gupta, B. Dasgupta, An Outline of Statistical Informace, Springer          | ond Press.       |  |  |  |  |
| 7                                   | L. wasserhan, An or Statistics. A Concise Course in Statistical Interence, Springer         |                  |  |  |  |  |
| CO1                                 | Compute probability of events for basic combinatorial problems                              |                  |  |  |  |  |
|                                     | Compute probability of events for basic combinational problems                              |                  |  |  |  |  |
| CO2                                 | variables                                                                                   |                  |  |  |  |  |
|                                     | Understand various convergence concepts and apply them to investigate large samples         |                  |  |  |  |  |
| CO3                                 | properties of estimators                                                                    |                  |  |  |  |  |
| <b>GO</b> 1                         | Estimate parameters of a population distribution using maximum likelihood and               |                  |  |  |  |  |
| CO4                                 | method of moments                                                                           |                  |  |  |  |  |
| CO5                                 | Understand different types of errors in testing of hypothesis and plot power functions.     |                  |  |  |  |  |
| CO6                                 | Apply basic testing procedure to solve data analysis problems                               |                  |  |  |  |  |
| 007                                 | Compute interval estimators for population parameters and apply it to solve real life       |                  |  |  |  |  |
|                                     | problems.                                                                                   |                  |  |  |  |  |

|     |     | Mapp | oing of C | Course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|-----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3       | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 1   | 2    | 3         | 3        | 2      | 2       | 3        | 2      | 3       | 1        | 1    | 3    |
| CO2 | 1   | 2    | 3         | 3        | 1      | 2       | 3        | 2      | 3       | 1        | 0    | 3    |
| CO3 | 1   | 2    | 3         | 3        | 1      | 2       | 3        | 2      | 3       | 1        | 0    | 3    |
| CO4 | 1   | 1    | 3         | 3        | 1      | 2       | 3        | 1      | 3       | 1        | 0    | 3    |
| CO5 | 1   | 3    | 3         | 3        | 2      | 3       | 3        | 2      | 3       | 1        | 0    | 3    |
| CO6 | 1   | 2    | 3         | 3        | 1      | 2       | 3        | 3      | 3       | 2        | 2    | 3    |
| CO7 | 1   | 2    | 3         | 3        | 1      | 3       | 3        | 1      | 3       | 2        | 2    | 3    |

| Ν   | Iapping of Cou | rse Outcomes (C | COs) with Prog | ramme Specific | Outcomes (PSO | s)   |
|-----|----------------|-----------------|----------------|----------------|---------------|------|
|     | PSO1           | PSO2            | PSO3           | PSO4           | PSO5          | PSO6 |
| CO1 | 0              | 0               | 3              | 0              | 1             | 1    |
| CO2 | 0              | 0               | 3              | 0              |               | 1    |
| CO3 | 0              | 0               | 3              | 0              |               | 1    |
| CO4 | 0              | 0               | 3              | 0              | 1             | 1    |
| CO5 | 0              | 0               | 3              | 0              | 1             | 1    |
| CO6 | 0              | 0               | 3              | 0              | 1             | 1    |
| CO7 | 0              | 0               | 3              | 0              | 1             | 1    |

|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       | C   |    | 4   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|--|--|--|
|                                                                                                                                                                                                                                     | Course Code: HUT2102F   Course     Semester: I   List of     List of Courses where the course of this contraining (OJT) (MAT 2811), Research 1   Description of relevance of this control of the course for carrying out restries.     Course Contents (7)   Introduction to Research methodology, types of research, Literature survey at objectives, Research designs, Data collectives, Research designs, | Course Title: Research Methodology in Mathematical                                                                                                                                                                                                                                                                                                                                                    | Cre |    | = 4 |  |  |  |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sciences     ster: I   Total contact hours: 60     List of Prerequisite Courses     List of Courses where this course will be prerequisite     ') (MAT 2811), Research Projects (MAP 2704, 2705)     on of relevance of this course in the Ph.D. in Mathematics Program at ICT     urse for carrying out research works at M.Sc. and Ph.D. programmes in N     Course Contents (Topics and subtopics) | L   | Т  | Р   |  |  |  |
|                                                                                                                                                                                                                                     | Semester: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total contact hours: 60                                                                                                                                                                                                                                                                                                                                                                               | 4   | 0  | 0   |  |  |  |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | List of Prerequisite Courses                                                                                                                                                                                                                                                                                                                                                                          |     |    |     |  |  |  |
| NIL                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
|                                                                                                                                                                                                                                     | List of Courses where this course will be prerequisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| On Job                                                                                                                                                                                                                              | Training (OJT) (MAT 2811),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Research Projects (MAP 2704, 2705)                                                                                                                                                                                                                                                                                                                                                                    |     |    |     |  |  |  |
|                                                                                                                                                                                                                                     | Description of relevance of this course in the Ph.D. in Mathematics Program at ICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| It is a foundation course for carrying out research works at M.Sc. and Ph.D. programmes in                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| Science                                                                                                                                                                                                                             | es.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| Course Contents (Topics and subtopics)                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
|                                                                                                                                                                                                                                     | Introduction to Research met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thodology, definition and characteristic of research, different                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| 1                                                                                                                                                                                                                                   | Introduction to Research methodology, definition and characteristic of research, different<br>types of research, Literature survey and formulation of research problem, Developing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| Introduction to Research methodology, definition and characteristic of research, different<br>types of research, Literature survey and formulation of research problem, Developing<br>objectives, Research designs, Data collection |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| Ę,                                                                                                                                                                                                                                  | At least one Mathematical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | software such as Python, R, SAGEMATH, Mathematica,                                                                                                                                                                                                                                                                                                                                                    |     |    |     |  |  |  |
|                                                                                                                                                                                                                                     | Matlab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| 2                                                                                                                                                                                                                                   | Descriptive Statistics using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R: Data types, Data description, data import and export,                                                                                                                                                                                                                                                                                                                                              |     | 15 |     |  |  |  |
|                                                                                                                                                                                                                                     | Basic Statistics using R, dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a exploration and summary statistics, Histograms, boxplot,                                                                                                                                                                                                                                                                                                                                            |     |    |     |  |  |  |
|                                                                                                                                                                                                                                     | stem and leaf plot, normal pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | obability plot, quantile-quantile plot                                                                                                                                                                                                                                                                                                                                                                |     |    |     |  |  |  |
|                                                                                                                                                                                                                                     | Probability Distributions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Testing of Hypothesis: Discrete and continuous probability                                                                                                                                                                                                                                                                                                                                            |     |    |     |  |  |  |
| 3                                                                                                                                                                                                                                   | distributions, sampling distri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | butions, basic testing procedures for real data analysis using                                                                                                                                                                                                                                                                                                                                        |     | 20 |     |  |  |  |
|                                                                                                                                                                                                                                     | R/Python                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |     |  |  |  |
| 4                                                                                                                                                                                                                                   | Introduction to LaTeX, Jour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rnal indexing, Information about various mathematical and                                                                                                                                                                                                                                                                                                                                             |     | 15 |     |  |  |  |
| 4                                                                                                                                                                                                                                   | statistical societies, Informa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion about seminars, conferences and workshops. How to                                                                                                                                                                                                                                                                                                                                                |     | 13 |     |  |  |  |

|     | read research article (a case study), Methods and processes for solving the problem.                                          |                 |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|
|     |                                                                                                                               |                 |  |  |  |  |  |
|     | List of Textbooks / Reference books                                                                                           |                 |  |  |  |  |  |
| 1   | Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers' Dist                                          | ributors.       |  |  |  |  |  |
| 2   | Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Limited.                                         | Wiley Eastern   |  |  |  |  |  |
| 3   | Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nd Pearson Education.                         | ed), Singapore, |  |  |  |  |  |
| 4   | Shrivastava, Shenoy& Sharma, Quantitative Techniques for Managerial Decisions, Wiley                                          |                 |  |  |  |  |  |
| 5   | Goode W J &Hatt P K, Methods in social research, McGraw Hill                                                                  | 0               |  |  |  |  |  |
| 6   | Basic Computer Science and Communication Engineering – R. Rajaram (SCITECH)                                                   |                 |  |  |  |  |  |
| 7   | Krantz, S. G. A Primer of Mathematical Writing: Second Edition. American Mathematical Society.                                |                 |  |  |  |  |  |
| 0   | Higham, N. J. Handbook of Writing for the Mathematical Sciences. Society for Industr                                          | ial and Applied |  |  |  |  |  |
| 0   | Mathematics.                                                                                                                  |                 |  |  |  |  |  |
| 9   | Christian Heumann, Michael Schomaker, Shalabh, Introduction to Statistics and Data Exercises, Solutions and Applications in R | Analysis with   |  |  |  |  |  |
| 10  | Brian R. Hunt, Ronald L. Lipsman, Jonathan M. Rosenberg, 2006. A Guide to MATLAB and Experienced Users                        | : For Beginners |  |  |  |  |  |
| 11  | Steven I. Gordon, Brian Guilfoos. 2017. Introduction to Modeling & Simulation with M                                          | IATLAB® and     |  |  |  |  |  |
| 12  | Mathematical Computation with Sage by Paul Zimmermann (online book)                                                           |                 |  |  |  |  |  |
| 12  | Course Outcomes (students will be able to)                                                                                    |                 |  |  |  |  |  |
| CO1 | Understand the basics of research methodology                                                                                 |                 |  |  |  |  |  |
| CO2 | Understand the importance and usage of mathematical software in research                                                      |                 |  |  |  |  |  |
| CO3 | Understand the basic statistical distribution and basics of testing of hypothesis                                             |                 |  |  |  |  |  |
| CO4 | Get good understanding on various mathematical and statistical journals and indexing                                          |                 |  |  |  |  |  |
| CO5 | Identify directions of research and able to decide on important research questions                                            |                 |  |  |  |  |  |
| L   |                                                                                                                               |                 |  |  |  |  |  |

|     |     | Mapp | ing of C | Course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3      | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 1   | 1    | 3        | 3        | 2      | 2       | 3        | 2      | 3       | 1        | 1    | 3    |
| CO2 | 1   | 1    | 3        | 03       | 1      | 1       | 3        | 2      | 3       | 1        | 0    | 3    |
| CO3 | 1   | 1    | 3        | 3        | 1      | 1       | 3        | 1      | 3       | 1        | 0    | 3    |
| CO4 | 1   | 1    | 3        | 3        | 1      | 2       | 3        | 3      | 3       | 0        | 0    | 3    |
| CO5 | 2   | 1    | 3        | 3        | 2      | 3       | 3        | 3      | 3       | 3        | 1    | 3    |

| a contraction of the second se | 0    |      |      |      |      |      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|
| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |      |      |      |      |      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0    | 0    | 1    | 3    | 0    | 1    |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0    | 0    | 1    | 3    | 0    | 1    |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0    | 0    | 1    | 3    | 0    | 1    |  |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0    | 0    | 1    | 3    | 0    | 1    |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0    | 0    | 1    | 3    | 0    | 1    |  |  |  |  |  |

|  | Course Code: MAP 2523 | Course Title: Computational Mathematics Lab – I | <b>Credits</b> = 2 |
|--|-----------------------|-------------------------------------------------|--------------------|
|--|-----------------------|-------------------------------------------------|--------------------|

|         |                                 |                                                                | L    | Т      | Р      |
|---------|---------------------------------|----------------------------------------------------------------|------|--------|--------|
|         | Semester: I                     | Total contact hours: 60                                        | 0    | 0      | 4      |
|         | Semesterri                      |                                                                | v    | v      |        |
|         |                                 | List of Prerequisite Courses                                   |      |        |        |
|         |                                 |                                                                |      |        |        |
|         | List of (                       | ourses where this course will be prerequisite                  |      |        |        |
| It is a | foundation course which y       | will be prerequisite for all the courses related to statistic  | s at | nd a   | nnlied |
| mather  | natics                          | in se prerequisite for an the courses related to statistic     | 5 ui | ia aj  | phea   |
|         | Description of relevance        | of this course in the M.Sc. Engineering Mathematics Prog       | ram  |        |        |
| This co | ourse will introduce basics of  | Python Programming and various numerical methods which         | h ar | e use  | ful in |
| solving | differential equations solvin   | g system of linear equations understanding of machine learn    | ing  | algoi  | ithms  |
| etc.    | , uniorenalia equations, sorvin | g system of mean equations, understanding of machine fear      | ſ    | aigoi  |        |
|         | Course (                        | Contents (Topics and subtopics)                                | n)   | Hor    | irs    |
|         | course c                        | Module -I (Python Programming)                                 |      | 1100   |        |
|         | Introduction to Python Prog     | ramming Python as an advanced scientific calculator use of     |      |        |        |
| 1.      | math and cmath modules          |                                                                |      | 2      |        |
|         | Strings List tuples and dict    | ionary data structures in Python. If and else controls and its |      |        |        |
| 2       | applications                    | ionaly data structures in Fython, if and ease controls and its |      | 2      |        |
| 3       | Loops in Python. Creating up    | ser defined functions and python modules                       |      | 4      |        |
| 4       | Vectors and matrix computation  | tions in Python using Numpy module                             |      | 2      |        |
|         | Use of SciPy and Sympy Mo       | dule to solve problems in numerical methods                    |      | 2      |        |
| 6       | 2d and 3d Plotting using Ma     | mlotlih                                                        |      | - 2    |        |
| 7       | Classes in Python with appli    | cations                                                        |      | 2      |        |
| 8       | Exploring data in Python usi    | ng Pandas                                                      |      | 2      |        |
|         | Development of Python Pro       | grams for problems in numerical methos of module-II along      |      |        |        |
| 9       | with exploring error analysis   | stants for providents in numerical methos of module if along   |      | 15     | 5      |
|         | M                               | odule -II (Basis of Numerical Methods)                         |      |        |        |
| 10      | Error Analysis and difference   | e table                                                        |      | 2      |        |
| - 10    | Solution of Algebraic and t     | ranscendental equation: Bisection method. Secant method.       |      |        |        |
| 11      | Regula-False method. New        | ton-Raphson method, and convergence criteria for these         |      | 4      |        |
|         | methods.                        |                                                                |      | •      |        |
|         | Numerical solution of           | inear equations: Gauss-Jacobi, Gauss-Seidel iteration.         |      |        |        |
| 12      | Successive over relaxation (    | SOR) and under relaxation method and convergence criteria      |      | 6      |        |
|         | for these methods.              | ,                                                              |      |        |        |
|         | Interpolations: Lagrange I      | nterpolation, Divided difference, Newton's backward and        |      |        |        |
| 13      | forward interpolation, Centra   | al difference interpolation (Hermite), Cubic Spline.           |      | 4      |        |
| 1.4     | Numerical differentiation, a    | nd integration (Trapezoidal rule, Simpsons 1/3, 3/8 rules).    |      |        |        |
| 14      | Gauss quadrature formula        |                                                                |      | 2      |        |
|         | Numerical solution of init      | al value problems (first and higher order ODE): Euler          |      |        |        |
|         | meths, Taylor series metho      | d, Runge-Kutta explicit methods (second and forth order),      |      |        |        |
| 15      | Predictor-Corrector methods     | s (Adam-Basforth, Adam-Moulton method). Stiff differential     |      | 6      |        |
| Ę,      | equations and its solutions w   | ith implicit methods, Numerical Stability, Convergence, and    |      |        |        |
|         | truncation Errors for the diff  | erent methods.                                                 |      |        |        |
| 16      | Numerical Solution of bound     | lary value problems using initial value method and Shooting    |      | 3      |        |
| 10      | techniques.                     |                                                                |      | 5      |        |
|         |                                 | List of Textbooks/ Reference Books                             |      |        |        |
| 1       | Dimitrios Mitsotakis, Con       | nputational Mathematics: An Introduction to Numerical          | An   | alysis | s and  |
| 1.      | Scientific Computing with P     | ython, CRC Press, First Ed.                                    |      |        |        |
| 2       | David Beazley, Python Cool      | book: Recipes for Mastering Python 3                           |      |        |        |
| 3       | M. K. Jain, S. R. K. Iyer       | agar and R. K. Jain: Numerical methods for scientific an       | d e  | ngin   | eering |
| 5       | computation, Wiley Eastern      | Ltd. Third Edition.                                            |      |        |        |

| 4   | Jaan Kiusalaas, Numerical Methods in Engineering with Python, Cambridge University   | y Press                         |
|-----|--------------------------------------------------------------------------------------|---------------------------------|
| 5   | D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific | Publications.                   |
| 6   | S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach      | , McGraw Hill.                  |
| 7   | S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hil     | 1.                              |
| 8   | M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed       |                                 |
| 0   | Rajesh Kumar Gupta, Numerical Methods Fundamentals and Applications, Cambridge       | ge Univ. Press, 1 <sup>st</sup> |
| , , | Ed.                                                                                  |                                 |
| 10  | Hans Petter Langtangen (auth.)-A Primer on Scientific Programming with Python, Spri  | inger.                          |
|     | Course Outcomes (students will be able to)                                           |                                 |
| CO1 | understand basic of python programming.                                              | Ċ                               |
| CO2 | develop python programmes for problems arising in science and engineering.           | 0                               |
| CO3 | perform computations with vectors and matrices in Python                             |                                 |
| CO4 | find numerical solutions of linear and nonlinear equations.                          |                                 |
| CO5 | solve problems in involving interpolation and its applications                       | 6                               |
| CO6 | model and solve real life problems using ordinary differential equations.            |                                 |

|     |     | Mapp | ing of C | course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3      | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 0   | 5    | 1        | 5        | 3      | 2       | 1        | 3      | 5       | 1        | 1    | 5    |
| CO2 | 0   | 5    | 1        | 2        | 1      | 1       | 1        | 1      | 5       | 1        | 1    | 5    |
| CO3 | 0   | 5    | 1        | 2        | 1      | 1       | 1        | 2      | 5       | 1        | 1    | 5    |
| CO4 | 0   | 5    | 3        | 2        | 3      | 1       | 2        | 1      | 5       | 1        | 1    | 5    |
| CO5 | 0   | 5    | 4        | 4        | 4      | 2       | 4        | 1      | 5       | 3        | 1    | 5    |
| CO6 | 0   | 5    | 3        | 2        | 3      | 1       | 4        | 1      | 5       | 1        | 4    | 5    |

.0

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                        |      | PSO1              | PSO2                  | PSO3             | PSO4             | PSO5            | PSO6 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-----------------------|------------------|------------------|-----------------|------|
| CO2     0     3     1     3     0     1       CO3     0     3     1     3     0     1       CO4     0     3     1     3     0     1       CO4     0     3     1     3     0     1       CO5     0     3     1     3     0     1       CO6     0     3     1     3     0     1       3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution     0     1     0 | CO1  | 0                 | 3                     | 1                | 3                | 0               | 1    |
| CO3     0     3     1     3     0     1       CO4     0     3     1     3     0     1       CO5     0     3     1     3     0     1       CO6     0     3     1     3     0     1       3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution     0     1                                                                                                   | CO2  | 0                 | <b>C</b> <sup>3</sup> | 1                | 3                | 0               | 1    |
| CO4     0     3     1     3     0     1       CO5     0     3     1     3     0     1       CO6     0     3     1     3     0     1       CO6     0     3     1     3     0     1       3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution     0     0     0                                                                                             | CO3  | 0                 | 3                     | 1                | 3                | 0               | 1    |
| CO5     0     3     1     3     0     1       CO6     0     3     1     3     0     1       3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution     0     0     1                                                                                                                                                                                         | CO4  | 0                 | 3                     | 1                | 3                | 0               | 1    |
| CO6 0 3 1 3 0 1   3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution                                                                                                                                                                                                                                                                                     | CO5  | 0                 | 3                     | 1                | 3                | 0               | 1    |
| 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution                                                                                                                                                                                                                                                                                                       | CO6  | 0                 | 3                     | 1                | 3                | 0               | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                               | 3-St | rong Contribution | n; 2-Moderate Co      | ontribution; 1-L | ow Contribution, | 0 – No contribu | tion |

|        | Course Code                    | Course Title: Elective                                               | C    | redi | ts = 4 |
|--------|--------------------------------|----------------------------------------------------------------------|------|------|--------|
| 7      | Course Coue:                   | Course Title: Elective – I                                           | L    | Т    | Р      |
|        | Semester: I                    | Total contact hours: 60                                              | 4    | 0    | 0      |
| Depart | ment will offer elective cours | es. A consolidated list of all the elective subjects is given at the | e en | 1.   |        |

# SEMESTER II Ante on 2003

|         | Course Code: MAT 2225             | Course Title: Differential Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C     | redits | = 4  |
|---------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|
|         | Course Code: MAI 2255             | Course Thie: Differential Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L     | Т      | Р    |
|         | Semester: II                      | Total contact hours: 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4     | 0      | 0    |
|         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |      |
|         |                                   | List of Prerequisite Courses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |      |
| Basic c | course on Calculus and ordinar    | y differential equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |      |
|         | List of (                         | Courses where this course will be prerequisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |      |
| Advan   | ced Differential Equations (N     | MAT 2233), Mathematical Modelling (MAT 2234), Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | utati | onal f | luid |
| dynam   | ics (MAT 2611)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |        |      |
|         | <b>Description of relevance</b>   | of this course in the M.Sc. Engineering Mathematics Prog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ram   | C      |      |
| Ordina  | ry differential equations are     | in the core of Applied Mathematics and this program emp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ohasi | ize on | the  |
| applica | tions of mathematics in different | ent branches of science and engineering including industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .(    |        |      |
|         | Course C                          | Contents (Topics and subtopics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V     | Hour   | s    |
| 1       | Review of first and second o      | rder ODE s Modelling differential equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 4      |      |
| 2       | Existence and Uniqueness th       | eorems for first order ODEs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 4      |      |
| 2       | Higher Order Linear Equation      | ons and linear Systems: fundamental solutions, Wronskian,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 16     |      |
| 5       | variation of constants, matrix    | exponential solution, behaviour of solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 10     |      |
| 4       | Boundary Value Problems           | for Second Order Equations: Green's function, Sturm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 10     |      |
| 4       | comparison theorems and os        | cillations, eigenvalue problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 10     |      |
| 5       | First order PDEs: Linear, o       | quasi-linear equations-Method of characteristics, Lagrange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 10     |      |
| 5       | Methods.                          | . 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 10     |      |
| 6       | Solution of parabolic, elli       | ptic, and hyperbolic equations using variable separable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 8      |      |
| 0       | methods.                          | CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0      |      |
| 7       | Laplace Transform and For         | urier Transform and its application to solve initial value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 8      |      |
| /       | problems and PDEs.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 0      |      |
|         |                                   | List of Textbooks/ Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |      |
| 1       | William E. Boyce, Richard C       | C. DiPrima, Elementary Differential Equation, Wiley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |      |
| 2       | E. A. Coddington, An Introd       | uction to Ordinary Differential Equations, PHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        |      |
| 3       | G. F. Simons, S. G. Krantz, I     | Differential Equation, Theory Techniques and Practice Tata M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cGra  | aw-Hi  | 11   |
| 4       | Zill, Dennis G, A First Cours     | e in Differential Equations, Cengage Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |      |
| 5       | L.Perko, Differential Equation    | ons and Dynamical Systems, 2 <sup>nd</sup> Ed., Springer Verlag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |      |
| 6       | I. N. Sneddon, Elements of p      | artial differential equations, McGraw-Hill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |      |
| 7       | W. A Strauss Partial, differen    | ntial equations, An Introduction, Wiley, John & Sons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |      |
| 8       | Renardy and Rogers, An intr       | oduction to PDE's, Springer-Verlag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |      |
|         | Cou                               | rse Outcomes (students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |      |
| CO1     | model real world problems u       | sing ordinary and partial differential equation models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |      |
| CO2     | solve higher order ordinary d     | lifferential equations using various techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |        |      |
| CO3     | investigate the qualitative na    | ture of solutions of ordinary differential equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |      |
| CO4     | solve first order PDEs using      | various techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |      |
| CO5     | apply various techniques to o     | obtain solutions of heat, wave, and Laplace equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |      |
|         |                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |      |
| V       | Manatasef                         | $(\mathbf{D}\mathbf{O}_{1}) = \mathbf{H} \mathbf{D}_{1} + \mathbf{H} \mathbf{D}_{2} + \mathbf{H} \mathbf{H} \mathbf{D}_{2} + \mathbf{H} \mathbf{H} \mathbf{D}_{2} + \mathbf{H} \mathbf{H} \mathbf{D}_{2} + \mathbf{H} \mathbf{H} $ |       |        |      |

| Y   |     | Mapp | ing of C | course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3      | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 0   | 3    | 0        | 1        | 3      | 3       | 1        | 3      | 3       | 2        | 1    | 3    |
| CO2 | 0   | 3    | 0        | 0        | 1      | 1       | 3        | 0      | 3       | 1        | 0    | 1    |
| CO3 | 2   | 3    | 1        | 1        | 1      | 1       | 3        | 1      | 3       | 0        | 0    | 2    |
| CO4 | 3   | 3    | 1        | 1        | 1      | 1       | 3        | 0      | 3       | 1        | 0    | 2    |
| CO5 | 0   | 3    | 0        | 0        | 1      | 1       | 3        | 1      | 3       | 1        | 1    | 2    |

| Ν   | <b>Iapping of Cou</b> | rse Outcomes (O | COs) with Progr | amme Specific | Outcomes (PSO | s)   |
|-----|-----------------------|-----------------|-----------------|---------------|---------------|------|
|     | PSO1                  | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 | 3                     | 3               | 0               | 0             | 0             | 0    |
| CO2 | 3                     | 2               | 0               | 0             | 0             | 0    |
| CO3 | 3                     | 2               | 0               | 0             | 0             | 0    |
| CO4 | 3                     | 2               | 0               | 0             | 0             | 0    |
| CO5 | 3                     | 2               | 0               | 0             | 0             | 0    |

|           |                                 | Comment Titles Madama Alashar                                  | Ci      | edits | = 4 |
|-----------|---------------------------------|----------------------------------------------------------------|---------|-------|-----|
|           | Course Code: MAI 2231           | Course Title: Modern Algebra                                   | L       | Т     | Р   |
|           | Semester: II                    | Total contact hours: 60                                        | 4       | 0     | 0   |
|           |                                 |                                                                |         |       |     |
|           |                                 | List of Prerequisite Courses                                   |         |       |     |
| NIL       |                                 |                                                                |         |       |     |
|           | List of (                       | Courses where this course will be prerequisite                 |         |       |     |
| Advan     | ced Modern Algebra (MAT 26      | 549)                                                           |         |       |     |
|           | Description of relevance        | of this course in the M.Sc. Engineering Mathematics Pro        | ogram   |       |     |
| It is a f | foundation course for pure mat  | hematics having various applications in all branches of mat    | hematio | cs.   |     |
|           | Course (                        | Contents (Topics and subtopics)                                |         | Hour  | `S  |
|           | Groups, subgroups, cosets,      | Lagrange Theorem, Normal subgroups, quotient groups            | 5.      |       |     |
| 1         | Focus on symmetric and alter    | ernating groups, Symmetry groups Dihedral groups as grou       | р       | 10    |     |
|           | of symmetries of a regular n-   | -gon, Matrix groups.                                           |         |       |     |
| 2         | Homomorphism theorems,          | Direct product of groups, Fundamental theorem for finit        | e       | 8     |     |
|           | abelian groups (without proc    | f).                                                            |         | 0     |     |
| 3         | Group actions, orbits and sta   | bilizers, applications to the structure of groups, application | .S      | 10    |     |
|           | to combinatorics.               | A OY                                                           |         | - •   |     |
| 4         | Rings, sub-rings and ideals,    | Integral domains and division rings. Focus on finite fields    | 3,      | 10    |     |
|           | polynomial and power series     | rings, roots and their multiplicities, matrix rings.           | _       |       |     |
| 5         | Prime and maximal ideals,       | Chinese remainder theorem, Euclidean domains, principa         | վ       | 10    |     |
|           | ideal domains and unique fac    | ctorization domains, irreducibility of polynomials.            |         |       |     |
|           | Extension fields, algebraic e   | xtensions, construction of finite fields, roots of polynomial  | S       | 10    |     |
| 0         | and splitting fields, construct | ctions with ruler and compass. Polynomial rings and matri      | x       | 12    |     |
|           | rings over minte fields.        | List of Touthooka/ Deference Books                             |         |       |     |
| 1         | L A Callian Contamporary        | List of Textbooks/ Reference Books                             |         |       |     |
| 1         | Freleigh LB A First Course      | Abstract Algebra, 4th Edition, Narosa.                         |         |       |     |
| 2         | D S Dummit and P M For          | the Abstract Algebra 2nd Edition John Wilay                    |         |       |     |
|           | M Artin Algebra Prentice        | Hall of India                                                  |         |       |     |
| 5         | G Santhanam Algebra Nar         |                                                                |         |       |     |
| 6         | Aiit Kumar and Vikas Bist       | Group Theory: An Expedition with SageMath Narosa               |         |       |     |
|           | Cou                             | rse Outcomes (students will be able to)                        |         |       |     |
| CO1       | understand basic concepts in    | groups, rings and fields.                                      |         |       |     |
| CO2       | investigate basic notions by    | solving problems                                               |         |       |     |
| CO3       | categorize groups of finite or  | rder using Group Actions                                       |         |       |     |
| CO4       | examine fundamental results     | in groups, rings and fields                                    |         |       |     |
| CO5       | investigate properties of ring  | s over finite fields.                                          |         |       |     |

|     |     | Mapp | oing of C | Course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|-----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3       | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 1   | 1    | 1         | 0        | 2      | 1       | 3        | 0      | 3       | 0        | 0    | 3    |
| CO2 | 3   | 1    | 1         | 0        | 2      | 2       | 1        | 0      | 3       | 0        | 0    | 3    |
| CO3 | 3   | 1    | 2         | 0        | 2      | 1       | 2        | 0      | 3       | 0        | 0    | 2    |
| CO4 | 3   | 1    | 1         | 0        | 2      | 2       | 1        | 0      | 3       | 0        | 1    | 3    |
| CO5 | 3   | 1    | 1         | 0        | 2      | 1       | 2        | 0      | 3       | 2        | 1    | 1    |

| -           | apping of Cou | rse Outcomes (( | Us) with Progr | amme Specific | Outcomes (PSOs |     |
|-------------|---------------|-----------------|----------------|---------------|----------------|-----|
| <u>ao 1</u> | PSO1          | PSO2            | PSO3           | PSO4          | PSO5           | PSO |
| CO1         | 3             | 0               | 0              | 0             | 0              | 0   |
| CO2         | 3             | 0               | 0              | 0             | 0              | 0   |
| CO3         | 3             | 0               | 0              | 0             | 0              | 0   |
| CO4         | 3             | 0               | 0              | 0             | 0              | 0   |
| CO5         | 3             | 0               | 0              | 0             | 0              | 0   |
|             |               | -calen          | te cour        |               |                |     |
|             | toot          | /               |                |               |                |     |

|         | Course Code: MAT 2327                                                                                  | Course Title: Machine Learning                                 | Credi     | ts = 4   |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|----------|--|--|--|--|--|
|         | Course Coue. MAI 2527                                                                                  | Course rive. Machine Learning                                  | LT        | Р        |  |  |  |  |  |
|         | Semester: II                                                                                           | Total contact hours: 60                                        | 4         | 0        |  |  |  |  |  |
|         |                                                                                                        |                                                                |           |          |  |  |  |  |  |
|         |                                                                                                        | List of Prerequisite Courses                                   |           |          |  |  |  |  |  |
| Applie  | Applied Linear Algebra (MAT 2201), Statistical Computing (MAT 2326), Computational Mathematics Lab – I |                                                                |           |          |  |  |  |  |  |
| (MAP    | 2523)                                                                                                  |                                                                | 1         |          |  |  |  |  |  |
|         |                                                                                                        |                                                                |           |          |  |  |  |  |  |
|         | List of (                                                                                              | Courses where this course will be prerequisite                 | 1         |          |  |  |  |  |  |
| Deep l  | earning and Artificial intellige                                                                       | nce (MAT 2328)                                                 |           | <u>}</u> |  |  |  |  |  |
|         | <b>Description of relevance</b>                                                                        | of this course in the M.Sc. Engineering Mathematics Prog       | ram       |          |  |  |  |  |  |
| Machin  | ne learning algorithms are in t                                                                        | he core of modern computational techniques. This course help   | ps the st | udents   |  |  |  |  |  |
| to unde | erstand the mathematical and s                                                                         | tatistical concepts behind the machine learning algorithms. St | udents a  | lso get  |  |  |  |  |  |
| exposu  | ire to various challenges in sol                                                                       | ving real life problem.                                        |           |          |  |  |  |  |  |
| -       | Course (                                                                                               | Contents (Topics and subtopics)                                | Ho        | urs      |  |  |  |  |  |
|         | Introduction to Machine Le                                                                             | earning, Distinction between supervised and unsupervised       |           |          |  |  |  |  |  |
|         | learning problems, predictio                                                                           | n accuracy, Training Error, Test Error, Bias-variance trade-   |           |          |  |  |  |  |  |
|         | off, Measuring the quality of                                                                          | Ill.                                                           |           |          |  |  |  |  |  |
| 1       | Regression techniques, Und                                                                             | and Training and Test MSE. Case study of linear regression     |           |          |  |  |  |  |  |
| 1       | with K nearest neighbour red                                                                           | ur of framing and fest MSE. Case study of finear regression    | 11        | 2        |  |  |  |  |  |
|         | using simulated realizations)                                                                          | gression. (Emphasize on understanding the universal patterns   |           |          |  |  |  |  |  |
|         | Classification problems: Tra                                                                           | aining and test error rates. Logistic regression, Linear and   |           |          |  |  |  |  |  |
|         | quadratic discriminant analy                                                                           | sis                                                            |           |          |  |  |  |  |  |
|         | Model Selection and Res                                                                                | ularization: Multiple Linear Regression Validation set         |           |          |  |  |  |  |  |
|         | approach. Leave-One-Out-                                                                               | Cross-Validation, K-fold cross validation, best subset         |           |          |  |  |  |  |  |
| 2       | selection. Forward Selection                                                                           | Backward selection. Hybrid selection, shrinkage methods:       | 8         | 8        |  |  |  |  |  |
|         | Ridge regression, Lasso, Res                                                                           | campling methods and its application in real data analysis.    |           |          |  |  |  |  |  |
| 3       | Decision Trees, Bagging and                                                                            | Boosting, Random Forests, Gradient Boosting, Adaboost          | 1         | 0        |  |  |  |  |  |
|         | Project Pursuit Regression,                                                                            | Fitting Neural Networks, Selection of number of hidden         |           |          |  |  |  |  |  |
| 4       | layers, Computational consid                                                                           | lerations                                                      | 8         | 5        |  |  |  |  |  |
| F       | Gaussian Discriminant Anal                                                                             | ysis, Naive Bayes, Support Vector Machines: support vector     | 1.        | 0        |  |  |  |  |  |
| 5       | classifier, SVM and for regre                                                                          | ession, Kernel tricks                                          | 1         | 0        |  |  |  |  |  |
|         | Multivariate methods: Prin                                                                             | ncipal Component Analysis, Factor Analysis, Principal          |           |          |  |  |  |  |  |
| 6       | component regression, K-m                                                                              | eans clustering, Hierarchical Clustering, Multi-dimensional    | 1.        | 2        |  |  |  |  |  |
|         | scaling                                                                                                |                                                                | 1.        | 2        |  |  |  |  |  |
| 7       | Software Component: R/Pyt                                                                              | thon (Its Implementation will be covered in Computational      |           |          |  |  |  |  |  |
| ,       | Mathematics – II)                                                                                      |                                                                |           |          |  |  |  |  |  |
|         |                                                                                                        | List of Textbooks/ Reference Books                             |           |          |  |  |  |  |  |
| 1       | Andreas C. Müller and Sara                                                                             | ah Guido, Introduction to Machine Learning with Python: D      | avid Bai  | ber A    |  |  |  |  |  |
|         | Guide for Data Scientists, O                                                                           | Reilly Media.                                                  |           |          |  |  |  |  |  |
| 2       | Hands on Machine Learning                                                                              | with R by Bradley Boehmke and Brandon Greenwell, CRC P         | ress.     |          |  |  |  |  |  |
| 3       | Introduction to Statistical L                                                                          | earning with Application in R by James, G., Witten, D.,        | Hastie, 7 | F. and   |  |  |  |  |  |
|         | Tibshirani, R.                                                                                         |                                                                |           |          |  |  |  |  |  |
| 4       | All of Statistics: A concise c                                                                         | ourse on Statistical Inference by Larry Wasserman.             |           |          |  |  |  |  |  |
| 5       | The Elements of Statistical                                                                            | Learning by Jerome H. Friedman, Robert Tibshirani, and         | Trevor I  | Hastie,  |  |  |  |  |  |
|         | Springer.                                                                                              |                                                                |           |          |  |  |  |  |  |
| 6       | Ethem Alpaydın, Introductio                                                                            | n to Machine Learning, The MIT Press, Cambridge.               |           |          |  |  |  |  |  |
| 7       | Ian H. Witten, Eibe Frank                                                                              | c, Mark A. Hall, Data Mining: Practical Machine Learni         | ng Tool   | is and   |  |  |  |  |  |
|         | Techniques by Elsevier                                                                                 |                                                                |           |          |  |  |  |  |  |
| 8       | Machine Learning: A Proba                                                                              | pulistic Perspective (Adaptive Computation and Machine Lear    | nıng seri | es) by   |  |  |  |  |  |

|     | Kevin P. Murphy.                                                                        |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------|--|--|--|--|--|
|     | Course Outcomes (students will be able to)                                              |  |  |  |  |  |
| CO1 | understand advantages of machine learning algorithms.                                   |  |  |  |  |  |
| CO2 | apply machine learning techniques to solve regression problems involving real data.     |  |  |  |  |  |
| CO3 | apply machine learning techniques to solve classification problems involving real data. |  |  |  |  |  |
| CO4 | apply dimension reduction methods to solve problems involving real data.                |  |  |  |  |  |
| CO5 | use software to build machine learning models and interpret the results.                |  |  |  |  |  |

|     |     | Mapp | oing of C | Course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    | 6    |
|-----|-----|------|-----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3       | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 0   | 1    | 3         | 3        | 2      | 1       | 1        | 0      | 3       | 0        | 0    | 3    |
| CO2 | 0   | 1    | 3         | 3        | 3      | 3       | 3        | 3      | 3       | 2        | 0    | 3    |
| CO3 | 0   | 1    | 3         | 3        | 3      | 3       | 3        | 3      | 3       | 2        | 0    | 3    |
| CO4 | 0   | 1    | 3         | 3        | 2      | 3       | 3        | 3      | 3       | 2        | 2    | 3    |
| CO5 | 0   | 1    | 3         | 3        | 2      | 3       | 3        | 3      | 3       | 62       | 2    | 3    |

| Ν   | Iapping of Cour | rse Outcomes (C | COs) with Progr | amme Specific | Outcomes (PSO | s)   |
|-----|-----------------|-----------------|-----------------|---------------|---------------|------|
|     | PSO1            | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 | 0               | 1               | 3               | 1             | 3             | 0    |
| CO2 | 0               | 1               | 3               |               | 3             | 0    |
| CO3 | 0               | 1               | 3               | 1             | 3             | 0    |
| CO4 | 0               | 1               | 3               | 1             | 3             | 0    |
| CO5 | 0               | 1               | 3               | 0             | 3             | 3    |

| Course Code: MAD 2524 Course Title: Computational Mathematics Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | Credits = 2 |     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------|-----|--|--|--|--|--|
| Course Code: MAP 2524 Course Thie: Computational Mathematics Lab –                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | T           | Р   |  |  |  |  |  |
| Semester: II Total contact hours: 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                          | 0           | 4   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |             |     |  |  |  |  |  |
| List of Prerequisite Courses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |             |     |  |  |  |  |  |
| NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |             |     |  |  |  |  |  |
| List of Courses where this course will be prerequisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |             |     |  |  |  |  |  |
| Advanced Statistical Computing (MAT 2329)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |             |     |  |  |  |  |  |
| Description of relevance of this course in the M.Sc. Engineering Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                             | Progran                                    | n           |     |  |  |  |  |  |
| This M.Sc. program gives special emphasis on the implementation and application of large-scale techniques from applied mathematics and statistics. Hence, a good efficiency in mathematical prequired in the upcoming semesters. Programming lab will give the students exposure to mathematics using latest software.                                                                                                                                                                                                   |                                            |             |     |  |  |  |  |  |
| <b>Course Contents (Topics and subtopics)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | Hou         | ırs |  |  |  |  |  |
| Module – I (Basic theory of statistical simulation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |             |     |  |  |  |  |  |
| Simulating Random numbers: Probability Integral transform, Approximal<br>probabilities by means of simulation, Demonstration of Convergence in Probab<br>Using Simulation, Introduction to Monte Carlo Simulation, Demonstration of Weak I<br>of Large Numbers, Demonstration of Central Limit Theorem (concepts covered<br>Statistical Computing), Computing Risk function and comparing risk functions<br>simulation under different loss functions, Power curves, and comparing tes<br>procedures using power curves. | ting<br>ility<br>Law<br>1 in<br>by<br>ting | 6           |     |  |  |  |  |  |

|     | Casting and the second se |                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 2   | consistency of the estimator), statistical analysis of nonlinear regression models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 6                                     |
| 2   | Theory of Generalized linear models, estimation, and inference: Poisson regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , ,                                     |
| 3   | Logistic regression, Generalized additive models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                       |
| 4   | Multivariate normal distribution and related testing of hypothesis problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                       |
|     | Module – II (Machine Learning using R/Python)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| 5   | A refresher on R/Python programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                       |
|     | Building classification models in R/Python using logistic regression, linear discriminan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t                                       |
| 6   | analysis, quadratic discriminant analysis, checking accuracy using Confusion matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , _                                     |
| 0   | AUC and ROC curves, building classifiers using Naïve Bayes and K-nearest neighbour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r o                                     |
|     | methods, Support vector machines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02                                      |
|     | Regression problem using R/python: handling problems with qualitative predictors in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı                                       |
| 7   | regression, Interaction between features, understanding the output and interpretation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , , , , , , , , , , , , , , , , , , , , |
| /   | regression diagnostics, case studies using real data sets, comparison with k-neares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                                       |
|     | neighbour regression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e)                                      |
| Q   | Model regularization in R/Python: Feature Engineering, Ridge, Lasso, Elastic net, bes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 4                                     |
| 0   | subset selection, case studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +                                       |
|     | Multivariate methods in R/Python: Principal Component Analysis, Multidimensiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                       |
| 9   | scaling, Principal component regression, case studies using real data sets, Clustering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g 6                                     |
|     | methods, matrix completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
|     | Nonlinear models in R/Python: Nonlinear regression, Regression splines, local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                       |
| 10  | regression, generalized additive models and their applications in solving real life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 4                                     |
|     | problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| 11  | Building Neural Network models in R/Python and its application to real data analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                       |
| 12  | Data analysis using Tree based methods: Classification trees, regression trees, Bagging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 4                                     |
|     | Random Forest and boosting, case studies using real data sets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|     | Several case studies from various domains like banking, finance, social sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                       |
| 13  | marketing, biology etc will be covered. Students will do group projects followed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                       |
|     | presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|     | List of Torthooks/ Deference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|     | List of Textbooks/ Reference books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Serie con Dorlin                        |
| 1   | Haidalbara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -springer Bernn                         |
| 2   | Page Thereis Duthen Programming: Using Problem Solving Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| 2   | Devid Postley, Python Cookbook, Pagings for Mastering Python 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 3   | Victor A. Bloomfield Using P for Numerical Analysis in Science and Engineering CPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dross                                   |
|     | James G Witten D. Hastia T. and Tibebirani P. Introduction to Statistical Learning y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vith Applications                       |
| 5   | in R. Springer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | And Applications                        |
| 6   | Brian Dennis, The R Student Companion, CRC Press, Taylor and Francis Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| 0   | Garrett Grolemund Hands-On Programming with R: Write Your Own Functions a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd Simulations                          |
| 7   | Shroff/O'Reilly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ind Simulations,                        |
| 8   | Laura Chihara and Tim Hesterberg, Mathematical Statistics and Resampling and R John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wiley & Sons                            |
| 9   | Christian P Robert and George Casella Introducing Monte Carlo Methods with R Sprin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iger                                    |
|     | Gareth James Daniela Witten Trevor Hastie Robert Tibshirani Introduction to Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tistical Learning                       |
| 10  | with Applications in R. Second edition. Springer 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | usuear Learning                         |
|     | Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie. The Elements of Statistical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Learning 2003                           |
| 11  | Springer Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 2003,                                 |
|     | Course Outcomes (students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| CO1 | Simulate random numbers from a given probability distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|     | Solve the testing problems related to means and variances of the multivariate normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| CO2 | distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |

| CO3 | Build classifier to perform prediction and inference tasks using real data sets     |  |
|-----|-------------------------------------------------------------------------------------|--|
| 005 | involving classification problems using software packages                           |  |
| CO4 | Build predictive models using real data sets involving regression problems and      |  |
| 04  | perform feature engineering                                                         |  |
| CO5 | Apply tree-based methods to solve regression and classification problems using real |  |
| COS | data sets using software packages                                                   |  |
| C06 | Train neural network for regression and classification tasks for data analytics     |  |
| 000 | problems and perform model tuning.                                                  |  |

| Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |     |      |      | 2    |
|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                            | 0   | 1   | 3   | 3   | 1   | 3   | 1   | 3   | 3   | 1    | 0    | 3    |
| CO2                                                            | 0   | 1   | 3   | 3   | 1   | 3   | 1   | 3   | 3   | 1    | 1    | 3    |
| CO3                                                            | 0   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 1    | 0    | 3    |
| CO4                                                            | 0   | 0   | 3   | 3   | 4   | 3   | 3   | 3   | 3   | 2.   | 1    | 3    |
| CO5                                                            | 0   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 2    | 3    |
| CO6                                                            | 0   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 0    | 3    |

|     |                 |                 |                 | . 0*          |               |      |
|-----|-----------------|-----------------|-----------------|---------------|---------------|------|
| Ν   | Iapping of Cour | rse Outcomes (C | COs) with Progr | amme Specific | Outcomes (PSO | s)   |
|     | PSO1            | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 | 0               | 0               | 3               | 2             | 3             | 0    |
| CO2 | 0               | 0               | 3               | 2             | 3             | 0    |
| CO3 | 0               | 0               | 3               | 1             | 3             | 2    |
| CO4 | 0               | 0               | 3               | 1             | 3             | 2    |
| CO5 | 0               | 0               | 3               | 1             | 3             | 1    |
| CO6 | 0               | 0               | 3               | 1             | 3             | 1    |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

|        | Course Code:                    | Course Title: Elective – II                                       | C | redi | ts = 4 |
|--------|---------------------------------|-------------------------------------------------------------------|---|------|--------|
|        | MATXXXX                         |                                                                   | L | Т    | Р      |
|        | Semester: II                    | Total contact hours: 60                                           | 4 | 0    | 0      |
| Depart | ment will offer electives. A co | nsolidated list of all the elective subjects is given at the end. |   |      |        |

APProvi

|                | Course Code: MAT 2811                                            | Course Titles On Job Training (OJT)                    | C       | redi | ts = 4 |
|----------------|------------------------------------------------------------------|--------------------------------------------------------|---------|------|--------|
|                | Course Coue: MAI 2011                                            | Course The: On Job Training (031)                      | L       |      |        |
|                | Semester: II                                                     | Total contact hours: 60                                | 0       | 0    | 6      |
| emest<br>rovid | ter break. The evaluation will<br>ed at the end of the document. | be out of 100 marks. The guidelines, adopted by the li | nstitut | e ha | s been |
|                |                                                                  |                                                        |         | 0    | 3      |
|                |                                                                  |                                                        | 5       | Ś    |        |
|                |                                                                  | 51                                                     | າ       |      |        |
|                |                                                                  | 200                                                    |         |      |        |
|                |                                                                  |                                                        |         |      |        |
|                |                                                                  | i) Or                                                  |         |      |        |
|                |                                                                  | allic                                                  |         |      |        |
|                |                                                                  | 00                                                     |         |      |        |
|                |                                                                  | mil                                                    |         |      |        |
|                |                                                                  |                                                        |         |      |        |
|                | A                                                                |                                                        |         |      |        |
|                | 0                                                                |                                                        |         |      |        |
|                |                                                                  |                                                        |         |      |        |
|                | TONO                                                             |                                                        |         |      |        |
|                | .pprove                                                          |                                                        |         |      |        |
| A              | .pprove                                                          |                                                        |         |      |        |
| A              | .pprove                                                          |                                                        |         |      |        |

Approve by Academic Conneil on Ane, Marken Approve

|         |                                 | Course Title: Measure, Integration and Functional             | C        | redi  | t <b>s = 4</b> |  |  |
|---------|---------------------------------|---------------------------------------------------------------|----------|-------|----------------|--|--|
|         | Course Code: MAT 2229           | Analysis                                                      | L        | Т     | Р              |  |  |
|         | Semester: III                   | Total contact hours: 60                                       | 4        | 0     | 0              |  |  |
|         |                                 |                                                               | <u> </u> |       |                |  |  |
|         |                                 | List of Prerequisite Courses                                  |          |       |                |  |  |
| Real ar | nd Complex Analysis (MAT 22     | 230), Applied Linear Algebra (MAT 2201)                       |          |       |                |  |  |
|         |                                 |                                                               |          |       |                |  |  |
|         | List of C                       | Courses where this course will be prerequisite                |          |       |                |  |  |
| Operate | or Theory (MAT 2647)            |                                                               |          |       |                |  |  |
|         | Description of relevance        | of this course in the M.Sc. Engineering Mathematics Prog      | ram      | (     | 2              |  |  |
| This is | a foundation course in Applie   | ed and Pure Mathematics. A lot of techniques from Function    | al A     | nalys | sis are        |  |  |
| useful  | in differential equations and n | umerical methods. This course strengthens mathematical for    | ında     | tion  | of the         |  |  |
| student | ts.                             | (                                                             |          |       |                |  |  |
|         | Course C                        | contents (Topics and subtopics)                               |          | Hou   | ırs            |  |  |
| 1       | Construction of Lebesgue        | measure. Lebesgue Measure and its properties. Non-            |          | 14    | 5              |  |  |
| 1       | measurable sets. Measurable     | functions and their properties.                               |          | 1,    | ,              |  |  |
| 2       | Lebesgue integral, Bounded      | l convergence theorem, Monotone Convergence theorem,          |          | 14    | 5              |  |  |
| 2       | Fatou's Lemma, Dominated        | Convergence Theorem.                                          |          | 1.    | ,              |  |  |
| 3       | Normed linear spaces, Bou       | nded linear operators and functionals on normed spaces,       |          | 1′    | ,              |  |  |
| 5       | Banach spaces                   |                                                               |          | 14    | -              |  |  |
|         | Hahn-Banach Extension th        | eorem. Zabreiko's lemma for subadditive functionals,          |          |       |                |  |  |
| 4       | Uniform Boundedness Print       | ciple, Closed Graph Theorem, Open Mapping Theorem,            |          | 18    | 3              |  |  |
|         | Bounded Inverse Theorem as      | s consequences of Zabreiko's Lemma.                           |          |       |                |  |  |
|         |                                 | List of Textbooks/ Reference Books                            |          |       |                |  |  |
| 1       | E. Kreyzig, Introduction to F   | unctional Analysis with Applications, John Wiley & Sons, Ne   | ew Y     | ork.  |                |  |  |
| 2       | B.V. Limaye, Functional Ana     | alysis, 2ndEdition, New Age International, New Delhi.         |          |       |                |  |  |
| 3       | B.V. Limaye, Linear Functio     | nal Analysis for Scientists and Engineers, Springer- Singapor | e.       |       |                |  |  |
| 4       | S. Kumaresan and D Sukuma       | ar, Functional Analysis—A First Course, Narosa Publishing H   | lous     | e.    |                |  |  |
| 5       | C. Goffman and G. Pedrick,      | First Course in Functional Analysis, Prentice Hall.           |          |       |                |  |  |
| 6       | R Bhatia, Notes on functiona    | l Analysis, Hindustan Book Agency.                            |          |       |                |  |  |
| 7       | I. K. Rana, Introduction to M   | easures and Integration, AMS                                  |          |       |                |  |  |
| 8       | H. L. Royden, Real Analysis     | , 4th Ed. PHI                                                 |          |       |                |  |  |
| 9       | G. De. Barra, Measure Theor     | y and Integration, New Age Publishers, Second Edition         |          |       |                |  |  |
|         | 1 1                             |                                                               |          |       |                |  |  |
|         | Cou                             | rse Outcomes (students will be able to)                       |          |       |                |  |  |
| CO1     | understand the construction of  | of measure as generalization of notion of length.             |          |       |                |  |  |
| CO2     | construct examples of measu     | rable functions, and construct non-measurable set             |          |       |                |  |  |
| CO3     | compute integrals using mon     | otone, dominated convergence theorems                         |          |       |                |  |  |
| CO4     | prove continuity of Linear      | operators on normed spaces and give an example of             | _        |       |                |  |  |
|         | noncontinuous operator on in    | finite dimensional spaces.                                    |          |       |                |  |  |
| COS     | understand the Zabreiko's       | Lemma and apply it to prove the major theorems of             |          |       |                |  |  |
| 000     | functional analysis.            |                                                               |          |       |                |  |  |
| CO6     | compute Hahn Banach exten       | sions of linear operators.                                    |          |       |                |  |  |

|                                                                                                | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |   |   |   |   |   |   |   |   |   |   |   |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|
| PO1     PO2     PO3     PO4     PO5     PO6     PO7     PO8     PO9     PO10     PO11     PO12 |                                                                |   |   |   |   |   |   |   |   |   |   |   |
| CO1                                                                                            | 3                                                              | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 3 |
| CO2                                                                                            | 3                                                              | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 3 | 1 | 0 | 3 |
| CO3                                                                                            | 3                                                              | 3 | 1 | 1 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 |

| CO4 | 3 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 3 | 1 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO5 | 3 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 3 | 0 | 0 | 3 |

| 3-Strong | Contribution: | 2-Moderate    | Contribution: | 1-Low   | Contribution. | 0 - No | contribution |
|----------|---------------|---------------|---------------|---------|---------------|--------|--------------|
| e suong  | common,       | - 11100001000 | common,       | 1 20 11 | common,       | 0 110  | ••••••••     |

| Ν   | <b>Japping of Cou</b> | rse Outcomes (O | COs) with Progr | amme Specific | Outcomes (PSC | )s)  |
|-----|-----------------------|-----------------|-----------------|---------------|---------------|------|
|     | PSO1                  | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 | 3                     | 0               | 0               | 0             | 0             | 0    |
| CO2 | 3                     | 0               | 0               | 0             | 0             | 0    |
| CO3 | 3                     | 0               | 0               | 0             | 0             | 0    |
| CO4 | 3                     | 0               | 0               | 0             | 0             | 0    |
| CO5 | 3                     | 0               | 0               | 0             | 0             | 0    |

•

|                                                                                                           | Course Code: MAT 2232   Course Title: Optimization Techniques   Credits = 4               |                                                             |      |        |         |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|--------|---------|--|--|--|--|
|                                                                                                           | Course Code: MAT 2232                                                                     | Course Title: Optimization Techniques                       | C    | redi   | is = 4  |  |  |  |  |
|                                                                                                           | Course Coue. WAT 2252                                                                     | Course rule. Optimization rechniques                        | L    | Т      | Р       |  |  |  |  |
|                                                                                                           | Semester: III                                                                             | Total contact hours: 60                                     | 4    | 0      | 0       |  |  |  |  |
|                                                                                                           |                                                                                           | × 0'                                                        |      |        |         |  |  |  |  |
|                                                                                                           |                                                                                           | List of Prerequisite Courses                                |      |        |         |  |  |  |  |
| Applie                                                                                                    | d Linear algebra (MAT 2201)                                                               | ~0'                                                         |      |        |         |  |  |  |  |
|                                                                                                           |                                                                                           |                                                             |      |        |         |  |  |  |  |
|                                                                                                           | List of (                                                                                 | Courses where this course will be prerequisite              |      |        |         |  |  |  |  |
|                                                                                                           | Description of valuence of this source in the M.S. Engineering Mathematics Progr          |                                                             |      |        |         |  |  |  |  |
| Description of relevance of this course in the M.Sc. Engineering Mathematics Program                      |                                                                                           |                                                             |      |        |         |  |  |  |  |
| This M.Sc. program gives special emphasis on the implementation and application of large-scale computati  |                                                                                           |                                                             |      |        |         |  |  |  |  |
| technic                                                                                                   | ques from applied mathematic                                                              | s and statistics. Optimization problems are abundant almost | in a | all re | al-life |  |  |  |  |
| problem                                                                                                   | ms related to industrial applica                                                          | tions.                                                      |      |        |         |  |  |  |  |
| Course Contents (Topics and subtopics)       1     Introduction to Optimization problems and formulations |                                                                                           |                                                             |      |        |         |  |  |  |  |
| 1 Introduction to Optimization problems and formulations                                                  |                                                                                           |                                                             |      |        |         |  |  |  |  |
| 2 One dimensional Optimization: Golden Section method, Fibonacci search Method,                           |                                                                                           |                                                             |      |        |         |  |  |  |  |
| <sup>2</sup> Polynomial interpolation method, Iterative methods                                           |                                                                                           |                                                             |      |        |         |  |  |  |  |
| 3                                                                                                         | Classical optimization                                                                    | <b>Techniques:</b> Unconstrained optimization, Constrained  |      | 8      |         |  |  |  |  |
|                                                                                                           | Optimizations: Penalty meth-                                                              | ods, Method of Lagrange multiplier, Kuhn-Tucker method      | 0    |        |         |  |  |  |  |
| 4                                                                                                         | Linear Programming: Sim                                                                   | plex Method, Revised Simplex Method and other advanced      |      | 12     | 2       |  |  |  |  |
|                                                                                                           | Methods, Duality, Dual Simp                                                               | plex Method, Integer Programming Problems                   |      |        |         |  |  |  |  |
| 5                                                                                                         | Unconstrained Optimization                                                                | on Techniques: Direct search methods such as Powel's        |      | 4      |         |  |  |  |  |
|                                                                                                           | method, Simplex method, etc                                                               |                                                             |      |        |         |  |  |  |  |
| 6                                                                                                         | Gradient Search Methods                                                                   | : Steepest descent method, Conjugate gradient method,       |      | 12     | 2       |  |  |  |  |
| -                                                                                                         | Newton's method, Quasi-Ne                                                                 | wton's method, DFP, BFGS method etc                         |      |        |         |  |  |  |  |
| 7                                                                                                         | Dynamic Programming Prob                                                                  | lems                                                        |      | 4      |         |  |  |  |  |
| 8                                                                                                         | Genetic Algorithms, Simulat                                                               | ed Annealing, Ant Colony Optimization                       |      | 8      |         |  |  |  |  |
|                                                                                                           |                                                                                           | List of Textbooks/ Reference Books                          |      |        |         |  |  |  |  |
| 1                                                                                                         | Edvin K. P. Chong & Stanisl                                                               | ab H. Zak, An Introduction to Optimization, John Wiley.     |      |        |         |  |  |  |  |
| 2                                                                                                         | Leunberger, Linear and Non                                                                | linear Programming, Springer                                |      |        |         |  |  |  |  |
| 3                                                                                                         | Jorge Nocedal, Stephen J. W                                                               | right, Numerical Optimization, Springer                     |      |        |         |  |  |  |  |
| 4                                                                                                         | S.S. Rao, Engineering Optimization: theory and practices, New Age International Pvt. Ltd, |                                                             |      |        |         |  |  |  |  |
| 5                                                                                                         | K. Deb, Optimization for Engineering Design, Prentice Hall, India                         |                                                             |      |        |         |  |  |  |  |

| 6   | L. Davis, Handbook of genetic Algorithm, New York Van Nostrand Reinhold             |               |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
| 7   | Z. Michaleuwicz, Genetic Algorithm+Data Structure=Evolution Programme, Springer-Ve  | erlag         |  |  |  |  |  |  |  |
| Q   | R. K. Belew and M. D. Foundations of Genetic Algorithms, Vose, San Francisco        | o, CA: Morgan |  |  |  |  |  |  |  |
| 0   | Kaufmann.                                                                           |               |  |  |  |  |  |  |  |
|     | Course Outcomes (students will be able to)                                          |               |  |  |  |  |  |  |  |
| CO1 | formulate optimization problems.                                                    |               |  |  |  |  |  |  |  |
| CO2 | understand the standard methods to solve unconstrained and constrained optimization |               |  |  |  |  |  |  |  |
| 02  | problems.                                                                           |               |  |  |  |  |  |  |  |
| CO3 | understand linear programming problems.                                             |               |  |  |  |  |  |  |  |
| CO4 | solve optimization problems using various algorithms.                               | 0             |  |  |  |  |  |  |  |
| CO5 | apply various algorithms in optimization techniques to solve real life problems.    | 02            |  |  |  |  |  |  |  |
|     |                                                                                     | <b>N</b>      |  |  |  |  |  |  |  |

|                                                                                                | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |   |   |   |   |   |   |   |   |    |   |   |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|---|---|---|---|---|---|---|----|---|---|--|
| PO1     PO2     PO3     PO4     PO5     PO6     PO7     PO8     PO9     PO10     PO11     PO12 |                                                                |   |   |   |   |   |   |   |   |    |   |   |  |
| CO1                                                                                            | 0                                                              | 3 | 3 | 3 | 3 | 0 | 1 | 0 | 3 | 0  | 0 | 3 |  |
| CO2                                                                                            | 0                                                              | 3 | 3 | 3 | 2 | 0 | 2 | 0 | 3 | 0. | 0 | 3 |  |
| CO3                                                                                            | 0                                                              | 2 | 3 | 3 | 2 | 0 | 2 | 0 | 3 | 0  | 0 | 3 |  |
| CO4                                                                                            | 0                                                              | 2 | 3 | 3 | 3 | 1 | 2 | 0 | 3 | 0  | 0 | 3 |  |
| CO5                                                                                            | 0                                                              | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3  | 0 | 3 |  |

| N   | Iapping of Cour | rse Outcomes (C | COs) with Progr | amme Specific | Outcomes (PSO | s)   |
|-----|-----------------|-----------------|-----------------|---------------|---------------|------|
|     | PSO1            | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 | 3               | 0               | 0               | 0             | 0             | 0    |
| CO2 | 3               | 0               | 0               | 0             | 0             | 0    |
| CO3 | 3               | 0               | 0               | 0             | 0             | 0    |
| CO4 | 1               | 3               | 1               | 1             | 2             | 0    |
| CO5 | 1               | 3               | 1               | 1             | 2             | 0    |

| Course Code: MAT<br>2328Course Title: Deep Learning and Artificial Intelligence<br>2328LTP2328Semester: IIITotal contact hours: 60400Ist of Prerequisite CoursesStatistical Computing (MAT2326), Machine Learning (MAT 2327)List of Prerequisite CoursesStatistical Computing (MAT2326), Machine Learning (MAT 2327)List of Courses where this course will be prerequisiteDescription of relevance of this course in the M.Sc. Engineering Mathematics ProgramThis course gives the students exposure to large scale mathematical computations in solving real life problems.Course Contents (Topics and subtopics)1Machine learning basics and introduction to deep learning62Deep Neural networks, Architecture design, backpropagation, and other differentiation<br>algorithms103Regularization for deep learning, Tree based methods and other ensemble models64Optimization techniques for training deep learning models, Approximate second-order<br>methods, algorithm for adaptive learning rates45Convolutional Networks46Recurrent Networks, long short-term memory, optimization for long terms dependencies<br>processing67Applications of Deep Learning: Computer vision, Speech recognition, Natural language<br>processing78Software Implementation: R/Python/MATLAB151Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Semester: III   Total contact hours: 60   4   0   0     List of Prerequisite Courses     Statistical Computing (MAT2326), Machine Learning (MAT 2327)     List of Courses where this course will be prerequisite     List of Courses where this course will be prerequisite     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)     Hours   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.   1                                                                                                                                                       |
| List of Prerequisite Courses     Statistical Computing (MAT2326), Machine Learning (MAT 2327)     List of Courses where this course will be prerequisite     List of Courses where this course will be prerequisite     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)   Hours     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     1   Ian Goodfellow and Yoshua Bengio and Aaron Courvill                                                                                    |
| List of Prerequisite Courses     Statistical Computing (MAT2326), Machine Learning (MAT 2327)     List of Courses where this course will be prerequisite     List of Courses where this course will be prerequisite     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian                                                                                                     |
| Statistical Computing (MAT2326), Machine Learning (MAT 2327)   Image: Computing (MAT2326), Machine Learning (MAT 2327)     List of Courses where this course will be prerequisite     List of Courses where this course will be prerequisite     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies processing   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Good                                                            |
| List of Courses where this course will be prerequisite     List of Courses where this course will be prerequisite     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)     Hours   Hours     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                         |
| List of Courses where this course will be prerequisite     List of Courses where this course will be prerequisite     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)   Hours     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4   6     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies for processing   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.   1                                                                                                                                   |
| Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)   Hours     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies processing   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                              |
| Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)   Hours     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                         |
| This course gives the students exposure to large scale mathematical computations in solving real life problems.     Course Contents (Topics and subtopics)   Hours     1   Machine learning basics and introduction to deep learning   6     2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies for processing processing   6     8   Software Implementation: R/Python/MATLAB   15     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.   1                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Course Contents (Topics and subtopics)Hours1Machine learning basics and introduction to deep learning62Deep Neural networks, Architecture design, backpropagation, and other differentiation<br>algorithms103Regularization for deep learning, Tree based methods and other ensemble models64Optimization techniques for training deep learning models, Approximate second-order<br>methods, algorithm for adaptive learning rates65Convolutional Networks46Recurrent Networks, long short-term memory, optimization for long terms dependencies<br>processing67Applications of Deep Learning: Computer vision, Speech recognition, Natural language<br>processing78Software Implementation: R/Python/MATLAB151Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1Machine learning basics and introduction to deep learning62Deep Neural networks, Architecture design, backpropagation, and other differentiation<br>algorithms103Regularization for deep learning, Tree based methods and other ensemble models64Optimization techniques for training deep learning models, Approximate second-order<br>methods, algorithm for adaptive learning rates65Convolutional Networks46Recurrent Networks, long short-term memory, optimization for long terms dependencies67Applications of Deep Learning: Computer vision, Speech recognition, Natural language<br>processing78Software Implementation: R/Python/MATLAB151Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2   Deep Neural networks, Architecture design, backpropagation, and other differentiation algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| algorithms   10     3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3   Regularization for deep learning, Tree based methods and other ensemble models   6     4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4   Optimization techniques for training deep learning models, Approximate second-order methods, algorithm for adaptive learning rates   6     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| methods, algorithm for adaptive learning rates   0     5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   Convolutional Networks   4     6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6   Recurrent Networks, long short-term memory, optimization for long terms dependencies   6     7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7   Applications of Deep Learning: Computer vision, Speech recognition, Natural language processing   7     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| processing   '     8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8   Software Implementation: R/Python/MATLAB   15     List of Textbooks/ Reference Books     1   Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| List of Textbooks/ Reference Books       1     Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 The Elements of Statistical Learning by Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Springer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 Josh Patterson, Adam Gibson, Deep Learning: A Practitioner's Approach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 Ovidiu Calin, Deep Learning Architectures: A Mathematical Approach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5 Kevin P. Murphy, Machine Learning: A Probabilistic Perspective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6 John Paul Mueller, Luca Massaron, Deep Learning for Dummies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 Venkata Reddy Konasani, Shailendra Kadre, Machine Learning and Deep Learning Using Python and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TensorFlow, Mc Graw Hill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Course Outcomes (students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CO1 understand basic principles of Deep Learning and artificial Intelligence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CO2 understand the mathematical concepts behind deep learning algorithms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CO3 understand statistics and optimization principles in deep neural networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CO4 apply deep learning algorithms in solving real life problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CO5 apply Deep Learning Algorithms using R or Python.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                                                                                | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |   |   |   |   |   |   |   |   |   |   |   |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|--|
| PO1     PO2     PO3     PO4     PO5     PO6     PO7     PO8     PO9     PO10     PO11     PO12 |                                                                |   |   |   |   |   |   |   |   |   |   |   |  |
| CO1                                                                                            | 0                                                              | 1 | 3 | 3 | 0 | 2 | 2 | 3 | 3 | 1 | 0 | 3 |  |
| CO2                                                                                            | 0                                                              | 1 | 3 | 3 | 2 | 3 | 2 | 3 | 3 | 2 | 0 | 3 |  |
| CO3                                                                                            | 0                                                              | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 |  |
| CO4                                                                                            | 0                                                              | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |  |
| CO5                                                                                            | 0                                                              | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |  |

| N   | /Iapping of Cou | rse Outcomes (O | COs) with Progr | amme Specific | Outcomes (PSC | )s)  |
|-----|-----------------|-----------------|-----------------|---------------|---------------|------|
|     | PSO1            | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 | 0               | 1               | 3               | 1             | 3             | 0    |
| CO2 | 0               | 1               | 3               | 1             | 3             | 0    |
| CO3 | 0               | 1               | 3               | 1             | 3             | 0    |
| CO4 | 0               | 1               | 3               | 1             | 3             | 0    |
| CO5 | 0               | 1               | 3               | 0             | 3             | 3    |

| $\begin{tabular}{ c c c c c c } \hline $$ Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution $$$ Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution $$$$ Course Code: MAP 2525 $$ Course Title; Computational Mathematics Lab-III $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO      | 05 0                                                                                   | 1            | 3                   | 0                   | 3                   |          | 3      | 2       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------|--------------|---------------------|---------------------|---------------------|----------|--------|---------|--|--|
| Course Code: MAP 2525   Course Title: Computational Mathematics Lab-III   Credits = 2     L   T   P     Semester: III   Total contact hours: 60   0   0   4     List of Prerequisite Courses     Differential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2524)     List of Courses where this course will be prerequisite     It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE     Course Contents (Topics and subtopics)     Hours     Module -I (MALTAB: As a computational Tool)     Defining vectors and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing. Plotting 2d and 3d graphics in various formats.     2   Development of MATLAB programmes for problems in Mumerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 3-Strong Contribution; 2-M                                                             | Moderate C   | Contribution; 1-L   | ow Contribution,    | 0 – No contributi   | on       | 0      | 2       |  |  |
| Course Code: MAP 2525     Course Title: Computational Mathematics Lab-III     Credits = 2       L     T     P       Semester: III     Total contact hours: 60     0     0     4       List of Prerequisite Courses       Differential Equations (MAT 2235), Computational Mathematics Lab – 1 (MAP 2523), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2524)     List of Courses where this course will be prerequisite       It is a foundation course which will be prequisite for all the courses related to statistics and applied mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program       This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE     Hours       Module -1 (MALTAB: As a computational Tool)     Hours       1     Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing Plotting 2d and 3d graphics in various formats.     6       2     Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.     6       3     Numerical solution of sintadard partial differential equation using MATLAB     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                        |              |                     |                     |                     | C        | SV     | þ.      |  |  |
| Course Code: MAP 2525   Course Title: Computational Mathematics Lab-III   Credits = 2     L   T   P     Semester: III   Total contact hours: 60   0   0   4     List of Prerequisite Courses     Differential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2524)     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE   Hours     Module -1 (MALTAB: As a computational Tool)     Defining vectors and matric computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing. Plotting 2d and 3d graphics in various formats.     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of sintad and partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and for provents of anadra partial differential equation using MATLAB   6     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                        |              |                     |                     | (                   | 77       | 9      |         |  |  |
| Course Code: MAP 2525   Course Title: Computational Mathematics Lab-III $Credits = 2$ L   T   P     Semester: III   Total contact hours: 60   0   0   4     List of Prerequisite Courses     Differential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2524)   List of Courses where this course will be prerequisite     It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.   Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE   Hours     0   Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File or analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and for Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                                        |              |                     |                     |                     |          |        |         |  |  |
| Course Code: MAP 2525Credits = 2LTPSemester: IIITotal contact hours: 60004Ist of Prerequisite CoursesDifferential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2524)List of Courses where this course will be prerequisiteIt is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.Description of relevance of this course in the M.Sc. Engineering Mathematics ProgramThis advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDECourse Contents (Topics and subtopics)HoursModule -I (MALTAB: As a computational Tool)1Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing.Plotting 2d and 3d graphics in various formats.2Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.3Numerical solution of standard partial differential equation using MATLAB4Numerical solution of standard partial differential equation of projects may be selected from [Danaila et al.]5Development of MATLAB Programmes to solve problems involving Laplace and from [Danaila et al.]6A group projects in a group of 3-4 students may be assigned. Projects may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                        |              |                     |                     |                     | į.       |        |         |  |  |
| Course Code: MAP 2525   Course Title: Computational Mathematics Lab-III   Credits = 2     L   T   P     Semester: III   Total contact hours: 60   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                        |              |                     |                     | <b>O</b>            |          |        |         |  |  |
| Course Code: MAP 2525Course Title: Computational Mathematics Lab-III $Credits = 2$<br>L $I$ $T$ $P$ Semester: IIITotal contact hours: 60004List of Prerequisite CoursesDifferential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – II (MAP 2524)List of Courses where this course will be prerequisiteTist of Courses where this course will be prerequisiteIt is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.Description of relevance of this course in the M.Sc. Engineering Mathematics ProgramThis advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDEOurse Contents (Topics and subtopics)HoursModule -I (MALTAB: As a computational Tool)Defining vectors and matrices and matric computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.Ouverical solution of initial and boundary value ODE in MATLAB4Numerical solution of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms5Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms6A group projects in a group of 3-4 students may be assigned. Projects may be selected from (Daaila et al.] <td< td=""><td></td><td></td><td></td><td></td><td></td><td>6.</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                        |              |                     |                     | 6.                  |          |        |         |  |  |
| Course Code: MAP 2525Credits = 2LTPSemester: IIITotal contact hours: $60$ 004Semester: IIITotal contact hours: $60$ CenterseDifferential Equations (MAT 2235), Computational Mathematics Lab - I (MAP 2523), Computational Mathematics Lab - I (MAP 2524)Image: Computational Mathematics Lab - I (MAP 2523), Computational Mathematics Lab - I (MAP 2524)Description of relevance of this course while be prerequisiteImage: Course Course Course Course Course covers the MATDAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDEHoursModule - I (MALTAB Programming language and its applications to solve scientific and engineering problems and matrics computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing Plotting 2d and 3d graphics in various formats.Hours2Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.63Numerical solution of initial and boundary value ODE in MATLAB4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>~0</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                |         |                                                                                        |              |                     |                     | ~0                  |          |        |         |  |  |
| Course Code: MAP 2525     Course Title: Computational Mathematics Lab-III     Credits = 2       L     T     P       Semester: III     Total contact hours: 60     0     0     4       List of Prerequisite Courses       Differential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – II (MAP 2524)       List of Courses where this course will be prerequisite       It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.       Description of relevance of this course in the M.Sc. Engineering Mathematics Program       This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE       Course Contents (Topics and subtopics)       Hours       Module -I (MALTAB: As a computational Tool)       Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.       A umerical solution of initial and boundary value ODE in MATLAB       A umerical solution of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                        |              |                     |                     |                     |          |        |         |  |  |
| Course Code: MAP 2525     Course Title: Computational Mathematics Lab-III     L     T     P       Semester: III     Total contact hours: 60     0     0     4       Image: Semester: III     Total contact hours: 60     0     0     4       Image: Semester: III     Total contact hours: 60     0     0     4       Image: Semester: III     Image: Semester: III     Total contact hours: 60     0     0     4       Image: Semester: III     Image: Semester: III     Total contact hours: 60     0     0     4       Image: Semester: III     Image: Semester: III     Image: Semester: III     Semester: Semes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                        |              |                     |                     | ,                   | C        | redit  | s = 2   |  |  |
| Semester: III   Total contact hours: 60   Image: Note of the second sec |         | Course Code: MAP 2525                                                                  | Cours        | e Title: Comput     | ational Mathem      | atics Lab-III       | T.       | т      |         |  |  |
| Item Sentester: Int   Total contact noirs: 00   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 </td <td></td> <td>Somostore III</td> <td></td> <td>Total aa</td> <td>ntoot hourse 60</td> <td></td> <td>0</td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Somostore III                                                                          |              | Total aa            | ntoot hourse 60     |                     | 0        | -      |         |  |  |
| List of Prerequisite Courses     Differential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – II (MAP 2524)     List of Courses where this course will be prerequisite     It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engine=ring problems as an application to ODE and PDE     Course Contents (Topics and subtopics)     Hours     Module -I (MALTAB: As a computational Tool)     Defining vectors and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danala et al.]   12 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Semester: III                                                                          |              | U                   | U                   | 4                   |          |        |         |  |  |
| List of Prerequisite Courses     Differential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – II (MAP 2524)     List of Courses where this course will be prerequisite     It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE     Module -I (MALTAB: As a computational Tool)     Hours     Module -I (MALTAB: As a computational functions, File processing, Plotting 2d and 3d graphics in various formats.     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                        |              |                     |                     |                     |          |        |         |  |  |
| Differential Equations (MAT 2235), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – I (MAP 2523), Computational Mathematics Lab – II (MAP 2524)     List of Courses where this course will be prerequisite     It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE   Hours     Module -I (MALTAB: As a computational Tool)     Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D'66    | Ential Equations (MAT 2235) Computational Mathematics Lab – I (MAP 2523) Computational |              |                     |                     |                     |          |        |         |  |  |
| Mathematics Lab – II (MAP 2524)     List of Courses where this course will be prerequisite     It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE     Module -I (MALTAB: As a computational Tool)     Hours     Module -I (MALTAB: As a computational Tool)     10     Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danail et al.]   12      Module -II (Numerical So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Differe | ential Equations (MAT 223)                                                             | 5), Compi    | itational Mather    | matics Lab – I      | (MAP 2523),         | Com      | iputa  | itional |  |  |
| List of Courses where this course will be prerequisite     It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engineering problems as an application to ODE and PDE   Hours     Module -I (MALTAB: As a computational Tool)   Hours     Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of AttLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   12     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danail et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms) <t< td=""><td>Mather</td><td colspan="10">ematics Lab – II (MAP 2524)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mather  | ematics Lab – II (MAP 2524)                                                            |              |                     |                     |                     |          |        |         |  |  |
| It is a foundation course which will be prerequisite for all the courses related to statistics and applied mathematics.       Description of relevance of this course in the M.Sc. Engineering Mathematics Program       This advanced course covers the MATLAB programming language and its applications to solve scientific and engine=ring problems as an application to ODE and PDE     Hours       Course Contents (Topics and subtopics)     Hours       Obscing vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.     6       2     Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.     6       3     Numerical solution of initial and boundary value ODE in MATLAB     4       4     Numerical solution of standard partial differential equation using MATLAB     6       5     Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms     6       6     A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | List of C                                                                              | Courses wi   | nere this course    | will be prerequi    | site                |          |        |         |  |  |
| mathematics.     Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engine=ring problems as an application to ODE and PDE     Course Contents (Topics and subtopics)   Hours     Module -I (MALTAB: As a computational Tool)     Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -I (Numerical Solution of PDE and Integral Transforms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | It is a | foundation course which w                                                              | vill be pre  | erequisite for al   | l the courses re    | elated to statistic | s an     | id aj  | pplied  |  |  |
| Description of relevance of this course in the M.Sc. Engineering Mathematics Program     This advanced course covers the MATLAB programming language and its applications to solve scientific and engine=ring problems as an application to ODE and PDE     Course Contents (Topics and subtopics)   Hours     Module -I (MALTAB: As a computational Tool)     1.   Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mather  | natics.                                                                                |              |                     |                     |                     |          |        |         |  |  |
| This advanced course covers the MATLAB programming language and its applications to solve scientific and engine=ring problems as an application to ODE and PDE     Course Contents (Topics and subtopics)   Hours     Module -I (MALTAB: As a computational Tool)     1.   Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | <b>Description of relevance</b>                                                        | of this cou  | rse in the M.Sc.    | . Engineering M     | athematics Prog     | ram      |        |         |  |  |
| engineering problems as an application to ODE and PDE     Course Contents (Topics and subtopics)   Hours     Module -I (MALTAB: As a computational Tool)     1.   Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   Module -I (Numerical Solution of PDE and Integral Transforms)   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | This ad | dvanced course covers the MA                                                           | ATLAB pr     | ogramming lang      | guage and its app   | olications to solve | scie     | entifi | c and   |  |  |
| Course Contents (Topics and subtopics)HoursModule -I (MALTAB: As a computational Tool)1.Defining vectors and matrices and matrix computations, Fundamental programming<br>structures (if statements, for, while loops), Creating user defined functions, File<br>processing, Plotting 2d and 3d graphics in various formats.62Development of MATLAB programmes for problems in Numerical Analysis with error<br>analysis. Examples arising from some engineering application may be introduced.63Numerical solution of initial and boundary value ODE in MATLAB44Numerical solution of standard partial differential equation using MATLAB65Development of MATLAB Programmes to solve problems involving Laplace and<br>Fourier Transforms66A group projects in a group of 3-4 students may be assigned. Projects may be selected<br>from [Danaila et al.]12Module -II (Numerical Solution of PDE and Integral Transforms)Numerical Solutions of PDE's: Numerical Solution of partial differential equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | engine  | ering problems as an application                                                       | on to ODE    | and PDE             |                     |                     |          |        |         |  |  |
| Module -I (MALTAB: As a computational Tool)     1.   Defining vectors and matrices and matrix computations, Fundamental programming structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Course C                                                                               | Contents (7  | Fopics and subto    | opics)              |                     |          | Hor    | irs     |  |  |
| Defining vectors and matrices and matrix computations, Fundamental programming<br>structures (if statements, for, while loops), Creating user defined functions, File<br>processing, Plotting 2d and 3d graphics in various formats.62Development of MATLAB programmes for problems in Numerical Analysis with error<br>analysis. Examples arising from some engineering application may be introduced.63Numerical solution of initial and boundary value ODE in MATLAB44Numerical solution of standard partial differential equation using MATLAB65Development of MATLAB Programmes to solve problems involving Laplace and<br>Fourier Transforms66A group projects in a group of 3-4 students may be assigned. Projects may be selected<br>from [Danaila et al.]12Module -II (Numerical Solution of PDE and Integral Transforms)Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | Modu                                                                                   | le -I (MA    | LTAB: As a con      | nputational Too     | I)                  |          |        |         |  |  |
| 1.   structures (if statements, for, while loops), Creating user defined functions, File processing, Plotting 2d and 3d graphics in various formats.   6     2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Defining vectors and matri                                                             | ces and n    | natrix computati    | ons, Fundament      | al programming      |          |        |         |  |  |
| processing, Plotting 2d and 3d graphics in various formats.2Development of MATLAB programmes for problems in Numerical Analysis with error<br>analysis. Examples arising from some engineering application may be introduced.63Numerical solution of initial and boundary value ODE in MATLAB44Numerical solution of standard partial differential equation using MATLAB65Development of MATLAB Programmes to solve problems involving Laplace and<br>Fourier Transforms66A group projects in a group of 3-4 students may be assigned. Projects may be selected<br>from [Danaila et al.]12Module -II (Numerical Solution of PDE and Integral Transforms)Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.      | structures (if statements, f                                                           | for, while   | loops), Creatin     | ig user defined     | functions, File     |          | 6      |         |  |  |
| 2   Development of MATLAB programmes for problems in Numerical Analysis with error analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | processing, Plotting 2d and 3                                                          | d graphics   | in various forma    | ats.                |                     |          |        |         |  |  |
| 2   analysis. Examples arising from some engineering application may be introduced.   6     3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2       | Development of MATLAB                                                                  | programme    | es for problems i   | in Numerical An     | alysis with error   |          | -      |         |  |  |
| 3   Numerical solution of initial and boundary value ODE in MATLAB   4     4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2       | analysis. Examples arising f                                                           | rom some     | engineering appl    | ication may be ir   | troduced.           |          | 0      |         |  |  |
| 4   Numerical solution of standard partial differential equation using MATLAB   6     5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3       | Numerical solution of initial                                                          | and bound    | ary value ODE i     | n MATLAB            |                     |          | 4      |         |  |  |
| 5   Development of MATLAB Programmes to solve problems involving Laplace and Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4       | Numerical solution of standa                                                           | rd partial o | lifferential equat  | ion using MATL      | AB                  |          | 6      |         |  |  |
| 5'   Fourier Transforms   6     6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - K     | Development of MATLAB                                                                  | Program      | mes to solve p      | roblems involvin    | ng Laplace and      |          |        |         |  |  |
| 6   A group projects in a group of 3-4 students may be assigned. Projects may be selected from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5       | Fourier Transforms                                                                     | Ũ            | 1                   |                     |                     |          | 6      |         |  |  |
| 6   from [Danaila et al.]   12     Module -II (Numerical Solution of PDE and Integral Transforms)     Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _       | A group projects in a group                                                            | of 3-4 stu   | dents may be as     | signed. Projects    | may be selected     |          |        |         |  |  |
| Module -II (Numerical Solution of PDE and Integral Transforms)       Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6       | from [Danaila et al.]                                                                  |              | 2                   | 0 3                 |                     |          | 12     | 2       |  |  |
| Numerical Solutions of PDE's: Numerical Solution of partial differential equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | Module -II (Nu                                                                         | umerical S   | olution of PDE      | and Integral Tr     | ansforms)           | <u> </u> |        |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Numerical Solutions of PD                                                              | E's: Num     | erical Solution     | of partial differ   | ential equations    |          |        |         |  |  |
| (parabolic and hyperbolic) using explicit and implicit finite difference methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | (parabolic and hyperbolic)                                                             | using ex     | plicit and imp      | licit finite diffe  | rence methods       |          |        |         |  |  |
| 7 Numerical stability for explicit and implicit method. Solution of elliptic equation using 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7       | Numerical stability for expli                                                          | icit and im  | plicit method S     | olution of elliptic | c equation using    |          | 10     | ,       |  |  |
| finite difference methods. Collocation and Galerkin methods. Methods of finite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | finite difference methods                                                              | Collocatio   | on and Galerki      | n methods. Me       | thods of finite     |          |        | -       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | residuals. Finite element for                                                          | mulation f   | or the solution of  | of ODE and PDF      | E. Calculation of   |          |        |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | residuals, Finite element for                                                          | mulation f   | for the solution of | of ODE and PDE      | E, Calculation of   |          |        |         |  |  |

|     | element matrices, assembly, and solution of linear equations.                     |                              |  |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|--|
| 8   | Introduction of standard integral transform and Applications                      | 8                            |  |  |  |  |  |  |  |  |
|     | List of Textbooks/ Reference Books                                                |                              |  |  |  |  |  |  |  |  |
| 1   | Dingyü Xue, Yang Quan Chen, Scientific Computing with MATLAB, Second Edition, 202 | 21 by                        |  |  |  |  |  |  |  |  |
| 1.  | Chapman & Hall                                                                    |                              |  |  |  |  |  |  |  |  |
| 2   | C. F. Van Loan and KY. D. Fan, Insight, Through Computing: A MATLAB I             | ntroduction to               |  |  |  |  |  |  |  |  |
| 2   | Computational Science and Engineering, SIAM Publication, 2009                     |                              |  |  |  |  |  |  |  |  |
| 2   | Eihab B. M. Bashier, Practical Numerical and Scientific Computing with MATLAB and | l Python, CRC                |  |  |  |  |  |  |  |  |
| 5   | Press, 2020                                                                       |                              |  |  |  |  |  |  |  |  |
| 4   | Ionut Danaila, Pascal Joly, Sidi Mahmoud Kaber and Marie Poste, An Introduction   | to Scientific                |  |  |  |  |  |  |  |  |
| 4   | Computing: Twelve Computational Projects Solved with MATLAB, Springer 2006.       | 02                           |  |  |  |  |  |  |  |  |
| 5   | Dingyü Xue, Differential Equation Solutions with MATLAB, De Gruyter, 2020         |                              |  |  |  |  |  |  |  |  |
| 6   | Sudhakar Nair, Advanced Topics in Applied Mathematics for Engg. & Physical Scien  | ce, 1 <sup>st</sup> edition, |  |  |  |  |  |  |  |  |
| 0   | Cambridge University Press                                                        |                              |  |  |  |  |  |  |  |  |
| 7   | Larry C. Andrews Bhimsen, K. Shivamogga, Integral Transforms for Engineers,       | SPIE Optical                 |  |  |  |  |  |  |  |  |
| /   | Engineering Press                                                                 |                              |  |  |  |  |  |  |  |  |
|     | 6                                                                                 |                              |  |  |  |  |  |  |  |  |
|     | Course Outcomes (students will be able to)                                        |                              |  |  |  |  |  |  |  |  |
| CO1 | understand the basics of MATLAB programming.                                      |                              |  |  |  |  |  |  |  |  |
| CO2 | develop MATLAB programmes to solve problems arising in science and engineering.   |                              |  |  |  |  |  |  |  |  |
| CO3 | develop MATLAB Programmes for numerical solutions of ODE and PDE                  |                              |  |  |  |  |  |  |  |  |
| CO4 | Perform convergence analysis of numerical method for of PDE                       |                              |  |  |  |  |  |  |  |  |
| CO5 | Develop understanding of Laplace and Fourier Transforms and their applications.   |                              |  |  |  |  |  |  |  |  |
| CO6 | model and solve real life problems and solve it using MATLAB.                     |                              |  |  |  |  |  |  |  |  |

| -                                                              |     |     |     |                |     |     |     |     |     |      |      |      |
|----------------------------------------------------------------|-----|-----|-----|----------------|-----|-----|-----|-----|-----|------|------|------|
| Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |                |     |     |     |     |     |      |      |      |
|                                                                | PO1 | PO2 | PO3 | PO4            | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                            | 0   | 3   | 0   | 3              | 2   | 2   | 0   | 1   | 3   | 0    | 0    | 3    |
| CO2                                                            | 0   | 3   | 0   | 1              | 0   | 2   | 0   | 1   | 3   | 0    | 0    | 3    |
| CO3                                                            | 0   | 3   | 0   | 1              | 0   | 2   | 0   | 1   | 3   | 0    | 0    | 3    |
| CO4                                                            | 0   | 3   | 1   | $\mathbf{V}_1$ | 1   | 2   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO5                                                            | 0   | 3   | 2   | 2              | 2   | 2   | 2   | 0   | 3   | 1    | 0    | 3    |
| CO6                                                            | 0   | 3   | 0   | 1              | 0   | 3   | 0   | 2   | 3   | 3    | 3    | 3    |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |      |  |  |  |  |  |
|--------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|
|                                                                          | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |
| CO1                                                                      | 0    | 1    | 0    | 3    | 0    | 0    |  |  |  |  |  |
| CO2                                                                      | 0    | 1    | 0    | 3    | 0    | 0    |  |  |  |  |  |
| CO3                                                                      | 0    | 1    | 0    | 3    | 0    | 0    |  |  |  |  |  |
| CO4                                                                      | 3    | 1    | 0    | 3    | 0    | 0    |  |  |  |  |  |
| CO5                                                                      | 0    | 2    | 0    | 3    | 0    | 0    |  |  |  |  |  |
| CO6                                                                      | 0    | 3    | 0    | 3    | 3    | 1    |  |  |  |  |  |

| Course Code: | Course Titlet Fleetine III   | Credi | ts = 4 |
|--------------|------------------------------|-------|--------|
| MATXXXX      | Course Title: Elective – III | LT    | Р      |

|        | Semester: III                  | Total contact hours: 60                                              | 4     | 0  | 0 |
|--------|--------------------------------|----------------------------------------------------------------------|-------|----|---|
| Depart | ment will offer elective cours | es. A consolidated list of all the elective subjects is given at the | e enc | 1. |   |

|                                                    | Course Code: MAD 2704 Course Title: Recorse Project                                                                               |                                                                                                                                                                                                                                                                |             |              |            |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|--|
|                                                    | Course Coue. MAI 2704                                                                                                             | Course mue. Research moject                                                                                                                                                                                                                                    | L           | Т            | Р          |  |
|                                                    | Semester: III                                                                                                                     | Total contact hours: 60                                                                                                                                                                                                                                        | 0           | 0            | 8          |  |
| This w<br>exact v<br>report a<br>Sugges<br>Interna | work plan will be decided in c<br>and presentation will be consider<br>ated Marks distribution:<br>1 Marks (40) + Final Presentat | continuation of the research project executed in the third set<br>consultation with the project guide. A suitable combination of<br>dered for the final evaluation as per the Institute evaluation pol<br>tion (20) + Report (20) + Overall (20) = Total (100) | f the licy. | r an<br>marl | the ks for |  |
|                                                    | WY AC                                                                                                                             | ademic council on Auto                                                                                                                                                                                                                                         |             |              |            |  |
| A                                                  | pprove -                                                                                                                          |                                                                                                                                                                                                                                                                |             |              |            |  |

# Academic council on Auto on Auto Academic council on Auto on Auto on Academic Council on Auto on Academic Council on Auto on A

|                              |                                 |                                                                   | Credits = |        |                |  |  |  |  |  |  |
|------------------------------|---------------------------------|-------------------------------------------------------------------|-----------|--------|----------------|--|--|--|--|--|--|
|                              | Course Code: MAT 2233           | Course Title: Advanced Differential Equations                     | L         | T      | <u>з-</u><br>Р |  |  |  |  |  |  |
|                              | Semester: IV                    | Total contact hours: 60                                           | 4         | 0      | 0              |  |  |  |  |  |  |
|                              |                                 |                                                                   |           | •      |                |  |  |  |  |  |  |
| List of Prerequisite Courses |                                 |                                                                   |           |        |                |  |  |  |  |  |  |
| Differe                      | ntial equations (MAT 2235)      |                                                                   |           |        |                |  |  |  |  |  |  |
| 2                            |                                 |                                                                   |           |        |                |  |  |  |  |  |  |
|                              | List of C                       | Courses where this course will be prerequisite                    |           |        |                |  |  |  |  |  |  |
|                              |                                 | (                                                                 |           | 9      |                |  |  |  |  |  |  |
|                              | <b>Description of relevance</b> | of this course in the M.Sc. Engineering Mathematics Prog          | ram       |        |                |  |  |  |  |  |  |
| This su                      | bject is fundamental to unders  | stand the nature of fluid flows and mathematical modelling of     | hea       | t and  | mass           |  |  |  |  |  |  |
| transfer                     | phenomena                       |                                                                   |           |        |                |  |  |  |  |  |  |
|                              | Course C                        | Contents (Topics and subtopics)                                   |           | Hou    | irs            |  |  |  |  |  |  |
|                              | Review of solution methods      | s for first order as well as second order equations. Power        |           |        |                |  |  |  |  |  |  |
|                              | Series methods for solution     | of second order differential equations. Regular singular          |           |        | _              |  |  |  |  |  |  |
| 1                            | points. Solution of Legendre    | e and Bessel's equation with properties of Bessel functions       |           | 12     | 2              |  |  |  |  |  |  |
|                              | and Legendre polynomials.       |                                                                   |           |        |                |  |  |  |  |  |  |
|                              | Classification of Second (      | Order Partial Differential Equations, normal forms and            |           |        |                |  |  |  |  |  |  |
| 2                            | characteristics. Initial and H  | Boundary Value Problems: Lagrange-Green's identity and            |           | 12     | 2              |  |  |  |  |  |  |
|                              | uniqueness by energy method     | ds. Stability theory, energy conservation and dispersion.         |           |        |                |  |  |  |  |  |  |
|                              | Laplace equation: mean value    | ue property, weak and strong maximum principle, Green's           |           |        |                |  |  |  |  |  |  |
| 3                            | function, Poisson's formula,    | Dirichlet's principle, existence of solution using Perron's       |           | 12     | 2              |  |  |  |  |  |  |
|                              | method.                         |                                                                   |           |        |                |  |  |  |  |  |  |
| 4                            | Heat equation: initial value    | problem, fundamental solution, weak and strong maximum            |           | 10     |                |  |  |  |  |  |  |
| 4                            | principle and uniqueness resu   | alts.                                                             |           | 12     | 2              |  |  |  |  |  |  |
| 5                            | Wave equation: uniqueness       | , D'Alembert's method, method of spherical means and              |           | 10     | ,              |  |  |  |  |  |  |
| 5                            | Duhamel's principle.            |                                                                   |           | 12     | 2              |  |  |  |  |  |  |
|                              |                                 | List of Textbooks/ Reference Books                                |           |        |                |  |  |  |  |  |  |
| 1                            | Renardy and Rogers, An intr     | oduction to PDE's, Springer-Verlag.                               |           |        |                |  |  |  |  |  |  |
| 2                            | W. A Strauss Partial, differen  | ntial equations, An Introduction, Wiley, John & Sons.             |           |        |                |  |  |  |  |  |  |
| 3                            | Dennis Zill, W. S. Wright, A    | dvanced Engineering Mathematics, Jones & Bartlett.                |           |        |                |  |  |  |  |  |  |
| 4                            | L.C. Evans, Partial differenti  | al equations, Springer.                                           |           |        |                |  |  |  |  |  |  |
| 5                            | I. N. Sneddon, Elements of p    | artial differential equations, McGraw-Hill.                       |           |        |                |  |  |  |  |  |  |
| 6                            | K.W. Morton & D.F. Mayers       | s, Numerical solution of partial differential equations, Cambrid  | lge,      | 2nd    | Edn.           |  |  |  |  |  |  |
| 7                            | G.D. Smith, Numerical solut     | ion of partial differential equations, finite difference methods, | Oxt       | ford.  |                |  |  |  |  |  |  |
| 8                            | J. N. Reddy, An Introduction    | to Finite Element Methods, McGraw-Hill.                           |           |        |                |  |  |  |  |  |  |
| 0                            | G. D. Smith, Numerical solu     | tion of partial differential Equations: Finite difference metho   | ds, l     | New    | York,          |  |  |  |  |  |  |
| 9                            | NY: Clarendon Press.            |                                                                   |           |        |                |  |  |  |  |  |  |
| 10                           | L. Perko, Differential Equat    | ions and Dynamical Systems, Texts in Applied Mathematic           | s, V      | 7ol. 7 | 7, 2nd         |  |  |  |  |  |  |
| 10                           | Edition, Springer Verlag, Ne    | w York, 1998.                                                     |           |        |                |  |  |  |  |  |  |
| 11                           | E. DiBenedetto, Partial Diffe   | rential Equations, Birkhauser, 1995.                              |           |        |                |  |  |  |  |  |  |
| 12                           | F. John, Partial Differential H | Equations, 3rd Edition, Narosa, 1979.                             |           |        |                |  |  |  |  |  |  |
| 13                           | E. Zauderer, Partial Differen   | tial Equations of Applied Mathematics, 2nd Edition, John W        | iley      | and    | Sons,          |  |  |  |  |  |  |
|                              | 1707.<br>Com                    | rse Outcomes (students will be able to)                           |           |        |                |  |  |  |  |  |  |
| CO1                          | understand standard methods     | to solve partial differential equations                           |           |        |                |  |  |  |  |  |  |
| $C0^{1}$                     | find numerical solutions of n   | artial differential equations                                     |           |        |                |  |  |  |  |  |  |

| CO3 | implement algorithms to solve PDE on computers.                          |  |
|-----|--------------------------------------------------------------------------|--|
| CO4 | analyse analytical and numerical solutions of differential equations.    |  |
| CO5 | model and solve real life problems using partial differential equations. |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3                                                              | 3   | 0   | 0   | 1   | 1   | 1   | 1   | 3   | 0    | 0    | 3    |
| CO2 | 2                                                              | 3   | 0   | 1   | 0   | 0   | 0   | 0   | 3   | 0    | 0    | 3    |
| CO3 | 2                                                              | 3   | 0   | 1   | 0   | 0   | 0   | 1   | 3   | 0    | 0    | 3    |
| CO4 | 3                                                              | 3   | 0   | 0   | 1   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO5 | 0                                                              | 3   | 2   | 2   | 2   | 3   | 2   | 0   | 3   | 2    | 1    | 3    |

)

| 1   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |
| CO1 | 3                                                                        | 0    | 0    | 0    | ~~~0 | 0    |  |  |  |  |  |
| CO2 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO3 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO4 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO5 | 3                                                                        | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution

|        | Course Code: MAT 2329 Course Title: Advanced Statistical Computing                  |                                                                  |       |       |        |  |  |  |
|--------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|-------|-------|--------|--|--|--|
|        | Course Coue. MAT 2525                                                               | Course Thie. Auvanceu Statistical Computing                      | L     | Т     | Р      |  |  |  |
|        | Semester: IV                                                                        | Total contact hours: 60                                          | 4     | 0     | 0      |  |  |  |
|        |                                                                                     |                                                                  |       |       |        |  |  |  |
|        |                                                                                     | List of Prerequisite Courses                                     |       |       |        |  |  |  |
| Probab | vility Theory (MAT 2321), Stat                                                      | istical Inference (MAT 2322), Programming Lab (MAP 2521          | )     |       |        |  |  |  |
|        | 1 4                                                                                 |                                                                  |       |       |        |  |  |  |
|        | List of C                                                                           | Courses where this course will be prerequisite                   |       |       |        |  |  |  |
|        |                                                                                     |                                                                  |       |       |        |  |  |  |
|        | Description of relevance                                                            | of this course in the M.Sc. Engineering Mathematics Prog         | ram   |       |        |  |  |  |
| With a | an enormous increase of the                                                         | large-scale computational methods in science and engine          | eerin | g, aj | pplied |  |  |  |
| mather | naticians must get exposure to                                                      | various statistical methods. This course aims to give the stu    | dent  | s exp | osure  |  |  |  |
| to com | puter intensive statistical meth                                                    | nods. It also enables students to understand various simulatio   | n m   | ethod | is and |  |  |  |
| Monte  | carlo techniques which are in                                                       | the core of application of mathematics to solve real life proble | ems.  |       |        |  |  |  |
| Y      | Course C                                                                            | contents (Topics and subtopics)                                  |       | Hou   | ırs    |  |  |  |
| 1      | Estimation of cumulative dis                                                        | tribution function and statistical functionals                   |       | 6     |        |  |  |  |
|        | Approximation of the distribution of nonlinear functions of random variables and    |                                                                  |       |       |        |  |  |  |
| 2      | functions of random sample: (Central Limit Theorem and First order and second order |                                                                  |       |       |        |  |  |  |
|        | Delta method, Extension to r                                                        |                                                                  |       |       |        |  |  |  |
|        | Random variable generation: Simulation of Random numbers following some specific    |                                                                  |       |       |        |  |  |  |
| 3      | distribution; Probability Integral transform; Accept/Reject algorithm; Metropolis   |                                                                  |       |       |        |  |  |  |
|        | algorithm, Gibbs sampler                                                            |                                                                  |       |       |        |  |  |  |
| 4      | Monte Carlo Integration,                                                            | Importance Sampling, Variance reduction, Riemann                 |       | 10    | )      |  |  |  |
| -      | Approximations, Laplace A                                                           | pproximations, Saddle point approximation, Acceleration          |       | 10    | ,      |  |  |  |
|        |                                                                                     |                                                                  |       |       |        |  |  |  |
|     | using Antithetic variables, control variates and conditional expectations, Statistica simulation using R | 1                |
|-----|----------------------------------------------------------------------------------------------------------|------------------|
|     | Bootstran methods: Bootstran variance estimation Bootstran confidence interval                           | 2                |
| 5   | Jacknife.                                                                                                | , 6              |
|     | Elements of Bayesian inference: Bayesian philosophy, Prior distribution, posterio                        | r                |
|     | distribution, computing posterior point estimate, conjugate prior distribution, Jeffrey'                 | s                |
| 6   | prior, multi-parameter problems and Bayesian testing, large sample properties of Baye                    | s 12             |
|     | estimators (emphasis on real data problems and use of packages in R or Python for                        | r                |
|     | Bayesian inference)                                                                                      |                  |
|     | Nonparametric curve estimation: Histogram estimator, Kernel density estimation, bias                     | -                |
| 7   | variance trade-off, smoothing using orthogonal functions: density estimation an                          | d 12             |
|     | regression problems                                                                                      |                  |
|     | List of Textbooks/ Reference Books                                                                       | 0                |
| 1   | Larry Wasserman, All of Statistics: A concise course in statistical inference.                           |                  |
| 2   | Daniel Sabanés Bové and Leonhard Held, Applied Statistical Inference: Likelihood and                     | Bayes, Springer. |
| 3   | Christian P. Robert George Casella, Monte Carlo Statistical Methods, Springer.                           |                  |
| 4   | Eric A. Suess, Bruce E. Trumbo, Introduction to Probability Simulation and Gibbs S                       | ampling with R,  |
| 4   | Springer.                                                                                                |                  |
| 5   | James R. Thompson, Simulation A Modeler's Approach, John Wiley & Sons, Inc.                              |                  |
| 6   | Reuven Y. Rubinstein, Dirk P. Kroese, Simulation and the Monte Carle method, John                        | n Wiley & Sons,  |
| 0   | Inc.                                                                                                     |                  |
| 7   | Christian P Robert and George Casella, Introducing Monte Carlo Methods with R, Sprin                     | ger              |
| 8   | Larry A. Wasserman, All of Nonparametric Statistics, Springer                                            |                  |
| 9   | R. A. Thisted, Elements of Statistical Computing. Taylor and Francis                                     |                  |
|     | Course Outcomes (students will be able to)                                                               |                  |
| COL | approximate the distribution of nonlinear functions of random variables using large                      |                  |
| COI | sample theory.                                                                                           |                  |
| CO2 | simulate random numbers from some statistical distribution using different                               |                  |
| 02  | algorithms.                                                                                              |                  |
| CO3 | apply Monte Carlo simulation to estimate model parameters and draw inference.                            |                  |
| CO4 | understand basic principles of Bayesian statistics and apply them in parameter                           |                  |
| 04  | estimation problems.                                                                                     |                  |
| COS | apply resampling methods to approximate confidence intervals and variance of                             |                  |
|     | estimators.                                                                                              |                  |
| CO6 | apply nonparametric statistical methods to solve real life data analysis problems                        |                  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |  |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|--|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |  |
| CO1 | 0                                                              | 0   | 3   | 3   | 1   | 1   | 1   | 0   | 3   | 0    | 0    | 3    |  |  |  |
| CO2 | 0                                                              | 1   | 3   | 3   | 2   | 1   | 2   | 0   | 3   | 1    | 0    | 3    |  |  |  |
| CO3 | 0                                                              | 1   | 3   | 3   | 1   | 1   | 1   | 0   | 3   | 0    | 0    | 3    |  |  |  |
| CÓ4 | 0                                                              | 0   | 3   | 3   | 2   | 1   | 3   | 2   | 3   | 0    | 1    | 3    |  |  |  |
| CO5 | 0                                                              | 0   | 3   | 3   | 1   | 2   | 3   | 2   | 3   | 2    | 1    | 3    |  |  |  |
| CO6 | 0                                                              | 0   | 3   | 3   | 2   | 2   | 3   | 3   | 3   | 3    | 2    | 3    |  |  |  |

| N   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |   |   |   |   |   |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|---|---|---|---|---|--|--|--|--|--|--|
|     | PSO1 PSO2 PSO3 PSO4 PSO5 PSO6                                            |   |   |   |   |   |  |  |  |  |  |  |
| CO1 | 0                                                                        | 0 | 3 | 0 | 0 | 1 |  |  |  |  |  |  |
| CO2 | CO2 0 0 3 0 0 1                                                          |   |   |   |   |   |  |  |  |  |  |  |

| CO3 | 0 | 0 | 3 | 0 | 0 | 1 |
|-----|---|---|---|---|---|---|
| CO4 | 0 | 0 | 3 | 0 | 0 | 1 |
| CO5 | 0 | 0 | 3 | 0 | 0 | 1 |
| CO6 | 0 | 0 | 3 | 0 | 1 | 1 |

|        | Course Code: MAD 2705         | Course Title: Research Project                                 | Cr    | edit | s = 6 |
|--------|-------------------------------|----------------------------------------------------------------|-------|------|-------|
|        | Course Coue: MAF 2705         | Course The: Research Project                                   | L     | Т    | Р     |
|        | Semester: IV                  | Total contact hours: 80                                        | 0     | 0    | 12    |
| This w | yould be concerned with the c | continuation of the research project executed in the third ser | neste | r an | d the |

exact work plan will be decided in consultation with the project guide. A suitable combination of the marks for report and presentation will be considered for the final evaluation as per the institute policy.

•

## Suggested Marks distribution:

Internal Marks (40) + Final Presentation (20) + Report (20) + Overall (20) = Total (100)

|                                                                                  | Course Code: MAT 2234 Course Title: Mathematical Modelling                                                                         |                                                                   |          | edits | = 4    |  |  |  |  |  |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|-------|--------|--|--|--|--|--|--|
|                                                                                  | Course Coue: MAI 2254                                                                                                              | Course rue: Mathematical Modelling                                | L        | Т     | Р      |  |  |  |  |  |  |
|                                                                                  | Semester: IV                                                                                                                       | Total contact hours: 60                                           | 4        | 0     | 0      |  |  |  |  |  |  |
|                                                                                  |                                                                                                                                    | CY                                                                |          |       |        |  |  |  |  |  |  |
|                                                                                  |                                                                                                                                    | List of Prerequisite Courses                                      |          |       |        |  |  |  |  |  |  |
| Ordina                                                                           | cdinary differential equations (MAT 2221), Partial differential equations (MAT 2222), computational Mathematics Lab – I (MAT 2523) |                                                                   |          |       |        |  |  |  |  |  |  |
| Compu                                                                            | Computational Mathematics Lab – I (MAT 2523)                                                                                       |                                                                   |          |       |        |  |  |  |  |  |  |
|                                                                                  |                                                                                                                                    |                                                                   |          |       |        |  |  |  |  |  |  |
|                                                                                  | List of Courses where this course will be prerequisite                                                                             |                                                                   |          |       |        |  |  |  |  |  |  |
| NIL                                                                              | L<br>Description of relevance of this course in the M.Sc. Engineering Mathematics Program                                          |                                                                   |          |       |        |  |  |  |  |  |  |
|                                                                                  | Description of relevance of this course in the M.Sc. Engineering Mathematics Program                                               |                                                                   |          |       |        |  |  |  |  |  |  |
| This co                                                                          | ourse enables the students to ap                                                                                                   | pply the theory of ordinary and partial differential equations to | solv     | e rea | l life |  |  |  |  |  |  |
| problem                                                                          | ns arising from engineering, biology, medicine etc.                                                                                |                                                                   |          |       |        |  |  |  |  |  |  |
|                                                                                  | Course Contents (Topics and subtopics)                                                                                             |                                                                   |          |       |        |  |  |  |  |  |  |
|                                                                                  | Introduction to Mathematica                                                                                                        | I modelling using linear and nonlinear discrete dynamical         | Q        |       |        |  |  |  |  |  |  |
| 1                                                                                | systems: qualitative analysis                                                                                                      | of discrete dynamical systems, One dimensional map, two           |          |       |        |  |  |  |  |  |  |
| 1 dimensional maps, Lyapunov exponents and chaotic attractor, example from other |                                                                                                                                    |                                                                   |          |       |        |  |  |  |  |  |  |
|                                                                                  | branches of science.                                                                                                               |                                                                   |          |       |        |  |  |  |  |  |  |
|                                                                                  | Qualitative analysis of math                                                                                                       | ematical models governed by differential equations: Planar        |          |       |        |  |  |  |  |  |  |
| 2                                                                                | Systems: Canonical forms, I                                                                                                        | Eigenvectors defining stable and unstable manifolds, Phase        |          | 8     |        |  |  |  |  |  |  |
| -                                                                                | portraits, Linearization and                                                                                                       | Hartman's theorem, Construction of phase plane diagram,           |          | U     |        |  |  |  |  |  |  |
|                                                                                  | Lyapunov functions                                                                                                                 |                                                                   |          |       |        |  |  |  |  |  |  |
| L.                                                                               | Stability analysis for mathem                                                                                                      | natical models: Equilibrium points and their classifications,     |          |       |        |  |  |  |  |  |  |
| 3                                                                                | Lyapunov and asymptotic s                                                                                                          | stability. Limit cycles: Existence and uniqueness of limit        |          | 8     |        |  |  |  |  |  |  |
| U                                                                                | cycles in the plane, stabilit                                                                                                      | y of limit cycles, Poincare- Bendixson theorem, worked            |          | Ũ     |        |  |  |  |  |  |  |
|                                                                                  | examples from ecology, dise                                                                                                        | ase models                                                        | <u> </u> |       |        |  |  |  |  |  |  |
| 4                                                                                | Elements of bifurcation th                                                                                                         | eory and applications to analyse mathematical models:             |          | 10    |        |  |  |  |  |  |  |
|                                                                                  | different types of bifurcation                                                                                                     | s and their analysis using computational software tools           | <u> </u> |       |        |  |  |  |  |  |  |
| 5                                                                                | Applications of Stochastic n                                                                                                       | nodels in modelling real life problems: Simulation, analysis      | s 10     |       |        |  |  |  |  |  |  |
| -                                                                                | and inference from real data.                                                                                                      |                                                                   |          |       |        |  |  |  |  |  |  |
| 6                                                                                | Mathematical Modelling pro                                                                                                         | ojects using computational tools like MATLAB/R/Python.            |          | 16    |        |  |  |  |  |  |  |
| Ŭ                                                                                | Case studies analysis: Mathe                                                                                                       | ematical models in fisheries management, traffic dynamics,        |          | 10    |        |  |  |  |  |  |  |

|          | Predator prey systems, age-structured models in biology, spatial spread of population,                     |
|----------|------------------------------------------------------------------------------------------------------------|
|          | etc.                                                                                                       |
|          | List of Textbooks/ Reference Books                                                                         |
| 1        | Sandip Banerjee, 2022, Mathematical Modelling: Models, Analysis and Applications, Second Edition CRC Press |
| 2        | Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer.                           |
| 3        | Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer.                 |
| 4        | L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2 <sup>nd</sup> Ed., Springer Verlag.       |
| 5        | Reinhard Illner, C. Sean Bohun, Samantha McCollum, Thea Van Roode, 2005, Mathematical Modelling            |
| 5        | A Case studies approach, American Mathematical Society.                                                    |
| 6        | James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press.                     |
| 7        | M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic.                              |
| 8        | R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition            |
| 0        | American Mathematical Society, Rhode Island.                                                               |
| 9        | Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed).                           |
| 10       | Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag         |
| 10       | New York.                                                                                                  |
|          |                                                                                                            |
|          | Course Outcomes (students will be able to)                                                                 |
| CO1      | Construct mathematical models for real life problems                                                       |
| $CO^{2}$ | Analyse the qualitative features of mathematical models using techniques from                              |
| 02       | dynamical systems                                                                                          |
| CO3      | Perform local and global bifurcation analysis for nonlinear systems.                                       |
| CO4      | Use symbolic mathematical software to analyse the mathematical models                                      |
| CO5      | Construct and analyse stochastic models for solving real life problems.                                    |
| CO6      | Construct and analyse mathematical models using partial differential equations for real                    |
| 000      | life problems                                                                                              |
|          | .0                                                                                                         |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |              |     |     |     |     |     |      |      |      |  |  |
|-----|----------------------------------------------------------------|-----|-----|--------------|-----|-----|-----|-----|-----|------|------|------|--|--|
|     | PO1                                                            | PO2 | PO3 | PO4          | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |
| CO1 | 0                                                              | 3   | 0   | 0            | 2   | 2   | 2   | 1   | 3   | 1    | 1    | 3    |  |  |
| CO2 | 0                                                              | 3   | 0   | $\bigcirc 0$ | 1   | 1   | 3   | 0   | 3   | 1    | 0    | 3    |  |  |
| CO3 | 0                                                              | 3   | 0   | 1            | 1   | 1   | 3   | 0   | 3   | 1    | 0    | 3    |  |  |
| CO4 | 0                                                              | 3   | 0   | 0            | 1   | 3   | 2   | 0   | 3   | 0    | 1    | 3    |  |  |
| CO5 | 0                                                              | 3   | 0   | 0            | 1   | 3   | 3   | 3   | 3   | 3    | 2    | 3    |  |  |
| CO6 | 0                                                              | 3   | 0   | 0            | 2   | 3   | 1   | 3   | 3   | 2    | 2    | 3    |  |  |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |      |  |  |  |  |  |
|--------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|
|                                                                          | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |
| CO1                                                                      | 1    | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO2                                                                      | 1    | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO3                                                                      | 1    | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO4                                                                      | 1    | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO5                                                                      | 0    | 3    | 1    | 0    | 0    | 0    |  |  |  |  |  |
| CO6                                                                      | 0    | 3    | 0    | 0    | 0    | 1    |  |  |  |  |  |

## on Autor Michael Flectives Cr **Detailed Syllabus of Electives Courses** eous Approve by Academic Approve by

|         | Course Code: MAT 2651                                                                  | Course Titles Creek Theory                                  | Credits = |       |        |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|-------|--------|--|--|--|--|--|--|
|         | Course Code: MAI 2051                                                                  | Course Title: Graph Theory                                  | L T       |       |        |  |  |  |  |  |  |
|         | Elective                                                                               | Total contact hours: 60                                     | 4         | 0     | 0      |  |  |  |  |  |  |
|         |                                                                                        |                                                             |           |       |        |  |  |  |  |  |  |
|         |                                                                                        | List of Prerequisite Courses                                |           |       |        |  |  |  |  |  |  |
| NIL     |                                                                                        |                                                             |           |       |        |  |  |  |  |  |  |
|         |                                                                                        |                                                             |           |       |        |  |  |  |  |  |  |
|         | List of C                                                                              | Courses where this course will be prerequisite              |           |       |        |  |  |  |  |  |  |
| NIL     |                                                                                        |                                                             |           |       |        |  |  |  |  |  |  |
|         | Description of relevance                                                               | of this course in the M.Sc. Engineering Mathematics Prog    | am        | 0     |        |  |  |  |  |  |  |
| This is | an elective course to give the                                                         | students an exposure of mathematical foundations of graphs  | and       | netv  | vorks  |  |  |  |  |  |  |
| which l | have immense applications in s                                                         | several disciplines.                                        |           |       |        |  |  |  |  |  |  |
|         | Course C                                                                               | ontents (Topics and subtopics)                              | T         | Hou   | rs     |  |  |  |  |  |  |
| 1       | Preliminaries: Graphs, iso                                                             | morphism, sub graphs, matrix representations, degree,       | -         | 6     |        |  |  |  |  |  |  |
| 1       | operations on graphs, degree                                                           | sequences.                                                  |           | 0     |        |  |  |  |  |  |  |
| 2       | Connected graphs and shortest paths: Walks, trails, paths, connected graphs, distance, |                                                             |           |       |        |  |  |  |  |  |  |
| 2       | cut vertices, cut-edges, block                                                         |                                                             | 0         |       |        |  |  |  |  |  |  |
| 3       | Trees: Characterizations, nur                                                          |                                                             | 6         |       |        |  |  |  |  |  |  |
| 4       | Special classes of graphs: Bi                                                          |                                                             | 6         |       |        |  |  |  |  |  |  |
| 5       | Eulerian graphs: Characterization, Fleury's algorithm, Chinese-postman-problem         |                                                             |           |       |        |  |  |  |  |  |  |
| 6       | Hamilton graphs: Necessary                                                             | conditions and sufficient conditions                        |           | 4     |        |  |  |  |  |  |  |
|         | Independent sets and clique                                                            | es, coverings, matching: Basic equations, matching in       |           |       |        |  |  |  |  |  |  |
| 7       | bipartite graphs, Halls Theor                                                          | em, perfect matching, defect form of Halls Theorem, greedy  |           | 10    |        |  |  |  |  |  |  |
|         | and approximation algorithms                                                           |                                                             |           |       |        |  |  |  |  |  |  |
| 8       | Vertex colourings: Chrom                                                               | atic number and cliques, greedy colouring algorithm,        |           | 10    |        |  |  |  |  |  |  |
| 0       | colouring of chordal graphs,                                                           | Brook's theorem                                             |           | 10    |        |  |  |  |  |  |  |
| 9       | Directed graphs: Out-degree                                                            | e, in-degree, connectivity, orientation, Eulerian directed  |           | 6     |        |  |  |  |  |  |  |
| ,       | graphs, Hamilton directed gr                                                           | aphs, tournaments.                                          |           | 0     |        |  |  |  |  |  |  |
|         |                                                                                        | List of Textbooks/ References                               |           |       |        |  |  |  |  |  |  |
| 1       | Bondy and U.S.R.Murty: Gr                                                              | aph Theory and Applications (Freely downloadable from Bo    | ndy's     | wel   | osite; |  |  |  |  |  |  |
| 1       | Google-Bondy).                                                                         |                                                             |           |       |        |  |  |  |  |  |  |
| 2       | D.B.West: Introduction to G                                                            | raph Theory, Prentice-Hall of India/Pearson.                |           |       |        |  |  |  |  |  |  |
| 3       | J.A.Bondy and U.S.R.Murty                                                              | Graph Theory, Springer.                                     |           |       |        |  |  |  |  |  |  |
| 4       | R.Diestel: Graph Theory, Sp                                                            | ringer( low price edition).                                 |           |       |        |  |  |  |  |  |  |
| 5       | Agnarsson, Geir, and Rayn                                                              | nond Greenlaw, Graph Theory: Modeling, Applications, an     | d Al      | gorit | hms,   |  |  |  |  |  |  |
|         | Pearson.                                                                               |                                                             |           |       |        |  |  |  |  |  |  |
| 6       | R. Balakrishnan, K. Rangana                                                            | than, A textbook of Graph theory. Second edition. Springer. |           |       |        |  |  |  |  |  |  |
| 7       | Gary Chartrand, Ping, Zhan                                                             | g, Introduction to Graph Theory. Tata McGraw-Hill Publish   | ning (    | Com   | pany   |  |  |  |  |  |  |
| /       | Limited.                                                                               |                                                             |           |       |        |  |  |  |  |  |  |
|         | Cou                                                                                    | rse Outcomes (students will be able to)                     |           |       |        |  |  |  |  |  |  |
| CO1     | describe important classes of                                                          | problems in graph theory.                                   |           |       |        |  |  |  |  |  |  |
| CO2     | explain fundamental theorem                                                            | ns on trees, matchings, connectivity, colorings, plane and  |           |       |        |  |  |  |  |  |  |
| 0.02    | hamiltonian graphs.                                                                    |                                                             |           |       |        |  |  |  |  |  |  |
| CO3     | illustrate the basic properties                                                        | of trees and illustrate their applications.                 |           |       |        |  |  |  |  |  |  |
| CO4     | describe and apply some basic algorithms for graphs.                                   |                                                             |           |       |        |  |  |  |  |  |  |
| CO5     | apply graphs as a tool to mod                                                          | lel real-life problems.                                     |           |       |        |  |  |  |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs)                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
|     | PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CO1 | CO1         3         3         2         3         2         2         2         0         3         0         0         3                |  |  |  |  |  |  |  |  |  |  |  |  |  |

| CO2 | 3 | 3 | 3 | 3 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 1 | 2 | 2 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 3 |
| CO4 | 1 | 2 | 2 | 3 | 1 | 3 | 2 | 0 | 3 | 1 | 1 | 3 |
| CO5 | 2 | 2 | 2 | 3 | 1 | 3 | 3 | 0 | 3 | 2 | 1 | 3 |

| N   | Apping of Cou | rse Outcomes (O | COs) with Progr | amme Specific | Outcomes (PSC | s)   |
|-----|---------------|-----------------|-----------------|---------------|---------------|------|
|     | PSO1          | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 |               |                 |                 |               |               | 5    |
| CO2 |               |                 |                 |               |               |      |
| CO3 |               |                 |                 |               |               | 00   |
| CO4 |               |                 |                 |               |               |      |
| CO5 |               |                 |                 |               |               | 9    |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution

SUS

|          |                                                                               |                                                                                                                     | C          | redit | ts = 4 |
|----------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------|-------|--------|
|          | Course Code: MAT 2612                                                         | Course Title: Combinatorics                                                                                         | L          | Т     | Р      |
|          | Elective                                                                      | Total contact hours: 60                                                                                             | 4          | 0     | 0      |
|          |                                                                               |                                                                                                                     | . <u> </u> |       |        |
|          |                                                                               | List of Prerequisite Courses                                                                                        |            |       |        |
| NIL      |                                                                               | $\sim 0^{-1}$                                                                                                       |            |       |        |
|          |                                                                               |                                                                                                                     |            |       |        |
|          | List of C                                                                     | ourses where this course will be prerequisite                                                                       |            |       |        |
|          |                                                                               |                                                                                                                     |            |       |        |
|          | Description of relevance of                                                   | of this course in the M.Sc. Engineering Mathematics Prog                                                            | ram        |       |        |
| This co  | ourse will provide the necessary                                              | y mathematical foundation and exposure to problems related                                                          | to aj      | pplic | ations |
| of disc: | rete mathematics in different d                                               | omains.                                                                                                             |            |       |        |
|          | Course C                                                                      | ontents (Topics and subtopics)                                                                                      |            | Hou   | irs    |
| 1        | Sets, Multisets, Binomial Coe                                                 | efficients, and important identities                                                                                |            | 4     |        |
| 2        | Recurrences, Fibonacci numb                                                   | bers and others                                                                                                     |            | 3     |        |
| 3        | Permutations, cycles in permutations                                          | utations, Stirling numbers of both kinds                                                                            |            | 5     |        |
| 4        | Set Partitions: Exponential (<br>matrices                                     | Generating function, Dobinski's formula, orthogonality of                                                           |            | 4     |        |
| 5        | Integer Partitions: Euler's pentagonal Number theorem                         | identity, conjugate partitions, bijective proofs, Euler's                                                           |            | 4     |        |
| 6        | Generating functions, ordina<br>generating functions, exponen                 | ary and exponential, examples of OGFS, composition of ntial formula for EGFS.                                       |            | 5     |        |
| 7        | Graph Theory: Walks, paths,<br>trees and the Graham Pollak<br>Matching Theory | distances, Adjacency matrix of graphs, distance matrix of<br>Theorem, Counting Spanning trees, Matrix Tree theorem, |            | 20    | )      |
| 8        | Exploration of concepts in co                                                 | mbinatorics and graphs theory using Sagemath                                                                        |            | 15    | 5      |
|          |                                                                               | List of Textbooks/ Reference Books                                                                                  |            |       |        |
| 1        | Miklos Bona, Introduction to                                                  | Enumerative Combinatorics, McGraw-Hill.                                                                             |            |       |        |
| 2        | Miklos Bona, Walk through                                                     | Combinatorics, World Scientific.                                                                                    |            |       |        |
| 3        | Paul Zimmerman, Computati                                                     | onal Mathematics with SageMath (free online on sagemath.or                                                          | rg).       |       |        |
| 4        | M. Aigner, A Course in Enur                                                   | neration. Springer.                                                                                                 |            |       |        |

| 5   | C. Berge. Principles of Combinatorics. Academic Press.                                  |                                                      |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| 6   | J. M. Harris, J. L. Hirst, M. J. Mossinghoff, Combinatorics and Graph Theory, Springer. |                                                      |  |  |  |  |  |  |
| 7   | Istvan Mezo, Combinatorics and number theory of counting sequences, CRC Press.          |                                                      |  |  |  |  |  |  |
|     | <b>Course Outcomes (students will be able to)</b>                                       |                                                      |  |  |  |  |  |  |
| CO1 | understand fundamental mathematical objects such as sets, functions and                 |                                                      |  |  |  |  |  |  |
| COI | permutations.                                                                           |                                                      |  |  |  |  |  |  |
| CO2 | solve problems involving various counting principles.                                   | olve problems involving various counting principles. |  |  |  |  |  |  |
| CO3 | apply combinatorial ideas to practical problems.                                        |                                                      |  |  |  |  |  |  |
| CO4 | understand and use idea of modelling problems using Graph Theory.                       |                                                      |  |  |  |  |  |  |
| CO5 | solve problems in combinatorics and graph theory using SageMath.                        | 6                                                    |  |  |  |  |  |  |

|     |     | Mapp | oing of C | ourse O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs |      |      |
|-----|-----|------|-----------|---------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3       | PO4     | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 3   | 0    | 1         | 1       | 1      | 1       | 1        | 0      | 3       | 0        | 1    | 3    |
| CO2 | 3   | 1    | 1         | 1       | 0      | 3       | 1        | 1      | 3       | 2        | 0    | 3    |
| CO3 | 0   | 1    | 1         | 1       | 0      | 0       | 3        | 0      | 3       | 0.       | 0    | 3    |
| CO4 | 0   | 1    | 1         | 1       | 2      | 2       | 1        | 1      | 3       | 79       | 0    | 3    |
| CO5 | 0   | 3    | 3         | 3       | 2      | 2       | 1        | 0      | 3       | 2        | 1    | 3    |

 $\frown$ 

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

|     |                |                 |                 | . 0*          |               |      |
|-----|----------------|-----------------|-----------------|---------------|---------------|------|
| I   | Mapping of Cou | rse Outcomes (O | COs) with Progr | amme Specific | Outcomes (PSO | s)   |
|     | PSO1           | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1 |                |                 |                 |               |               |      |
| CO2 |                |                 |                 |               |               |      |
| CO3 |                |                 |                 |               |               |      |
| CO4 |                |                 |                 |               |               |      |
| CO5 |                |                 |                 |               |               |      |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

|        | Come Color MAT 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comment Tides Elsens del Madeurs d'un                      | С   | redit | s = 4  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----|-------|--------|
|        | Course Code: MAI 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Course little: Financial Mathematics                       | L   | Т     | Р      |
|        | Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total contact hours: 60                                    | 4   | 0     | 0      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |     |       |        |
|        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | List of Prerequisite Courses                               |     |       |        |
|        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |     |       |        |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |     |       |        |
|        | List of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ourses where this course will be prerequisite              |     |       |        |
| Advand | ed Mathematical Finance (MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T 2610)                                                    |     |       |        |
| Y      | Description of relevance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f this course in the M.Sc. Engineering Mathematics Progr   | ram |       |        |
| This c | ourse will provide a basic i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ntroduction to financial markets and illustrate applicatio | ns  | of s  | everal |
| mathen | natical models in financial mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kets.                                                      |     |       |        |
|        | Course Co | ontents (Topics and subtopics)                             |     | Hou   | irs    |
|        | The Time Value of Money: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | compound interest with fractional compounding, NPV, IRR,   |     |       |        |
| 1      | and Descartes's Rule of Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s, Annuity and amortization theory, The Dividend Discount  |     | 8     |        |
|        | Model, Valuation of Stocks,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Valuation of bonds                                         |     |       |        |
| 2      | Portfolio Theory: Markowi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tz portfolio model, Two-security portfolio, N-security     |     | 8     |        |
| 2      | portfolio, Investor utility, Div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rersification and the uniform Dirichlet distribution       | 0   |       |        |
| 3      | Capital Market Theory and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Portfolio Risk Measures: The Capital Market Line, The      |     | 12    | 2      |

|                                                   | CAPM Theorem, The Security Market Line, The Sharpe ratio, VaR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                                   | Modeling the Future Value of Risky Securities: Binomial trees, Continuous-time limit of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| 4                                                 | the CRR tree, Stochastic process: Brownian motion and geometric Brownian motion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                      |
|                                                   | Itô's formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                                                   | Forwards, Futures, and Options: No arbitrage and the Law of One Price, Forwards,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| 5                                                 | Futures, Option type, style, and payoff, Put-Call Parity for European options, Put-Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                     |
|                                                   | Parity bounds for American options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
|                                                   | The Black-Scholes-Merton Model: Black-Scholes-Merton (BSM) formula, Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| 6                                                 | differential equation approach to the BSM formula: the BSM Partial differential equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                     |
| 0                                                 | Continuous-time, risk-neutral approach to the BSM formula, Binomial-tree approach to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                     |
|                                                   | the BSM formula, Delta hedging, Implied volatility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02                     |
|                                                   | List of Textbooks/ Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 K                    |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 1                                                 | S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 1                                                 | <ul><li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li><li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ari, The return        |
| 1 2                                               | <ul><li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li><li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga Generating Models in Global Finance, Pergamon Press.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ari, The return        |
| 1<br>2<br>3                                       | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle River</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ari, The return        |
| 1<br>2<br>3<br>4                                  | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle Rive<br/>S. M. Ross, Applied Probability: Models with Optimization Applications, Holdenday.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | ari, The return<br>er. |
| 1<br>2<br>3<br>4<br>5                             | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle Rive<br/>S. M. Ross, Applied Probability: Models with Optimization Applications, Holdenday.</li> <li>S. Roman, Introduction to the Mathematics of Finance Springer, New York.</li> </ul>                                                                                                                                                                                                                                                                                                                                         | ari, The return<br>er. |
| 1<br>2<br>3<br>4<br>5                             | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle Rive<br/>S. M. Ross, Applied Probability: Models with Optimization Applications, Holdenday.</li> <li>S. Roman, Introduction to the Mathematics of Finance Springer, New York.</li> </ul>                                                                                                                                                                                                                                                                                                                                         | ari, The return<br>er. |
| 1<br>2<br>3<br>4<br>5<br>CO1                      | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle Rive<br/>S. M. Ross, Applied Probability: Models with Optimization Applications, Holdenday.</li> <li>S. Roman, Introduction to the Mathematics of Finance Springer, New York.</li> <li>Course Outcomes (students will be able to)</li> <li>Understand basic idea of different financial instruments</li> </ul>                                                                                                                                                                                                                   | er.                    |
| 1<br>2<br>3<br>4<br>5<br>CO1<br>CO2               | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle Rive<br/>S. M. Ross, Applied Probability: Models with Optimization Applications, Holdenday.</li> <li>S. Roman, Introduction to the Mathematics of Finance Springer, New York.<br/>Course Outcomes (students will be able to)</li> <li>Understand basic idea of different financial instruments</li> <li>Understand various concepts related to portfolio theory.</li> </ul>                                                                                                                                                      | ari, The return<br>er. |
| 1<br>2<br>3<br>4<br>5<br>CO1<br>CO2<br>CO3        | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle River<br/>S. M. Ross, Applied Probability: Models with Optimization Applications, Holdenday.</li> <li>S. Roman, Introduction to the Mathematics of Finance Springer, New York.<br/>Course Outcomes (students will be able to)</li> <li>Understand basic idea of different financial instruments</li> <li>Understand various concepts related to portfolio theory.</li> <li>Model financial instruments using stochastic processes and Ito formula</li> </ul>                                                                     | er.                    |
| 1<br>2<br>3<br>4<br>5<br>CO1<br>CO2<br>CO3<br>CO4 | <ul> <li>S.M. Ross, An introduction to Mathematical Finance, Cambridge University Press.</li> <li>A. J. Prakash, R. M. Bear, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga<br/>Generating Models in Global Finance, Pergamon Press.</li> <li>J. Hull, Options, Futures, and Other Derivatives, Pearson Prentice Hall, Upper Saddle Rive<br/>S. M. Ross, Applied Probability: Models with Optimization Applications, Holdenday.</li> <li>S. Roman, Introduction to the Mathematics of Finance Springer, New York.<br/>Course Outcomes (students will be able to)</li> <li>Understand basic idea of different financial instruments</li> <li>Understand various concepts related to portfolio theory.</li> <li>Model financial instruments using stochastic processes and Ito formula</li> <li>Apply probability concepts for pricing options, future etc.</li> </ul> | er.                    |

|     |     | Mapp | ing of C | Course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|----------|----------|--------|---------|----------|--------|---------|----------|------|------|
|     | PO1 | PO2  | PO3      | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 0   | 2    | 1        | 1        | 1      | 1       | 1        | 0      | 3       | 0        | 0    | 3    |
| CO2 | 0   | 2    | 1        | 2        | 0      | 0       | 2        | 0      | 3       | 0        | 0    | 3    |
| CO3 | 1   | 3    | 2        | 1        | 1      | 0       | 2        | 0      | 3       | 0        | 0    | 3    |
| CO4 | 1   | 3    | 1        | 2        | 2      | 1       | 1        | 0      | 3       | 1        | 2    | 3    |
| CO5 | 1   | 2    | 2        | $\sim_2$ | 2      | 2       | 3        | 0      | 3       | 2        | 2    | 3    |

| Mapping of Cour | rse Outcomes (O | COs) with Progr | amme Specific | Outcomes (PSO | s)   |
|-----------------|-----------------|-----------------|---------------|---------------|------|
| PSO1            | PSO2            | PSO3            | PSO4          | PSO5          | PSO6 |
| CO1             |                 |                 |               |               |      |
| CO2             |                 |                 |               |               |      |
| CO3             |                 |                 |               |               |      |
| CO4             |                 |                 |               |               |      |
| CO5             |                 |                 |               |               |      |

|       | Course Codes MAT 2602                                    | Course Title, Number Theory                                            | C      | redit | ts = 4   |
|-------|----------------------------------------------------------|------------------------------------------------------------------------|--------|-------|----------|
|       | Course Coue: MAI 2005                                    | Course The: Number Theory                                              | L      | Т     | Р        |
|       | Elective                                                 | Total contact hours: 60                                                | 4      | 0     | 0        |
|       |                                                          |                                                                        |        |       |          |
|       |                                                          | List of Prerequisite Courses                                           | -      |       |          |
| Moder | n Algebra (MAT 2231)                                     |                                                                        |        |       |          |
|       |                                                          |                                                                        |        |       |          |
|       | List of (                                                | Courses where this course will be prerequisite                         |        |       |          |
|       |                                                          |                                                                        |        |       |          |
|       | <b>Description of relevance</b>                          | of this course in the M.Sc. Engineering Mathematics Prog               | ram    | (     | <u>h</u> |
|       |                                                          |                                                                        |        | Д,    |          |
|       | Course C                                                 | Contents (Topics and subtopics)                                        | $\sim$ | Ηοι   | ırs      |
| 1     | Divisibility: Division Algori<br>Numbers, Fermat Numbers | thms, Prime and Composite Numbers, Fibonacci and Lucas                 |        | 8     | 1        |
| 2     | Greatest Common Divisor:                                 | GCD, Euclidean Algorithm, Fundamental Theorem of                       |        | 0     |          |
| 2     | Arithmetic, LCM, Linear Die                              | ophantine Equations                                                    |        | 8     |          |
|       | Congruences: Congruence r                                | nodulo n, Linear Congruences, Divisibility Tests, Chinese              |        |       |          |
| 3     | Remainder Theorem and its                                | applications, Wilson's, Fermat Little and Euler's Theorems             |        | 12    | 2        |
|       | with Applications                                        |                                                                        |        |       |          |
| 4     | Multiplicative Functions:                                | Euler-phi function, Tau and Sigma Functions, Perfect                   |        | 8     |          |
| -     | Numbers, Möbius Function,                                | Mersenne Primes                                                        |        | 0     |          |
| 5     | Primitive Roots and Indices:                             | Order of positive integers, Primality tests, Primitive Roots           |        | 8     |          |
|       | of Primes, Algebra of Indices                            | s C Y                                                                  |        | Ű     |          |
| 6     | Quadratic Congruence: Quad                               | Iratic Residues, Legendre Symbols, Quadratic Reciprocity               |        | 8     | 1        |
| 7     | Continued Fractions: Finite of                           | continued Fractions, Infinite continued Fractions                      |        | 4     |          |
| 8     | Nonlinear Diophantine Equa                               | tions                                                                  |        | 4     |          |
|       |                                                          | List of Textbooks/ Reference Books                                     |        |       |          |
| 1     | Thomas Koshy, Elementary                                 | Number Theory with applications, Academic Press, 2 <sup>nd</sup> Ed.   |        |       |          |
| 2     | Kenneth H. Rosen, Elementa                               | ry Number Theory and Its Applications, Addison Wesley, 5 <sup>th</sup> | Ed.    |       |          |
| 3     | G.A. Jones and J.M. Jones, E                             | Elementary Number Theory, Springer                                     |        |       |          |
| 4     | Niven and Zuckerman, An ir                               | troduction to the Theory of Numbers, Wiley                             |        |       |          |
|       | Cou                                                      | rse Outcomes (students will be able to)                                |        |       |          |
| CO1   | define and interpret the conc                            | cepts of divisibility, congruence, greatest common divisor,            |        |       |          |
|       | prime, and prime factorization                           | n.                                                                     |        |       |          |
| CO2   | apply the Law of Quadratic                               | c Reciprocity and other methods to classify numbers as                 |        |       |          |
|       | primitive roots, quadratic res                           | idues, and quadratic non-residues.                                     |        |       |          |
| CO3   | collect and use numerical dat                            | ta to form conjectures about the integers.                             |        |       |          |
| CO4   | produce rigorous arguments                               | (proofs) cantered on the material of number theory                     |        |       |          |
| CO5   | apply concepts in number the                             | eory to solve real life problems.                                      |        |       |          |
| A     | OX                                                       |                                                                        |        |       |          |

| K   |     | Mapp | ing of C | course O | utcome | s (COs) | with Pro | ogramm | e Outco | mes (POs | )    |      |
|-----|-----|------|----------|----------|--------|---------|----------|--------|---------|----------|------|------|
| Y   | PO1 | PO2  | PO3      | PO4      | PO5    | PO6     | PO7      | PO8    | PO9     | PO10     | PO11 | PO12 |
| CO1 | 3   | 2    | 1        | 0        | 1      | 1       | 1        | 0      | 3       | 1        | 0    | 3    |
| CO2 | 3   | 2    | 1        | 2        | 0      | 0       | 2        | 0      | 3       | 1        | 0    | 3    |
| CO3 | 3   | 3    | 2        | 1        | 1      | 0       | 2        | 0      | 3       | 1        | 0    | 3    |
| CO4 | 2   | 3    | 1        | 2        | 2      | 1       | 1        | 1      | 3       | 1        | 0    | 3    |
| CO5 | 2   | 2    | 2        | 2        | 2      | 2       | 3        | 2      | 3       | 2        | 1    | 3    |

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)

| C01       Image: C03       Image: C04       Image: C04       Image: C04         C04       Image: C04       Image: C04       Image: C04       Image: C04         C04       Image: C04       Image: C04       Image: C04       Image: C04         C04       Image: C04       Image: C04       Image: C04       Image: C04         C04       Image: C04       Image: C04       Image: C04       Image: C04         C05       Image: C04       Image: C04       Image: C04       Image: C04         C05       Image: C04       Image: C04       Image: C04       Image: C04         Image: C04       Image: C04       Image: C04       Image: C04       Image: C04         Image: C04       Image: C04       Image: C04       Image: C04       Image: C04         Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04         Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Image: C04       Im | CO1       Image: Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution         3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution; 2-Moderate Contribution; 2-Mo |                      | PSO1             | PSO2             | PSO3              | PSO4             | PSO5            | PSO6 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|------------------|-------------------|------------------|-----------------|------|
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3       Image: CO3         Image: CO3       Image: CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO1                  |                  |                  |                   |                  |                 |      |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO2                  |                  |                  |                   |                  |                 |      |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO3                  |                  |                  |                   |                  |                 |      |
| 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO4                  |                  |                  |                   |                  |                 |      |
| 3-Strog Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO5                  | ~                |                  |                   | ~                |                 |      |
| Appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>- CO5</u><br>3-St | rong Contributio | on; 2-Moderate C | Contribution; 1-L | ow Contribution, | 0 – No contribu | tion |
| 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 5                |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  |                  |                   |                  |                 |      |
| Ϋ́,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or                   |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PPr                  |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2PPr                 |                  |                  |                   |                  |                 |      |

|     | Course Code: MAT 2605                                                                                                                                                         | Course Title: Groups and Symmetries                       | C   | redit | is = 4   |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----|-------|----------|--|--|--|
|     |                                                                                                                                                                               | Course Trice. Groups and Symmetries                       | L   | Т     | Р        |  |  |  |
|     | Elective                                                                                                                                                                      | Total contact hours: 60                                   | 4   | 0     | 0        |  |  |  |
|     |                                                                                                                                                                               |                                                           |     |       |          |  |  |  |
|     |                                                                                                                                                                               | List of Prerequisite Courses                              |     |       |          |  |  |  |
|     |                                                                                                                                                                               |                                                           |     |       |          |  |  |  |
|     | List of C                                                                                                                                                                     | Courses where this course will be prerequisite            | 1   |       |          |  |  |  |
|     |                                                                                                                                                                               |                                                           |     |       |          |  |  |  |
|     | <b>Description of relevance</b>                                                                                                                                               | of this course in the M.Sc. Engineering Mathematics Prog  | ram |       |          |  |  |  |
|     | ~ ~ ~                                                                                                                                                                         |                                                           | 1   |       | 5        |  |  |  |
|     | Course C                                                                                                                                                                      | Contents (Topics and subtopics)                           | 6   | Ηοι   | irs      |  |  |  |
| 1   | 1 Symmetries of triangles, squares and polygons. Notions of symmetries in the Euclidean<br>Plane Types and examples of Rigid Motions of the Plane Permutations and bijections |                                                           |     |       |          |  |  |  |
|     | Plane. Types and examples of Rigid Motions of the Plane. Permutations and bijections                                                                                          |                                                           |     |       |          |  |  |  |
| 2   | Introduction to Groups, sut                                                                                                                                                   |                                                           | 10  | )     |          |  |  |  |
|     | Group Actions, examples of group actions, orbits and stabilisers. Actions of Permutation                                                                                      |                                                           |     |       |          |  |  |  |
| 3   | 3 groups Symmetric and Dibedral groups on Euclidean space                                                                                                                     |                                                           |     |       |          |  |  |  |
| 4   | 4 Metrix groups eating on the plane, classification of Euclidean Isometries                                                                                                   |                                                           |     |       |          |  |  |  |
| -   | Wallpaper Patterns, Frieze n                                                                                                                                                  | atterns and Frieze groups                                 |     | 1.    | <u>,</u> |  |  |  |
| 5   | Symmetry and Art: work of l                                                                                                                                                   | M. C. Escher Islamic art. African Weavings Indian Pottery |     | 5     | ,        |  |  |  |
| 7   | Explorations of concepts in a                                                                                                                                                 | roup and symmetries using SageMath                        |     | 5     |          |  |  |  |
| ,   | Explorations of concepts in g                                                                                                                                                 | List of Textbooks/ Reference Books                        |     |       |          |  |  |  |
| 1   | M. A. Armstrong, Groups an                                                                                                                                                    | d Symmetry, Springer UTM                                  |     |       |          |  |  |  |
| 2   | David Farmer, Groups and S                                                                                                                                                    | vmmetry. University Press                                 |     |       |          |  |  |  |
| 3   | Ajit Kumar and Vikas Bist, C                                                                                                                                                  | Group Theory: An Expedition with SageMath, Narosa         |     |       |          |  |  |  |
| 4   | J. A. Gallian, Contemporary                                                                                                                                                   | Abstract Algebra, Narosa                                  |     |       |          |  |  |  |
| 5   | Michael Artin, Algebra, PHI                                                                                                                                                   |                                                           |     |       |          |  |  |  |
|     | Cou                                                                                                                                                                           | rse Outcomes (students will be able to)                   |     |       |          |  |  |  |
| CO1 | understand the definition of g                                                                                                                                                | groups and connections with usual notions of symmetry.    |     |       |          |  |  |  |
| CO2 | understand the idea of Group                                                                                                                                                  | Actions.                                                  |     |       |          |  |  |  |
| CO3 | understand examples of Matr                                                                                                                                                   | ix Groups and connections to Linear Algebra               |     |       |          |  |  |  |
| CO4 | understand applications to ge                                                                                                                                                 | enerating patterns and tilings                            |     |       |          |  |  |  |
| CO5 | Apply SageMath in solving p                                                                                                                                                   | problems using Group theory.                              |     |       |          |  |  |  |
|     | 1                                                                                                                                                                             |                                                           |     |       |          |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3                                                              | 2   | 1   | 0   | 1   | 1   | 1   | 0   | 3   | 1    | 0    | 3    |
| CO2 | 3                                                              | 2   | 1   | 2   | 1   | 0   | 2   | 0   | 3   | 1    | 0    | 3    |
| CO3 | 3                                                              | 3   | 2   | 1   | 1   | 0   | 3   | 0   | 3   | 1    | 0    | 3    |
| CO4 | 2                                                              | 3   | 2   | 2   | 2   | 1   | 1   | 1   | 3   | 1    | 0    | 3    |
| CO5 | 2                                                              | 2   | 2   | 2   | 2   | 2   | 3   | 2   | 3   | 2    | 1    | 3    |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| PSO1 PSO2 PSO3 PSO4 PSO5 PSO6                                            |  |  |  |  |  |  |  |  |  |  |
| CO1                                                                      |  |  |  |  |  |  |  |  |  |  |
| CO2                                                                      |  |  |  |  |  |  |  |  |  |  |
| CO3                                                                      |  |  |  |  |  |  |  |  |  |  |
| CO4                                                                      |  |  |  |  |  |  |  |  |  |  |

| CO5   |                                                                                         |  |  |  |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 3-Sti | 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution |  |  |  |  |  |  |  |  |  |

Approve by Academic Council on Ane, Max 2023

|        | Course Code: MAT 2607                                                                                  | Course Title: Matrix Computations                          | C            | redit    | s = 4 |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------|----------|-------|--|--|--|--|--|--|
|        | Course Code: MA1 2007     Course Title: Matrix Computations       Elective     Total contact hours: 60 |                                                            |              |          | Р     |  |  |  |  |  |  |
|        | Elective                                                                                               | Total contact hours: 60                                    | 4            | 0        | 0     |  |  |  |  |  |  |
|        |                                                                                                        |                                                            |              |          |       |  |  |  |  |  |  |
|        |                                                                                                        | List of Prerequisite Courses                               |              |          |       |  |  |  |  |  |  |
| Applie | d Linear Algebra (MAT 2201)                                                                            |                                                            |              |          |       |  |  |  |  |  |  |
|        |                                                                                                        |                                                            |              |          |       |  |  |  |  |  |  |
|        | List of C                                                                                              | ourses where this course will be prerequisite              | <del>,</del> | _        |       |  |  |  |  |  |  |
|        |                                                                                                        |                                                            |              | 0        | 2     |  |  |  |  |  |  |
|        | Description of relevance o                                                                             | f this course in the M.Sc. Engineering Mathematics Prog    | ram          | <u>S</u> | )<br> |  |  |  |  |  |  |
|        |                                                                                                        | (                                                          |              |          |       |  |  |  |  |  |  |
|        | Course Co                                                                                              | ontents (Topics and subtopics)                             | <u> </u>     | Hou      | irs   |  |  |  |  |  |  |
| 1      | Review of vector spaces, linear transformation and inner product spaces                                |                                                            |              |          |       |  |  |  |  |  |  |
| 2      | Matrix Norms, Singular Value decomposition, Matrix limit and Markov chain and                          |                                                            |              |          |       |  |  |  |  |  |  |
| 2      | applications                                                                                           |                                                            |              |          |       |  |  |  |  |  |  |
| 3      | Sensitivity of linear Systems,                                                                         |                                                            | <u> </u>     |          |       |  |  |  |  |  |  |
| 4      | Least Square Problems and various methods to solve                                                     |                                                            |              |          |       |  |  |  |  |  |  |
| 5      | Eigenvalue Problems: Unsym                                                                             | metric and symmetric eigenvalue problems                   |              | 8        |       |  |  |  |  |  |  |
| 6      | Positive Matrices and its ap                                                                           | plications, square root of positive semidefinite matrices, |              | 8        |       |  |  |  |  |  |  |
| 7      | Schur product theorem.                                                                                 | Financia                                                   | –            |          |       |  |  |  |  |  |  |
| /      | Location and Perturbation of                                                                           | Eigenvalues                                                | –            | 0        |       |  |  |  |  |  |  |
| 8      | decompositions vectorization                                                                           | and matricization of tensors with applications             |              | 12       | 2     |  |  |  |  |  |  |
|        | decompositions, vectorization                                                                          | List of Teythooks/ Reference Books                         |              |          |       |  |  |  |  |  |  |
| 1      | Llovd N Trefethen and David                                                                            | Bau Numerical Linear Algebra SIAM                          |              |          |       |  |  |  |  |  |  |
| 2      | Gene H. Golub and Charles va                                                                           | n Loan Matrix Computations Johns Hopkins University Pres   | 88           |          |       |  |  |  |  |  |  |
| 3      | D.S. Watkins, Fundamentals of                                                                          | f Matrix Computations, Wiley.                              |              |          |       |  |  |  |  |  |  |
| 4      | J. Demmel, Applied Numerica                                                                            | l Linear Algebra, SIAM.                                    |              |          |       |  |  |  |  |  |  |
|        | Cour                                                                                                   | se Outcomes (students will be able to)                     |              |          |       |  |  |  |  |  |  |
| CO1    | understand basic concepts in                                                                           | natrix computations.                                       | <u> </u>     |          |       |  |  |  |  |  |  |
| CO2    | standard matrix norms and its                                                                          | applications.                                              | <u> </u>     |          |       |  |  |  |  |  |  |
| CO3    | apply least square methods to                                                                          | real life mathematical problems.                           | -            |          |       |  |  |  |  |  |  |
| CO4    | understand eigenvalue problem                                                                          | ms and its applications.                                   |              |          |       |  |  |  |  |  |  |
| CO5    | understand tensor data and its                                                                         | applications to large scale data.                          |              |          |       |  |  |  |  |  |  |
|        | 10                                                                                                     |                                                            |              |          |       |  |  |  |  |  |  |
|        |                                                                                                        |                                                            |              |          |       |  |  |  |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |
| CO1 | 3                                                              | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 3   | 1    | 0    | 3    |  |
| CO2 | 3                                                              | 2   | 1   | 1   | 0   | 0   | 2   | 1   | 3   | 1    | 0    | 3    |  |
| CÓ3 | 3                                                              | 3   | 2   | 1   | 1   | 0   | 2   | 0   | 3   | 1    | 0    | 3    |  |
| CO4 | 1                                                              | 3   | 1   | 2   | 2   | 1   | 1   | 1   | 3   | 1    | 1    | 3    |  |
| CO5 | 2                                                              | 2   | 2   | 2   | 2   | 2   | 3   | 3   | 3   | 2    | 1    | 3    |  |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |                               |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|--|
|                                                                          | PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 |  |  |  |  |  |  |  |  |
| CO1                                                                      |                               |  |  |  |  |  |  |  |  |

| CO2 |  |  |  |
|-----|--|--|--|
| CO3 |  |  |  |
| CO4 |  |  |  |
| CO5 |  |  |  |

Approve by Academic Council on Ane, or 2023

|          |                                                                                 |                                                            | Cr       | edits | = 4 |  |  |
|----------|---------------------------------------------------------------------------------|------------------------------------------------------------|----------|-------|-----|--|--|
|          | Course Code: MAT 2621                                                           | Course Title: Cryptography                                 | L        | Т     | Р   |  |  |
|          | Elective                                                                        | Total contact hours: 60                                    | 4        | 0     | 0   |  |  |
|          |                                                                                 |                                                            |          |       |     |  |  |
|          |                                                                                 | List of Prerequisite Courses                               |          |       |     |  |  |
| Moder    | n Algebra (MAT 2231)                                                            |                                                            |          |       |     |  |  |
|          |                                                                                 |                                                            |          |       |     |  |  |
|          | List of (                                                                       | Courses where this course will be prerequisite             | 1        |       |     |  |  |
|          |                                                                                 |                                                            |          |       |     |  |  |
|          | <b>Description of relevance</b>                                                 | of this course in the M.Sc. Engineering Mathematics Prog   | ram      |       |     |  |  |
|          | ~ ~ ~                                                                           | (                                                          |          |       |     |  |  |
|          | Course C                                                                        | contents (Topics and subtopics)                            | <b>V</b> | Hour  | s   |  |  |
|          | Need for cryptography: On                                                       | line transactions, Perfect secrecy, eavesdropping attacks, |          |       |     |  |  |
|          | ciphertext attacks, Block cipl                                                  | her codes, Hash functions.                                 |          |       |     |  |  |
| 1        |                                                                                 |                                                            |          | 8     |     |  |  |
|          | Errent's theorem and Eulor                                                      | er theory, Euclidean algorithm, Euler's tollent function,  |          |       |     |  |  |
|          | roots and discrete logarithms                                                   | Quadratic residues Legendre and Jacobi symbols             |          |       |     |  |  |
|          | Private key cryntography                                                        |                                                            |          |       |     |  |  |
| 2        | linear cryptanalysis Adva                                                       | nced encryption standards Collision resistant hashing      |          | 10    |     |  |  |
| 2        | Authenticated encryption: se                                                    | curity against active attacks.                             |          | 10    |     |  |  |
|          | RSA public key cryptosys                                                        | tems: RSA system, primality testing, survey of factoring   |          |       |     |  |  |
| 3        | 3 algorithms. Other public key cryptosystems: El Gamal public key cryptosystem, |                                                            |          |       |     |  |  |
|          | algorithms for discrete log pr                                                  | oblem.                                                     |          |       |     |  |  |
| 4        | Block ciphers, Stream cipher                                                    | s and Hash Functions                                       |          | 5     |     |  |  |
|          | Digital Signatures Schem                                                        | es: Definition of digital signatures, RSA based digital    |          |       |     |  |  |
| 5        | signatures, Signatures from                                                     | the Discrete-Logarithm Problem, Certificates and Public-   |          | 12    |     |  |  |
|          | Key Infrastructures                                                             |                                                            |          |       |     |  |  |
|          | Mathematical Software: Sag                                                      | eMath can be used to explore concepts in Cryptography.     |          |       |     |  |  |
| 6        | Students may be encourage                                                       | ed to develop Sage subroutine to solve problems in         |          | 15    |     |  |  |
|          | Cryptography.                                                                   |                                                            |          |       |     |  |  |
|          |                                                                                 | List of Textbooks/ Reference Books                         |          |       |     |  |  |
| 1        | N. Koblitz, A Course in Nun                                                     | iber Theory and Cryptography, Springer                     | CDC      |       |     |  |  |
| 2        | A. Menezes, P. C. Van Oorso                                                     | chot and S. A. Vanstone, Handbook of Applied Cryptography, | , CRC    | Pres  | ,S  |  |  |
| 3        | D. Stinson, Cryptography: 11                                                    | heory and Practice, CRC Press                              |          |       |     |  |  |
| 4        | J. Katz and Y. Lindell, Introc                                                  | Suction to Modern Cryptography, CRC Press                  |          |       |     |  |  |
| 5        | Alasdoir MaAndrow Introdu                                                       | cryptography, CRC Press                                    |          |       |     |  |  |
| 0        | Alasdair McAndrew, Introdu                                                      | ction to Cryptography with Open-Source Software, CKC Pres  | 58.      |       |     |  |  |
| COL      | understand various concents                                                     | in gruptography tochniques                                 |          |       |     |  |  |
| $CO^{1}$ | understand various socurity s                                                   | nn cryptography techniques.                                |          |       |     |  |  |
| CO2      | annly various public toy or                                                     | approximations.                                            |          |       |     |  |  |
| CO4      | implement Hashing and Digi                                                      | tal Signature techniques                                   |          |       |     |  |  |
| C05      | implement cryptography algo                                                     | prithms SaveMath and create models                         |          |       |     |  |  |
| 005      | implement eryptography algo                                                     | sittining sugeritaan and ereate models.                    |          |       |     |  |  |

| Mapping of Course Outcomes (COs) with Programme Outcomes (POs)                                                                             |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12 |   |   |   |   |   |   |   |   |   |   |   |   |
| CO1                                                                                                                                        | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 3 | 1 | 1 | 3 |
| CO2                                                                                                                                        | 3 | 1 | 1 | 1 | 0 | 3 | 1 | 1 | 3 | 1 | 0 | 3 |

| CO3 | 1 | 1 | 1 | 1 | 0 | 1 | 3 | 1 | 3 | 0 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4 | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 0 | 3 | 0 | 0 | 3 |
| CO5 | 1 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 3 | 1 | 1 | 3 |

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |                       |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|-----------------------|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6                  |  |  |  |  |  |
| CO1 |                                                                          |      |      |      |      |                       |  |  |  |  |  |
| CO2 |                                                                          |      |      |      |      | 0                     |  |  |  |  |  |
| CO3 |                                                                          |      |      |      |      | 02                    |  |  |  |  |  |
| CO4 |                                                                          |      |      |      |      |                       |  |  |  |  |  |
| CO5 |                                                                          |      |      |      |      | $\square \rightarrow$ |  |  |  |  |  |

|         |                                                                                    | 60                                                        |            |       |       |  |  |  |
|---------|------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|-------|-------|--|--|--|
|         |                                                                                    |                                                           | <b>C</b> ) | redit | s = 4 |  |  |  |
|         | Course Code: MAT 2608                                                              | Course Title: Topology                                    | L          | Т     | Р     |  |  |  |
|         | Elective                                                                           | Total contact hours: 60                                   | 4          | 0     | 0     |  |  |  |
|         | I                                                                                  | <u> </u>                                                  |            |       |       |  |  |  |
|         |                                                                                    | List of Prerequisite Courses                              |            |       |       |  |  |  |
| Real ar | nd Complex Analysis (MAT 22                                                        | 230)                                                      |            |       |       |  |  |  |
|         |                                                                                    |                                                           |            |       |       |  |  |  |
|         | List of C                                                                          | Courses where this course will be prerequisite            |            |       |       |  |  |  |
|         |                                                                                    |                                                           |            |       |       |  |  |  |
|         | Description of relevance                                                           | of this course in the M.Sc. Engineering Mathematics Progr | ram        |       |       |  |  |  |
|         |                                                                                    |                                                           |            |       |       |  |  |  |
|         | Course C                                                                           | ontents (Topics and subtopics)                            |            | Hou   | irs   |  |  |  |
| 1       | Cartesian Products, Finite Sets, Countable and Uncountable Sets, Infinite Sets and |                                                           |            |       |       |  |  |  |
| 1       | Axiom of Choice, Well Ordered Sets.                                                |                                                           |            |       |       |  |  |  |
| 2       | Topological Spaces: Basis f                                                        | 8                                                         |            |       |       |  |  |  |
| 2       | topology                                                                           |                                                           | 0          |       |       |  |  |  |
| 3       | Closed and open sets, Limit                                                        | Points, Continuity, Metric Topology and Quotient Topology | 12         |       | 2     |  |  |  |
| 4       | Connectedness: Connected s                                                         | paces, Connected, Subspaces of Real Line, Components and  |            | 8     |       |  |  |  |
| -       | Local Connectedness, simply                                                        | / connectedness                                           |            | 0     |       |  |  |  |
| 5       | Compactness: Compact spa                                                           | ces, Compact Subspaces of the Real Line, Limit point      | Q          |       |       |  |  |  |
| 5       | compactness, Local Compac                                                          | tness                                                     |            | 0     |       |  |  |  |
| 6       | Countability Axioms, Separ                                                         | ation axioms: Normal Spaces, Urysohn's Lemma (without     | ĺ          | 8     |       |  |  |  |
|         | proof), Titetz Extension The                                                       | orem, Metrization Theorem, Tychonoff's Theorem            |            | 0     |       |  |  |  |
| 7       | One-point Compactification                                                         | n, Complete metric spaces and function spaces,            | ĺ          | 8     |       |  |  |  |
| · y     | Characterization of compact                                                        | metric spaces, equicontinuity, Ascoli-Arzela Theorem      | <u> </u>   | -     |       |  |  |  |
| 8       | Baire's Category Theorem                                                           |                                                           |            | 4     |       |  |  |  |
|         | If time permits, an introducti                                                     | on to Fundamental Groups may be covered                   |            |       |       |  |  |  |
|         |                                                                                    | List of Textbooks/ Reference Books                        |            |       |       |  |  |  |
| 1       | J. R. Munkres, Topology, 2n                                                        | d Edition, Pearson Education (India).                     |            |       |       |  |  |  |
| 2       | M. A. Armstrong, Basic Top                                                         | ology, Springer (India).                                  |            |       |       |  |  |  |
| 3       | Stefan Waldman, Topology:                                                          | An introduction, Springer.                                |            |       |       |  |  |  |
| 4       | G. F. Simmons, Introduction                                                        | to Topology and Modern Analysis, McGraw-Hill.             |            |       |       |  |  |  |
| 5       | S. Kumaresan, Topology of                                                          | Metric Spaces, 2nd Ed., Narosa Publishing House.          |            |       |       |  |  |  |

|     | <b>Course Outcomes (students will be able to)</b>                                     |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1 | understand different topological spaces with metric spaces as special cases.          |  |  |  |  |  |  |  |
| CO2 | identify and learns basic notions of continuity, connectedness, and compactness in    |  |  |  |  |  |  |  |
| 02  | arbitrary topological spaces.                                                         |  |  |  |  |  |  |  |
| CO3 | characterise compact spaces in arbitrary topological spaces.                          |  |  |  |  |  |  |  |
| CO4 | identify Hausdorff, regular and normal spaces.                                        |  |  |  |  |  |  |  |
| CO5 | prove an analogy of Bolzano Weirstrass theorem (Arzela Ascolis) theorem for functions |  |  |  |  |  |  |  |
|     | in the space of continuous functions.                                                 |  |  |  |  |  |  |  |

|     |                                                                |     |     |     |     |     |     |     |     |      |      | Ch.  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3                                                              | 1   | 1   | 1   | 3   | 1   | 1   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 3                                                              | 2   | 0   | 1   | 2   | 0   | 1   | 0   | 3   | 0    | 0    | 3    |
| CO3 | 3                                                              | 0   | 1   | 1   | 2   | 0   | 1   | 1   | 3   | 0    | 0    | 3    |
| CO4 | 3                                                              | 1   | 0   | 1   | 1   | 1   | 1   | 0   | 3   | 2    | 0    | 3    |
| CO5 | 3                                                              | 2   | 0   | 1   | 2   | 1   | 1   | 0   | 3   | 2    | 0    | 3    |

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |  |
| CO1 |                                                                          |      |      | CY   |      |      |  |  |  |  |  |  |  |
| CO2 |                                                                          |      |      |      |      |      |  |  |  |  |  |  |  |
| CO3 |                                                                          |      |      |      |      |      |  |  |  |  |  |  |  |
| CO4 |                                                                          |      |      |      |      |      |  |  |  |  |  |  |  |
| CO5 |                                                                          |      |      |      |      |      |  |  |  |  |  |  |  |

|                                                                                                | Course Code: MAT 2609                                                                  | Course Title: Stochastic Process                               | C     | redi   | ts = 4   |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|-------|--------|----------|--|--|--|
|                                                                                                | Course coue. Mill 2007                                                                 | Course Thie. Stochastic Trocess                                | L     | Т      | Р        |  |  |  |
|                                                                                                | Elective                                                                               | Total contact hours: 60                                        | 4     | 0      | 0        |  |  |  |
|                                                                                                |                                                                                        | List of Processicite Courses                                   |       |        |          |  |  |  |
| Statisti                                                                                       | cal Computing (MAT 2226) I                                                             | List of Prerequisite Courses                                   |       |        |          |  |  |  |
| Statisti                                                                                       | List of (                                                                              | Courses where this course will be prerequisite                 |       |        |          |  |  |  |
| NII                                                                                            |                                                                                        | courses where this course will be prerequisite                 |       |        |          |  |  |  |
|                                                                                                | Description of relevance                                                               | of this course in the M.Sc. Engineering Mathematics Prog       | ram   |        |          |  |  |  |
| This course deals with various real-life application of probability theory in biology, medicin |                                                                                        |                                                                |       |        |          |  |  |  |
| engine                                                                                         | ering. Several methods taught                                                          | in Mathematics and Statistics courses in the previous semester | ers w | vill b | e used   |  |  |  |
| in deal                                                                                        | ing with problems and case stu                                                         | idies in this course.                                          |       |        |          |  |  |  |
|                                                                                                | Course C                                                                               | Contents (Topics and subtopics)                                |       | Ho     | urs      |  |  |  |
| 1                                                                                              | Discrete-Time Markov Mod                                                               | els: Discrete-Time Markov Chains, Transient Distributions,     | )     | 1.     | 0        |  |  |  |
| 1                                                                                              | Occupancy Times, Limiting                                                              |                                                                | 10    | 0      |          |  |  |  |
| 2                                                                                              | Poisson Processes, Superpos                                                            | sition of Poisson Processes, Thinning of a Poisson Process,    |       | c      | ,        |  |  |  |
| 2                                                                                              | Compound Poisson Processe                                                              | s.                                                             |       | c      | )        |  |  |  |
|                                                                                                | Continuous-Time Markov                                                                 | Chains, Transient Analysis: Uniformization, Occupancy          |       |        |          |  |  |  |
| 3                                                                                              | Times, Limiting Behavior, F                                                            | irst-Passage Times, Birth and Death Processes, Examples of     |       | 1      | 0        |  |  |  |
|                                                                                                | Birth and Death process                                                                | O <sup>y</sup>                                                 |       |        |          |  |  |  |
| 4                                                                                              | Branching process, Discrete                                                            | Time Branching Processes, Generating Function Relations        |       | 8      | 1        |  |  |  |
|                                                                                                | for Branching Processes, Ext                                                           |                                                                |       |        |          |  |  |  |
| 5                                                                                              | Martingales: super marting                                                             |                                                                | 8     | }      |          |  |  |  |
|                                                                                                | Martingale convergence theo                                                            | brem and their applications                                    |       |        |          |  |  |  |
| 6                                                                                              | Examples of some stationar                                                             | y processes Mean square prediction of stochastic process,      |       | 6      | <u>,</u> |  |  |  |
|                                                                                                | Ergodic theory and stationar                                                           | y process.                                                     |       |        |          |  |  |  |
| 7                                                                                              | Brownian motion and Ga                                                                 | ussian process, properties of Brownian motion, Some            |       | 1      | 0        |  |  |  |
| /                                                                                              | Liblenbeck process                                                                     | an motion, Brownian motion with drift, The Ornstein-           |       | 1      | 0        |  |  |  |
|                                                                                                | omenoeek process                                                                       | List of Textbooks/ Reference Books                             |       |        |          |  |  |  |
| 1                                                                                              | Sheldon M. Ross. Stochastic                                                            | Processes, 2nd Ed. Wiley.                                      |       |        |          |  |  |  |
|                                                                                                | C. W. Gardiner, Handbook                                                               | for Stochastic Methods for Physics. Chemistry, and the Na      | tura  | 1 Sci  | ences.   |  |  |  |
| 2                                                                                              | Third Edition. Springer-Verl                                                           | ag, Berlin.                                                    |       |        |          |  |  |  |
| 3                                                                                              | Karlin and Taylor. A First co                                                          | ourse in Stochastic Process. Academic Press (Volume-I).        |       |        |          |  |  |  |
| 4                                                                                              | Karlin and Taylor. A First co                                                          | ourse in Stochastic Process. Academic Press (Volume-II).       |       |        |          |  |  |  |
| 5                                                                                              | J. Medhi, Stochastic Process                                                           | es, New Age International.                                     |       |        |          |  |  |  |
| 6                                                                                              | Robert P. Dobrow, Introduct                                                            | ion to stochastic processes with R-John Wiley & Sons.          |       |        |          |  |  |  |
| 7                                                                                              | Normal T. J. Bailey, The el                                                            | lements of Stochastic Processes with Application to the Na     | tura  | 1 Sci  | ences.   |  |  |  |
| /                                                                                              | John Wiley & Sons, Inc.                                                                |                                                                |       |        |          |  |  |  |
| 8                                                                                              | Fima C Klebaner, Introduction                                                          | on to Stochastic Calculus with Applications. 2nd Ed., Imperial | Col   | lege   | Press.   |  |  |  |
| 9                                                                                              | Bernt Oksendal, Stochastic I                                                           | Differential Equations: An Introduction with Applications, Spi | ringe | er.    |          |  |  |  |
|                                                                                                | Cou                                                                                    | rse Outcomes (students will be able to)                        |       |        |          |  |  |  |
| C01                                                                                            | Compute limiting and station                                                           | nary distribution of Markov chains.                            |       |        |          |  |  |  |
| CO2                                                                                            | 2 Understand the theory and applications of Poisson process.                           |                                                                |       |        |          |  |  |  |
| CO3                                                                                            | 3 Apply probability generating functions in computations related to branching process. |                                                                |       |        |          |  |  |  |
| CO4                                                                                            | Apply basic inference techni                                                           | ques for making predictions of stochastic process.             |       |        |          |  |  |  |
| CO5                                                                                            | Understand the properties of                                                           | f Brownian motion and its application in various real-life     |       |        |          |  |  |  |
|                                                                                                | problems.                                                                              |                                                                |       |        |          |  |  |  |

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 0   | 1   | 3   | 3   | 0   | 0   | 1   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 0   | 1   | 3   | 3   | 2   | 0   | 1   | 1   | 3   | 0    | 0    | 3    |
| CO3 | 0   | 0   | 3   | 3   | 1   | 1   | 2   | 2   | 3   | 2    | 0    | 3    |
| CO4 | 0   | 1   | 3   | 3   | 2   | 2   | 2   | 2   | 3   | 2    | 1    | 3    |
| CO5 | 0   | 1   | 3   | 3   | 2   | 2   | 2   | 3   | 3   | 3    | 1    | 3    |

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |  |
| CO1 |                                                                          |      |      |      |      | C.V. |  |  |  |  |  |  |  |
| CO2 |                                                                          |      |      |      |      | 07   |  |  |  |  |  |  |  |
| CO3 |                                                                          |      |      |      |      |      |  |  |  |  |  |  |  |
| CO4 |                                                                          |      |      |      |      | ")   |  |  |  |  |  |  |  |
| CO5 |                                                                          |      |      |      | 0    |      |  |  |  |  |  |  |  |

|         | Course Coder MAT 2620                                                                                                                                                                                                                                                                                                                                                    | Course Titles Coding Theory                                                                                                                                                                                             | Cre | dits= | = 4 |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|--|--|--|--|
|         | Course Code: MAI 2050                                                                                                                                                                                                                                                                                                                                                    | Course Title: Coung Theory                                                                                                                                                                                              | L   | Т     | Р   |  |  |  |  |
|         | Elective                                                                                                                                                                                                                                                                                                                                                                 | Total contact hours: 60                                                                                                                                                                                                 | 4   | 0     | 0   |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                          | List of Prerequisite Courses                                                                                                                                                                                            |     |       |     |  |  |  |  |
| Basics  | linear algebra, and probability                                                                                                                                                                                                                                                                                                                                          | theory.                                                                                                                                                                                                                 |     |       |     |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
|         | List of C                                                                                                                                                                                                                                                                                                                                                                | ourses where this course will be prerequisite                                                                                                                                                                           |     |       |     |  |  |  |  |
| This is | an elective course and not a p                                                                                                                                                                                                                                                                                                                                           | rerequisite of any course.                                                                                                                                                                                              |     |       |     |  |  |  |  |
|         | Description of relevance of                                                                                                                                                                                                                                                                                                                                              | of this course in the M.Sc. Engineering Mathematics Progr                                                                                                                                                               | am  |       |     |  |  |  |  |
| This co | ourse aim to introduce basic co                                                                                                                                                                                                                                                                                                                                          | ding theory needed for engineering application.                                                                                                                                                                         |     |       |     |  |  |  |  |
|         | Course Contents (Topics and subtopics)                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
| 1       | Error detection: correction a<br>Maximum likelihood deco<br>distance decoding. Distance                                                                                                                                                                                                                                                                                  | . 8                                                                                                                                                                                                                     |     |       |     |  |  |  |  |
| 2       | Finite fields and Vector spaces over finite fields                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
| 3       | Linear codes: Linear codes,<br>and parity check matrix, E<br>Decoding of linear codes, Co<br>decoding, Hamming codes, I                                                                                                                                                                                                                                                  | Hamming weight, Bases of linear codes, Generator matrix<br>equivalence of linear codes, encoding with a linear code,<br>osets, Nearest neighbor decoding for linear codes, Syndrome<br>Dual codes and Reed Muller codes |     | 15    |     |  |  |  |  |
| 4       | decoding, Hamming codes, Dual codes and Reed Muller codes<br>Bounds in coding theory: The main coding theory problem, Lower bounds, Sphere-<br>covering bound, Gilbert–Varshamov bound, hamming bound and perfect codes,<br>Singleton bound and MDS codes, Plotkin bound, bounds using linear programming,<br>Llowd's theorem for perfect codes. Codes and Latin squares |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
| 5       | Cyclic codes: Definitions, Generator polynomials, Generator and parity check matrices,<br>decoding of cyclic codes, some special cyclic codes: BCH codes, Definitions, Parameters<br>of BCH codes, Decoding of BCH codes, Reed-Solomon codes                                                                                                                             |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
| 6       | Exploration of concepts in coding theory using SageMath                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |     |       |     |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                          | List of Textbooks/ Reference books                                                                                                                                                                                      |     |       |     |  |  |  |  |
| 1       | J.H. Van Lint, Introduction t                                                                                                                                                                                                                                                                                                                                            | o Coding Theory, Springer                                                                                                                                                                                               |     |       |     |  |  |  |  |

| 2                                          | Raymond Hill, A First Course in Coding Theory, Addition-Wesley                        |  |  |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 3                                          | San Ling and Chaoping Xing, Coding Theory: A First Course, Cambridge University Press |  |  |  |  |  |  |
| 4                                          | Ron M. Roth, Introduction to Coding Theory, Cambridge University Press                |  |  |  |  |  |  |
| 5                                          | Tom Richardson, Rudiger Urbanke, Modern Coding Theory, Cambridge University Press     |  |  |  |  |  |  |
| 6                                          | https://doc.sagemath.org/pdf/en/reference/coding/coding.pdf                           |  |  |  |  |  |  |
| 7                                          | https://www.win.tue.nl/~henkvt/images/CODING.pdf                                      |  |  |  |  |  |  |
| Course Outcomes (students will be able to) |                                                                                       |  |  |  |  |  |  |
| CO1                                        | Use algebraic techniques to construct efficient codes                                 |  |  |  |  |  |  |
| CO2                                        | understand vector space over finite fields                                            |  |  |  |  |  |  |
| CO3                                        | design linear block codes and cyclic codes                                            |  |  |  |  |  |  |
| CO4                                        | understand various error control encoding and decoding techniques                     |  |  |  |  |  |  |
| CO5                                        | develop SageMath codes to solve problems                                              |  |  |  |  |  |  |
|                                            |                                                                                       |  |  |  |  |  |  |
|                                            |                                                                                       |  |  |  |  |  |  |

|     |                                                                |     | • • • • |     |     | $(\mathbf{CO})$ | 141 D |     | 0.4 |      | $\cdot$ |      |
|-----|----------------------------------------------------------------|-----|---------|-----|-----|-----------------|-------|-----|-----|------|---------|------|
|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |         |     |     |                 |       |     |     |      |         |      |
|     | PO1                                                            | PO2 | PO3     | PO4 | PO5 | PO6             | PO7   | PO8 | PO9 | PO10 | PO11    | PO12 |
| CO1 | 0                                                              | 1   | 3       | 3   | 0   | 0               | 1     | 0   | 3   | 0    | 0       | 3    |
| CO2 | 0                                                              | 1   | 3       | 3   | 2   | 0               | 1     | 0   | 3   | 0    | 0       | 3    |
| CO3 | 0                                                              | 0   | 3       | 3   | 1   | 1               | 2     | 1   | 3   | 2    | 0       | 3    |
| CO4 | 0                                                              | 0   | 3       | 3   | 2   | 2               | 2     | 2   | 3   | 2    | 1       | 3    |
| CO5 | 0                                                              | 1   | 3       | 3   | 2   | 2               | 2     | 3   | 3   | 3    | 1       | 3    |

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |
| CO1 |                                                                          |      |      |      |      |      |  |  |  |  |  |  |
| CO2 |                                                                          | •    | 2    |      |      |      |  |  |  |  |  |  |
| CO3 |                                                                          |      |      |      |      |      |  |  |  |  |  |  |
| CO4 |                                                                          | 207  |      |      |      |      |  |  |  |  |  |  |
| CO5 |                                                                          | 0    |      |      |      |      |  |  |  |  |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

|                           | Course Codde MAT 2640                                                        | Course Title: Advanced Medern Algebra                     | Cr  | edits | = 4 |  |  |  |
|---------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|-----|-------|-----|--|--|--|
|                           | Course Coue: MAI 2049                                                        | Course The: Advanced Modern Algebra                       | L   | Т     | Р   |  |  |  |
|                           | <b>Elective</b>                                                              | Total contact hours: 60                                   | 4   | 0     | 0   |  |  |  |
|                           |                                                                              |                                                           |     |       |     |  |  |  |
| A                         |                                                                              |                                                           |     |       |     |  |  |  |
| Modern Algebra (MAT 2231) |                                                                              |                                                           |     |       |     |  |  |  |
|                           |                                                                              |                                                           |     |       |     |  |  |  |
|                           | List of (                                                                    | Courses where this course will be prerequisite            |     |       |     |  |  |  |
| It is a f                 | oundation course which will b                                                | e prerequisite for all the course studied in this program |     |       |     |  |  |  |
|                           | <b>Description of relevance</b>                                              | of this course in the M.Sc. Engineering Mathematics Progr | ram |       |     |  |  |  |
|                           |                                                                              |                                                           |     |       |     |  |  |  |
|                           | Course (                                                                     | Contents (Topics and subtopics)                           | ]   | Hours | 5   |  |  |  |
| 1                         | Groups: Direct and Semi-direct                                               | ect products of groups, nilpotent and solvable groups.    |     | 10    |     |  |  |  |
| 2                         | p-groups, Sylow theory, simple groups, structure theorem for abelian groups, |                                                           |     |       |     |  |  |  |
| 2                         | introduction to the classification problem for finite groups.                |                                                           |     |       |     |  |  |  |

1

| 3   | Modules over PIDs, direct sums, simple modules, structure theorem with a focus on vector spaces as modules over polynomial rings. | 15  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| 4   | Introduction to Galois Theory, fundamental theorem, Galois extensions, cyclotomic                                                 | 20  |
| 4   | extensions, solvable extensions, insolvability of the quintic                                                                     | 20  |
|     | List of Textbooks/ Reference books                                                                                                |     |
| 1   | J. A. Gallian, Contemporary Abstract Algebra, Narosa                                                                              |     |
| 2   | Michael Artin, Algebra, PHI                                                                                                       |     |
| 3   | Dummit and Foote, Abstract Algebra, John Wiley & Sons                                                                             |     |
| 4   | G. Santhanam, Algebra, Narosa                                                                                                     |     |
|     | <b>Course Outcomes (students will be able to)</b>                                                                                 | 0   |
| CO1 | understand the notion of p-groups and Sylow theory.                                                                               | 02  |
| CO2 | relate semi-direct products to structure theory of groups                                                                         | -OV |
| CO3 | understand basic results of Module Theory                                                                                         |     |
| CO4 | contrast and compare Structure Theorem for Modules over PIDs with the study of                                                    | ·   |
| 04  | structure of linear maps in Linear Algebra.                                                                                       | -)  |
| COS | develop an understanding of basic Galois Theory and understand its Relation to                                                    |     |
| 005 | solving polynomials by radicals.                                                                                                  |     |
|     |                                                                                                                                   |     |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |
| CO1 | 3                                                              | 3   | 2   | 3   | 1   | 0   | 0   | 0   | 3   | 0    | 0    | 3    |  |
| CO2 | 3                                                              | 3   | 2   | 3   | 0   | 0   | 1   | 0   | 3   | 0    | 0    | 3    |  |
| CO3 | 3                                                              | 3   | 3   | 3   | 0   | 1   | 0   | 1   | 3   | 0    | 0    | 3    |  |
| CO4 | 2                                                              | 3   | 3   | 3   | 2   | 3   | 2   | 1   | 3   | 2    | 2    | 3    |  |
| CO5 | 2                                                              | 3   | 3   | 3   | 2   | 3   | 2   | 2   | 3   | 2    | 2    | 3    |  |

~

|      | PSO1              | PSO2           | PSO3              | PSO4             | PSO5                | PSO6 |
|------|-------------------|----------------|-------------------|------------------|---------------------|------|
| CO1  | 1001              |                | 1000              | 1001             | 1000                | 1000 |
| CO2  |                   | 0              |                   |                  |                     |      |
| CO3  | V V               | 7              |                   |                  |                     |      |
| CO4  | A                 |                |                   |                  |                     |      |
| CO5  | $\sim$ ,          |                |                   |                  |                     |      |
| 3-St | rong Contribution | ; 2-Moderate C | Contribution; 1-L | ow Contribution, | , 0 – No contributi | ion  |
| opr  | 5                 |                |                   |                  |                     |      |

|         |                                 |                                                               | C    | redi   | ts = 4 |
|---------|---------------------------------|---------------------------------------------------------------|------|--------|--------|
|         | Course Code: MAT 2622           | <b>Course Title: Finite Element Method</b>                    | L    | Т      | Р      |
|         | Elective                        | Total contact hours: 60                                       | 4    | 0      | 0      |
|         |                                 |                                                               |      |        |        |
|         |                                 | List of Prerequisite Courses                                  |      |        |        |
| Differe | ential Equations (MAT 2235)     |                                                               |      |        |        |
|         | -                               |                                                               |      |        |        |
|         | List of C                       | ourses where this course will be prerequisite                 |      |        |        |
|         |                                 |                                                               |      |        | 5      |
|         | Description of relevance of     | of this course in the M.Sc. Engineering Mathematics Prog      | ram  |        | 1      |
|         |                                 | (                                                             |      | J      |        |
|         | Course C                        | ontents (Topics and subtopics)                                |      | Ho     | urs    |
| 1       | Calculus of Variations: Varia   | tional formulation - Rayleigh-Ritz minimization               |      | 6      | ,      |
| 2       | Weighted Residual Approx        | imations: Point collocation, Galerkin and Least Square        |      | 1      | 0      |
| 2       | methods and their application   | ns to the solution of ODE and PDE                             |      | 1      | J      |
|         | Finite Element Procedures:      | Finite Element Formulations for the solutions of ordinary     |      |        |        |
| 3       | and partial differential equati | ons: Calculation of element matrices, assembly and solution   |      | 1      | 5      |
|         | of linear equations.            | × ×                                                           |      |        |        |
|         | Finite Elements: One dimen      | sional and two-dimensional basis functions, Lagrange and      |      |        |        |
| 4       | serendipity family element      | s for quadrilaterals and triangular shapes, co-ordinate       |      | 1      | 5      |
|         | transformation, integration or  | ver a Master Triangular and Rectangular element.              |      |        |        |
| _       | Application of Finite elemer    | nt Method: Finite element solution of Laplace and Poisson     |      |        | _      |
| 5       | equations over rectangular      | and nonrectangular and curved domains. Applications to        |      | 1.     | 2      |
|         | some problems in fluid mech     | anics and in other engineering problems                       |      |        |        |
| 6       | Attempts should be made t       | o solve some problems on fluid mechanics and in other         |      | (if ti | me     |
|         | engineering problems using I    | Annite element Method.                                        |      | pern   | nts)   |
| 1       | 0.07.1 14.14                    | List of Textbooks/ Reference Books                            |      |        |        |
| 1       | U. C. Zienkiewiez and K. Mo     | brgan, Finite Elements and approximation, John Wieley.        |      |        |        |
| 2       | P.E. Lewis and J.P. ward, Ir    | e Finite element method- Principles and applications.         | 1.   |        |        |
| 3       | Addison weley and L. J. Seg     | erlind, Applied finite element analysis (2nd Edition), John W | ney. | •      |        |
| 4       | J. N. Reddy, An Introduction    | to the Finite Element Method, McGraw Hill, NY.                |      |        |        |
| 5       | 1.J. Chung, Finite Element Al   | halysis in Fluid Dynamics, McGraw Hill Inc.                   |      |        |        |
|         | hava hasia knowladga in cal     | se Outcomes (students will be able to)                        |      |        |        |
| CO1     | variational mathods             | curus of variation and able to solve ODE and FDE using        |      |        |        |
| -       | obtain finite element formula   | tion for ODE using linear and quadratic elements and able     |      |        |        |
| CO2     | to assembly all the elements    | Further using given boundary condition the solution to a      |      |        |        |
| 002     | given ODE can be obtained       | Turner using given boundary condition, the solution to a      |      |        |        |
|         | obtain finite element formul    | ation for PDE using triangular and rectangular elements       |      |        |        |
| CO3     | and also able to assembly a     | If the elements for a given domain. Further, using given      |      |        |        |
|         | boundary condition the soluti   | on to a given PDE can be obtained                             |      |        |        |
|         | find coordinate transformati    | ion from an irregular to a regular domain which will          |      |        |        |
| CO4     | facilitate the computation of   | irregular domain.                                             |      |        |        |
| CO5     | apply the Finite Element Met    | hod to some practical problems in 1-D and 2-D problems.       |      |        |        |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 0                                                              | 3   | 0   | 1   | 0   | 2   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 0                                                              | 3   | 0   | 1   | 1   | 0   | 3   | 0   | 3   | 0    | 0    | 3    |

| CO3 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4 | 0 | 3 | 0 | 0 | 2 | 3 | 2 | 0 | 3 | 0 | 0 | 3 |
| CO5 | 0 | 3 | 0 | 0 | 3 | 3 | 3 | 1 | 3 | 3 | 0 | 3 |

|          |                                  |                                                               | C        | redi              | ts = 4   |
|----------|----------------------------------|---------------------------------------------------------------|----------|-------------------|----------|
|          | Course Code: MAT 2642            | Course Title: Integral Transforms                             | L        | Т                 | Р        |
|          | Elective                         | Total contact hours: 60                                       | 4        | 0                 | 0        |
|          |                                  |                                                               |          |                   |          |
|          |                                  | List of Prerequisite Courses                                  |          |                   |          |
| Real ar  | nd Complex Analysis (MAT 22      | 230)                                                          |          |                   |          |
|          |                                  |                                                               |          |                   |          |
|          | List of C                        | Courses where this course will be prerequisite                |          |                   |          |
|          |                                  |                                                               |          |                   | <u>b</u> |
|          | <b>Description of relevance</b>  | of this course in the M.Sc. Engineering Mathematics Prog      | :am      | 1                 |          |
| This c   | ourse gives the students idea    | as of various transforms that have immense applications it    | n sc     | eienc             | e and    |
| engine   | ering, including probability and | d statistics.                                                 |          |                   |          |
|          | Course C                         | Contents (Topics and subtopics)                               |          | Hou               | ırs      |
|          | Basic concepts of integral tra   | ansforms. Fourier transforms: Introduction, basic properties, |          |                   |          |
| 1        | applications to solutions of     | Ordinary Differential Equations (ODE), Partial Differential   |          | 10                | )        |
|          | Equations (PDE).                 |                                                               | ⊢        |                   |          |
|          | Laplace transforms: Convolu      | ition, differentiation, integration, inverse transform,       |          |                   | 2        |
| 2        | Tauberian Theorems, Watso        | n's Lemma, solutions to ODE, PDE including Initial Value      |          | 10                | )        |
|          | Problems (IVP) and Boundar       | ry Value Problems (BVP).                                      | ┝──      |                   |          |
| 2        | Hankel Transforms: Introduc      | tion, properties and applications to PDE Mellin transforms:   |          | 0                 |          |
| 3        | Introduction, properties, app    | lications; Generalized Mellin transforms. Hilbert transforms  |          | 8                 |          |
|          | In complex plane, application    | is; asymptotic expansions of 1-sided Hilbert transforms.      | ├──      |                   |          |
| 4        | generalized Stielties transf     | orm Lagendre transforms: Intro definition properties          |          | 8                 |          |
| 4        | applications                     | orm. Legendre transforms. muo, deminion, properties,          |          | 0                 |          |
|          | Z Transforms: Introduction.      | definition, properties: dynamic linear system and impulse     |          |                   |          |
| 5        | response, inverse Z transfo      | orms, summation of infinite series, applications to finite    |          | 8                 |          |
|          | differential equations           |                                                               |          |                   |          |
| 6        | Radon transforms: Introd         | luction, properties, derivatives, convolution theorem,        |          | 0                 |          |
| 0        | applications, inverse radon tr   | ansform.                                                      |          | 8                 |          |
| 7        | Wavelet Transform: Discu         | ssion on continuous and discrete, Haar, Shannon and           |          | Q                 |          |
| /        | Daubechies Wavelets.             |                                                               |          | 0                 |          |
|          | 1                                | List of Textbooks/ Reference Books                            |          |                   |          |
| 1        | Sudhakar Nair, Advanced T        | Copics in Applied Mathematics for Engg. & Physical Scient     | ce,      | 1 <sup>st</sup> e | dition,  |
|          | cambridge:                       |                                                               |          |                   |          |
| 2        | Gilbert Strang, Introduction     | to Applied Mathematics, Cambridge Press                       |          | • ,•              | 1        |
| 3        | J. Spanier and K. B. Oldh        | am, Fractional Calculus Theory and Applications of Diffe      | rent     | 1at10             | n and    |
| 1        | M Abramowitz & I. Stagun         | Handbook of Mathematical Functions, Dover                     |          |                   |          |
| 4        | IVI. Abranowitz & I. Stegun      | rea Outcomes (students will be able to)                       |          |                   |          |
| CO1      | solve ode and partial differen   | tial equations using Fourier Transforms                       |          |                   |          |
| $CO^{2}$ | solve ode and partial differen   | ntial equations using Laplace Transforms                      | <u> </u> |                   |          |
| CO2      | learn about Hankel Mellin T      | ransforms and Hilbert Transforms                              |          |                   |          |
| CO4      | solve difference equations us    | ing Z transforms                                              |          |                   |          |
| C05      | understand wavelet and rado      | n Transforms                                                  |          |                   |          |
| 005      | understand wavelet and fado      |                                                               | L        |                   |          |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3                                                              | 2   | 1   | 0   | 2   | 1   | 1   | 0   | 3   | 0    | 0    | 3    |

| CO2 | 3 | 2 | 1 | 1 | 3 | 0 | 1 | 0 | 3 | 1 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 |
| CO4 | 3 | 0 | 0 | 0 | 2 | 1 | 1 | 1 | 3 | 0 | 0 | 3 |
| CO5 | 3 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 3 | 0 | 0 | 3 |

| N   | <b>Japping of Cou</b> | rse Outcomes (O | COs) with Progr | amme Specific | Outcomes (PSO | s)     |
|-----|-----------------------|-----------------|-----------------|---------------|---------------|--------|
|     | PSO1                  | PSO2            | PSO3            | PSO4          | PSO5          | PSO6   |
| CO1 |                       |                 |                 |               |               | 0      |
| CO2 |                       |                 |                 |               |               | 02     |
| CO3 |                       |                 |                 |               |               |        |
| CO4 |                       |                 |                 |               |               |        |
| CO5 |                       |                 |                 |               | $\wedge$      | ۰<br>۱ |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

20

|         |                                |                                                             | C    | rodit | c = 1        |
|---------|--------------------------------|-------------------------------------------------------------|------|-------|--------------|
|         | Course Code: MAT 2627          | Course Title: Mathematical Biology                          | T    | T     | <u>т - 6</u> |
|         |                                |                                                             | L    | 1     | P            |
|         | Elective                       | Total contact hours: 60                                     | 4    | 0     | 0            |
|         |                                |                                                             |      |       |              |
|         |                                | List of Prerequisite Courses                                |      |       |              |
| Differe | ntial Equations (MAT 2235)     |                                                             |      |       |              |
|         |                                | $\sim 0^{\circ}$                                            |      |       |              |
|         | List of C                      | ourses where this course will be prerequisite               |      |       |              |
|         |                                | • ()                                                        |      |       |              |
|         | Description of relevance of    | of this course in the M.Sc. Engineering Mathematics Prog    | ram  |       |              |
|         |                                |                                                             |      |       |              |
|         | Course C                       | ontents (Topics and subtopics)                              |      | Hou   | irs          |
|         | Basic population growth me     | odels, concepts of birth, death and migration, concept of   |      |       |              |
| 1       | closed and open population     | ns, unconstrained population growth for single species,     |      | 10    | ,            |
| 1       | exponential, logistic, Gompe   | ertz, ricker growth models, Allee model, Basic dynamical    |      | 12    |              |
|         | analysis of growth profiles    |                                                             |      |       |              |
| 2       | Harvest models, bifurcations   | s and break points, discrete time and delay models, stable  |      | 10    |              |
| 2       | and unstable fixed points      |                                                             |      | 12    | 2            |
| 2       | Concepts of interacting po     | pulations, predator-prey models, host-parasitoid system,    |      | 10    | )            |
| 5       | functional response, stability | of equilibrium points, Poincare-Bendixson's theorem         |      | 12    | •            |
| 4       | Global bifurcations in pre-    | dator-prey models, discrete time predator-prey models,      |      | 10    | )            |
| 4       | competition Models             |                                                             |      | 12    | •            |
|         | Concept of optimal control     | theory connected to harvest models, An overview of age-     |      |       |              |
| 5       | structured models and spati    | ially structured models, concept of stochastic population   |      | 12    | 2            |
|         | models and study of some sta   | andard stochastic models in population biology              |      |       |              |
|         |                                | List of Textbooks/ Reference Books                          |      |       |              |
| 1       | Mark Kot, Elements of Math     | ematical Ecology, Cambridge University Press, Cambridge.    |      |       |              |
| 2       | Murray, J. D. 1989. Mathema    | atical Biology, Springer-Verlag, Berlin.                    |      |       |              |
| 3       | Horst R. Thieme, Mathematic    | cs in Population Biology, Princeton University Press.       |      |       |              |
| 4       | Josef Hofbauer, Karl Sigmu     | nd, Evolutionary games and population dynamics, Cambrid     | dge  | Univ  | ersity       |
| 4       | Press.                         |                                                             | -    |       | -            |
| 5       | Eric Renshaw, Modelling Bio    | ological Populations in Space and Time. Cambridge Universit | y Pr | ess.  |              |

| 6   | Stevens, M. Henry, A Primer in Ecology with R, Springer.                               |  |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|     | Course Outcomes (students will be able to)                                             |  |  |  |  |  |  |  |  |
| CO1 | analyse the mathematical models describing single population dynamics.                 |  |  |  |  |  |  |  |  |
| CO2 | analyse the mathematical models for interactive population dynamics.                   |  |  |  |  |  |  |  |  |
| CO3 | understand basic bifurcation theory and apply in population dynamics problems.         |  |  |  |  |  |  |  |  |
| CO4 | analyse basic stochastic population dynamics and compute stationary distribution.      |  |  |  |  |  |  |  |  |
| CO5 | understand the basic optimal control problem and its application in harvesting models. |  |  |  |  |  |  |  |  |
| C06 | Construct mathematical models for a given the description of some biological           |  |  |  |  |  |  |  |  |
| 000 | phenomena                                                                              |  |  |  |  |  |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 0                                                              | 3   | 0   | 0   | 1   | 2   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 0                                                              | 3   | 0   | 0   | 1   | 0   | 3   | 0   | 3   | 1    | 0    | 3    |
| CO3 | 0                                                              | 3   | 0   | 0   | 1   | 0   | 3   | 2   | 3   | 1    | 0    | 3    |
| CO4 | 0                                                              | 3   | 0   | 0   | 2   | 3   | 2   | 0   | 3   | 60   | 0    | 3    |
| CO5 | 0                                                              | 3   | 0   | 0   | 3   | 3   | 3   | 1   | 3   | 3    | 0    | 3    |
| CO6 | 0                                                              | 3   | 0   | 0   | 2   | 3   | 2   | 0   | 3   | 0    | 0    | 3    |

 $\label{eq:2-Strong} \ \ Contribution; \ 2-Moderate \ \ Contribution; \ 1-Low \ \ Contribution, \ 0-No \ \ contribution$ 

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |  |
| CO1 | 3                                                                        | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO2 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO3 | 3                                                                        | 2 •  | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO4 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO5 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO6 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

|                                  |                            |                                                          | r   |       |               |  |  |  |
|----------------------------------|----------------------------|----------------------------------------------------------|-----|-------|---------------|--|--|--|
|                                  | Comme Code MAT 2028        | Course Titles Stered are considered                      | C   | redit | <b>is = 4</b> |  |  |  |
|                                  | Course Code: MAI 2628      | Course Title: Signal processing                          | L   | Т     | Р             |  |  |  |
|                                  | Elective                   | <b>Total contact hours: 60</b>                           | 4   | 0     | 0             |  |  |  |
|                                  | <sup>N</sup>               |                                                          |     |       |               |  |  |  |
| List of Prerequisite Courses     |                            |                                                          |     |       |               |  |  |  |
| Statistical Computing (MAT 2326) |                            |                                                          |     |       |               |  |  |  |
|                                  |                            |                                                          |     |       |               |  |  |  |
|                                  | List of C                  | Courses where this course will be prerequisite           |     |       |               |  |  |  |
|                                  |                            |                                                          |     |       |               |  |  |  |
|                                  | Description of relevance   | of this course in the M.Sc. Engineering Mathematics Prog | ram |       |               |  |  |  |
|                                  |                            |                                                          |     |       |               |  |  |  |
|                                  | Course C                   | contents (Topics and subtopics)                          |     | Hou   | irs           |  |  |  |
|                                  | Review of Linear Continu   | ous-Time Signal Processing: Fourier methods, Laplace     |     |       |               |  |  |  |
| 1                                | transform, convolution, fr | equency/time domain processing. Passive and active       |     | 8     |               |  |  |  |
|                                  | continuous filters         |                                                          |     |       |               |  |  |  |

| 2   | Sampling and Reconstruction: Sampling theorem, aliasing, quantization, sampled data systems, cardinal (Whitaker) reconstruction, zero, first, second order hold reconstructors, interpolators, non-resetting reconstructors, matched filtering. Interpolation and decimation.                                                                                                                                                                       | 8               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 3   | Discrete-Time Signal Processing: The z transform, difference equations, relationship between $F(z)$ and $F^*(jw)$ , mappings between s-domain and z-domain, inverse z transform. Discrete-time stability.                                                                                                                                                                                                                                           | 8               |
| 4   | Discrete Spectral Analysis: The DFT and its relationship to the continuous FT, the FFT and implementations (decimation in time and frequency), radix-2 implementation, leakage, windowing. Uses of the DFT: convolution — (overlap and add, select savings), correlation. Random processes, power spectral density (PSD) estimation — methods of smoothing the periodogram (Welch's method, windowing the correlation function, etc). ARMA methods. | 10              |
| 5   | Real-Time Simulation Methods Using Difference Equations: Impulse-, step-, ramp-<br>invariant simulations. Tustin's method, matched poles/zeros, bilinear transform methods.<br>Error analysis.                                                                                                                                                                                                                                                      | 8               |
| 6   | Filter Design — Continuous and Discrete: Butterworth, elliptic, Chebyshev low-pass filters. Low-pass design methods based on continuous prototypes, Realizations. Conversion to high-pass, band-pass, band-stop filters. Discrete-time filters: IIR and FIR. Linear phase filters. Frequency sampling filters.                                                                                                                                      | 10              |
| 7   | Statistical Signal Processing: Linear prediction, adaptive filters (LMS), recursive least-<br>squares, Nonparametric power spectral density estimation                                                                                                                                                                                                                                                                                              | 8               |
|     | List of Textbooks/ Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| 1   | Steven B. Damelin, Willard Miller, Jr, The Mathematics of Signal Processing.                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 2   | Proakis, John G., and Dmitris K. Manolakis. Digital Signal Processing. 4th ed. Upper Sac<br>Prentice Hall.                                                                                                                                                                                                                                                                                                                                          | ldle River, NJ: |
| 3   | Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Proce<br>Upper Saddle River, NJ: Prentice Hall                                                                                                                                                                                                                                                                                                                        | essing. 2nd ed. |
|     | Course Outcomes (students will be able to)                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| CO1 | Understand the fundamental principles of sampling ideas, Z-transform, discrete frequency related to DSP                                                                                                                                                                                                                                                                                                                                             |                 |
| CO2 | Understand spectral analysis and estimate the power spectral density by different methods.                                                                                                                                                                                                                                                                                                                                                          |                 |
| CO3 | Understand the designing of filters and test it                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| CO4 | Understand various real time simulation methods and apply them for real life problems                                                                                                                                                                                                                                                                                                                                                               |                 |
| CO5 | Understand various prediction algorithm for statistical signal processing                                                                                                                                                                                                                                                                                                                                                                           |                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |
| CO1 | 1                                                              | 2   | 1   | 0   | 1   | 0   | 1   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO2 | 0                                                              | 2   | 1   | 2   | 0   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO3 | 1                                                              | 3   | 2   | 1   | 1   | 0   | 2   | 1   | 3   | 0    | 0    | 3    |  |  |
| CO4 | 0                                                              | 3   | 1   | 2   | 2   | 1   | 1   | 0   | 3   | 1    | 0    | 3    |  |  |
| CO5 | 0                                                              | 2   | 2   | 2   | 2   | 2   | 3   | 1   | 3   | 2    | 0    | 3    |  |  |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |      |  |  |  |  |  |
|--------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|
|                                                                          | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |
| CO1                                                                      | 3    | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO2                                                                      | 3    | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |

| CO3 | 3 | 2 | 0 | 0 | 0 | 0 |
|-----|---|---|---|---|---|---|
| CO4 | 3 | 2 | 0 | 0 | 0 | 0 |
| CO5 | 3 | 2 | 0 | 0 | 0 | 0 |

|         | Course Code: MAT 2629                                                               | Course Title: Momentum, Heat and Mass Transfer               | Credits = 4     |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
|         | Flective                                                                            | Total contact hours: 60                                      |                 |  |  |  |  |  |  |  |  |
|         | Elective                                                                            | Total contact nours, ov                                      |                 |  |  |  |  |  |  |  |  |
|         |                                                                                     | List of Prerequisite Courses                                 | C L             |  |  |  |  |  |  |  |  |
| Ordina  | ry Differential Equation (M                                                         | [AT 2221] Partial Differential Equations (MAT 2222)          |                 |  |  |  |  |  |  |  |  |
| Numer   | rical methods (MAT $2/21$ )                                                         | IAI 2221), Fartial Differential Equations (WAI 2222).        |                 |  |  |  |  |  |  |  |  |
| Tumer   | ical methods (WIAT 2+21)                                                            |                                                              |                 |  |  |  |  |  |  |  |  |
|         | List of (                                                                           | Courses where this course will be prerequisite               | <u> </u>        |  |  |  |  |  |  |  |  |
|         |                                                                                     |                                                              |                 |  |  |  |  |  |  |  |  |
|         | Description of relevance                                                            | of this course in the M.Sc. Engineering Mathematics Prog     | ram             |  |  |  |  |  |  |  |  |
| This co | ourse deals with several num                                                        | erical and computational techniques of Applied Mathematics   | s having direct |  |  |  |  |  |  |  |  |
| implic  | ations to industrial and other re                                                   | eal life applications                                        | , naving anoot  |  |  |  |  |  |  |  |  |
| impilet | Course C                                                                            | Contents (Topics and subtopics)                              | Hours           |  |  |  |  |  |  |  |  |
| 1       | Introduction to tensor calculu                                                      | us and curvilinear coordinates                               | 8               |  |  |  |  |  |  |  |  |
|         | Classification of fluids (Ne                                                        | extonian and Non-Newtonian fluids). Deformation. Strain      |                 |  |  |  |  |  |  |  |  |
| 2       | tensor. Rate of deformation                                                         | n tensor, material derivative, steady and unsteady flows.    | 8               |  |  |  |  |  |  |  |  |
| _       | streamline and stream function conservation of mass potential flows                 |                                                              |                 |  |  |  |  |  |  |  |  |
|         | Relation between stress and rate of strain, constitutive equation (Newtonian & Non- |                                                              |                 |  |  |  |  |  |  |  |  |
| 3       | Newtonian fluids), Stokes                                                           | ' hypothesis, Derivation of Navier-Stokes equation in        | 12              |  |  |  |  |  |  |  |  |
| -       | Cartesian, Cylindrical Polar                                                        | and Spherical Polar system for laminar flows.                |                 |  |  |  |  |  |  |  |  |
|         | Flow in some simple cases                                                           | s: Fully developed flow between two parallel plates and      |                 |  |  |  |  |  |  |  |  |
| 4       | through circular pipe, Flow                                                         | w between two concentric cylinders, flow between two         | 8               |  |  |  |  |  |  |  |  |
|         | concentric rotating cylinders                                                       |                                                              |                 |  |  |  |  |  |  |  |  |
|         | Dynamic similarity, deriva                                                          | tion of laminar boundary layer equations (using order        |                 |  |  |  |  |  |  |  |  |
| 5       | analysis), Boundary layer                                                           | flow past a semi-infinite flat plate and wedge using         | 8               |  |  |  |  |  |  |  |  |
|         | momentum integral method.                                                           |                                                              |                 |  |  |  |  |  |  |  |  |
|         | Conduction of heat. Fourier                                                         | law of heat transfer and application to one dimensional and  |                 |  |  |  |  |  |  |  |  |
| 6       | two-dimensional problems.                                                           | Convection of heat. Derivation of equation of energy for     | 8               |  |  |  |  |  |  |  |  |
| 0       | convective flows in Cartesia                                                        | n and cylindrical Polar coordinates, and application to some | 0               |  |  |  |  |  |  |  |  |
|         | simple internal flows.                                                              |                                                              |                 |  |  |  |  |  |  |  |  |
| 7       | Thermal boundary layer flow                                                         | v past a flat plate and heat transfer in some internal flows | 8               |  |  |  |  |  |  |  |  |
|         | N N                                                                                 | List of Textbooks/ Reference Books                           |                 |  |  |  |  |  |  |  |  |
| 1       | K. Kundu Pijush, Fluid Mecl                                                         | hanics, Elsevier.                                            |                 |  |  |  |  |  |  |  |  |
| 2       | G. K. Batchelor, An Introduc                                                        | ction to Fluid Dynamics, Cambridge University Press.         |                 |  |  |  |  |  |  |  |  |
| 3       | H. Schlichting, Klaus Gerste                                                        | n, Boundary-Layer Theory, Springer-Verlag.                   |                 |  |  |  |  |  |  |  |  |
| 4       | S.W. Yuan, Foundations of I                                                         | Fluid Mechanics, Prentice Hall.                              |                 |  |  |  |  |  |  |  |  |
| 5       | R. W. Whorlow, Rheologica                                                           | l Technique, Ellis Horwood Ltd.                              |                 |  |  |  |  |  |  |  |  |
| 6       | R.B. Bird, W.E. Stewart E.N                                                         | ., Lightfoot, Transport Phenomena, John Wiley & Sons.        |                 |  |  |  |  |  |  |  |  |
| 7       | Bennet and Myers, Moment 1982.                                                      | tum, Heat and Mass Transfer, Mcgraw Hill, Chemical Engi      | neering Series, |  |  |  |  |  |  |  |  |
| 8       | 8 I.G. Currie, Fundamental Mechanics of Fluids, Third edition, 1993,                |                                                              |                 |  |  |  |  |  |  |  |  |
|         | Cou                                                                                 | rse Outcomes (students will be able to)                      |                 |  |  |  |  |  |  |  |  |
| CO1     | develop basic knowledge i                                                           | in tensor analysis and application to various coordinate     |                 |  |  |  |  |  |  |  |  |

|     | system.                                                                                    |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO2 | develop basic understanding for obtaining governing equation of motion for some            |  |  |  |  |  |  |
| 02  | specific flow problems.                                                                    |  |  |  |  |  |  |
| CO3 | obtain drag coefficient on flow past a rigid body.                                         |  |  |  |  |  |  |
| CO4 | calculate the heat transfer coefficient and distribution in different materials using heat |  |  |  |  |  |  |
| C04 | conduction method.                                                                         |  |  |  |  |  |  |
| CO5 | calculate the heat transfer coefficient and distribution in a fluid flow problem.          |  |  |  |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |
| CO1 | 0                                                              | 3   | 0   | 0   | 0   | 2   | 2   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO2 | 0                                                              | 3   | 0   | 1   | 0   | 0   | 3   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO3 | 0                                                              | 3   | 0   | 0   | 0   | 0   | 3   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO4 | 0                                                              | 3   | 0   | 0   | 2   | 3   | 2   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO5 | 0                                                              | 3   | 0   | 0   | 3   | 3   | 3   | 1   | 3   | 3    | 0    | 3    |  |  |

| N   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |  |
| CO1 | 3                                                                        | 3    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO2 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO3 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO4 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |
| CO5 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |  |

|       | Course Code: MAT 2650 Course Title: Representation Theory                         |     | redi | ts = 4 |
|-------|-----------------------------------------------------------------------------------|-----|------|--------|
|       | Course Code: MAI 2650 Course Title: Representation Theory                         | L   | Т    | Р      |
|       | Elective Total contact hours: 60                                                  | 4   | 0    | 0      |
|       |                                                                                   |     |      |        |
|       | List of Prerequisite Courses                                                      |     |      |        |
| Moder | n Algebra (MAT 2231)                                                              |     |      |        |
|       |                                                                                   |     |      |        |
|       | List of Courses where this course will be prerequisite                            |     |      |        |
|       |                                                                                   |     |      |        |
|       | Description of relevance of this course in the M.Sc. Engineering Mathematics Prog | ram |      |        |
| •     |                                                                                   |     |      |        |
| Ę.    | <b>Course Contents (Topics and subtopics)</b>                                     |     | Ноι  | irs    |
| 1     | Review of Group Actions. Groups acting on vector spaces (Matrix Groups). General  |     | 5    |        |
| 1     | Linear group and its subgroups.                                                   |     | 5    |        |
|       | Representations of a group, finite dimensional representations, one-dimensional   |     |      |        |
| 2     | representations. New representations from old, direct sums, tensor products, sub- |     | 1(   | )      |
|       | representations.                                                                  |     |      |        |
| 3     | Maschke's Theorem, Schur's Lemma, Irreducible representations, Complete           |     | 14   | 5      |
|       | reducibility.                                                                     |     |      | ,<br>  |
| 4     | Matrix elements, Characters of a representation, Orthogonality relations, regular |     | 20   | )      |
|       | representations, counting irreducible representations.                            |     | 20   |        |

| 5   | Representations of the symmetric group, and applications, Computation of Young         | 10 |
|-----|----------------------------------------------------------------------------------------|----|
| 5   | Tableaux.                                                                              | 10 |
|     | List of Textbooks/ Reference Books                                                     |    |
| 1   | G. James and M. Liebeck, Representations of Finite Groups, Cambridge University Press. |    |
| 2   | J. P. Serre, Linear Representations of Finite Groups, GTM Springer                     |    |
| 3   | C. S. Musili, Representations of Finite Groups, TRIM Series                            |    |
| 4   | Alperin and Bell, Groups and Representations, GTM Springer                             |    |
| 5   | Dummit and Foote, Abstract Algebra, John Wiley & Sons                                  |    |
| 6   | M. Artin, Algebra, PHI                                                                 |    |
|     | <b>Course Outcomes (students will be able to)</b>                                      | 0  |
| CO1 | understand the basic notions and constructions of representations.                     | 02 |
| CO2 | understand the role played by character theory                                         |    |
| CO3 | understand the representation theory of Abelian groups.                                |    |
| CO4 | understand the basic ideas in the representation theory of symmetric groups.           | P  |
| CO5 | understand some simple applications of representation theory.                          |    |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |
| CO1 | 0                                                              | 3   | 0   | 1   | 0   | 2   | 2   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO2 | 0                                                              | 3   | 0   | 1   | 0   | 0   | 3   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO3 | 0                                                              | 3   | 0   | 0   | 0   | 0   | 3   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO4 | 0                                                              | 3   | 0   | 0   | 2   | 3   | 2   | 0   | 3   | 0    | 0    | 3    |  |  |
| CO5 | 0                                                              | 3   | 0   | 0   | 3   | 3   | 3   | 1   | 3   | 3    | 0    | 3    |  |  |

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |
| CO1 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |
| CO2 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |
| CO3 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |
| CO4 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |
| CO5 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

| Course Code: MAT 2610                   | Course Title: Advanced Methometical Finance                     | C    | redit | s = 4   |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------|------|-------|---------|--|--|--|--|--|
| Course Code: MAI 2010                   | TAT 2610 Course Title: Advanced Mathematical Finance            |      |       |         |  |  |  |  |  |
| Elective                                | Elective Total contact hours: 60                                |      |       |         |  |  |  |  |  |
|                                         |                                                                 |      |       |         |  |  |  |  |  |
|                                         | List of Prerequisite Courses                                    |      |       |         |  |  |  |  |  |
| Financial Mathematics (MAT 2606)        | ), Statistical Computing (MAT 2326), Stochastic Process         |      |       |         |  |  |  |  |  |
| (MAT 2609)                              |                                                                 |      |       |         |  |  |  |  |  |
|                                         |                                                                 |      |       |         |  |  |  |  |  |
| List of C                               | ourses where this course will be prerequisite                   |      |       |         |  |  |  |  |  |
|                                         |                                                                 |      |       |         |  |  |  |  |  |
| Description of relevance of             | of this course in the M.Sc. Engineering Mathematics Progr       | ram  |       |         |  |  |  |  |  |
| This course gives students an exposur   | e to applications of mathematics in baking and finance section  | n. S | tuder | nts get |  |  |  |  |  |
| the exposure to stochastic differential | equation, Ito calculus and pricing of various financial instrum | nent | s.    |         |  |  |  |  |  |

|     | <b>Course Contents (Topics and subtopics)</b>                                                                                                                                                            | Hours           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1   | Review of Probability Spaces and Convergence concepts, Filtrations, Expectations, Change of Measures                                                                                                     | 8               |
| 2   | Brownian motion calculus, Ito Integral and its properties, Ito processes and Stochastic differentials, Ito formula for Ito processes and Martingale properties.                                          | 12              |
| 3   | Stochastic Differential Equations, existence, and uniqueness, Backward and Forward equations, numerical techniques for simulation of stochastic differential equations, Multivariate extensions          | 12              |
| 4   | Risk neutral pricing in discrete time and continuous time, Stock and FX options, financial derivatives and arbitrage, Semi martingale market model, Diffusion and Black Scholes model and other examples | 10              |
| 5   | Applications to Bonds, Rates and Options, Bonds and Yield curve, Models based on spot rates, Merton's model and Vasicek's model                                                                          | 10              |
| 6   | Numerical Schemes for simulation of Stochastic differential equations                                                                                                                                    | 8               |
| 7   | Software: R/Python                                                                                                                                                                                       |                 |
|     | List of Textbooks/ Reference Books                                                                                                                                                                       |                 |
| 1   | Fima C Klebaner, Introduction to Stochastic Calculus with Applications, Second ed College Press.                                                                                                         | ition, Imperial |
| 2   | Steven Shreve, Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Spri                                                                                                                 | nger.           |
| 3   | Steven Shreve, Stochastic Calculus for Finance Continuous-Time Models, Springer.                                                                                                                         |                 |
| 4   | Fima C Klebaner, Introduction to Stochastic Calculus with Applications. Second Edi<br>College Press.                                                                                                     | ition, Imperial |
| 5   | Peter E. Kloeden, Eckhard Platen, Henri Schurz, Numerical Solution of SDE Throu<br>Experiments.                                                                                                          | igh Computer    |
| 6   | Stefano M. Iacus, Simulation and Inference for Stochastic Differential Equations with Springer.                                                                                                          | R Examples,     |
| 7   | Zdzisław Brzeźniak and Tomasz Zastawniak, Basic Stochastic Processes: A Course Thro Springer.                                                                                                            | ugh Exercises,  |
|     | Course Outcomes (students will be able to)                                                                                                                                                               |                 |
| CO1 | understand basic theory of Ito processes and Ito integrals.                                                                                                                                              |                 |
| CO2 | solve basic stochastic differential equations and properties of solutions.                                                                                                                               |                 |
| CO3 | simulate numerical solutions of some simple stochastic differential equations.                                                                                                                           |                 |
| CO4 | apply Ito stochastic calculus for pricing financial instruments.                                                                                                                                         |                 |
| CO5 | apply the methods to analyse real data sets from financial markets.                                                                                                                                      |                 |
|     |                                                                                                                                                                                                          |                 |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |  |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|--|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |  |
| CO1 | 0                                                              | 2   | 1   | 1   | 1   | 0   | 1   | 0   | 2   | 0    | 0    | 3    |  |  |
| CO2 | 0                                                              | 2   | 1   | 2   | 0   | 0   | 2   | 0   | 2   | 0    | 0    | 3    |  |  |
| CO3 | 1                                                              | 3   | 2   | 1   | 1   | 0   | 2   | 0   | 2   | 0    | 0    | 3    |  |  |
| CO4 | 0                                                              | 3   | 1   | 2   | 1   | 10  | 1   | 0   | 2   | 1    | 2    | 3    |  |  |
| CO5 | 0                                                              | 2   | 2   | 2   | 1   | 2   | 3   | 1   | 2   | 2    | 2    | 3    |  |  |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |                               |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|                                                                          | PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 |  |  |  |  |  |  |  |  |  |  |  |
| CO1                                                                      |                               |  |  |  |  |  |  |  |  |  |  |  |
| CO2                                                                      |                               |  |  |  |  |  |  |  |  |  |  |  |
| CO3                                                                      |                               |  |  |  |  |  |  |  |  |  |  |  |

| CO4 |  |  |  |
|-----|--|--|--|
| CO5 |  |  |  |

|           | Course Code: MAT 2625                                                                              | Course Title: Multivariate Analysis                           | Cr  | edit | s = 4    |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----|------|----------|--|--|--|--|--|--|
| ·         | Elective                                                                                           | Total contact hours: 60                                       | 4   | 0    | <u> </u> |  |  |  |  |  |  |
|           |                                                                                                    |                                                               |     |      |          |  |  |  |  |  |  |
|           |                                                                                                    | List of Prerequisite Courses                                  | (   |      | 2-       |  |  |  |  |  |  |
| Statistic | cal Computing (MAT 2326).                                                                          | Programming Lab (MAP 2521)                                    | 0   |      | •        |  |  |  |  |  |  |
|           | 1 8 1                                                                                              |                                                               |     |      |          |  |  |  |  |  |  |
|           | List of C                                                                                          | Courses where this course will be prerequisite                |     |      |          |  |  |  |  |  |  |
|           |                                                                                                    |                                                               |     |      |          |  |  |  |  |  |  |
|           | Description of relevance                                                                           | of this course in the M.Sc. Engineering Mathematics Prog      | ram |      |          |  |  |  |  |  |  |
| With a    | With an enormous increase of the large-scale computational methods in science and enginee          |                                                               |     |      |          |  |  |  |  |  |  |
| mathem    | mathematicians must get exposure to various statistical methods. This course aims to give the stud |                                                               |     |      |          |  |  |  |  |  |  |
| to the th | to the theory of multivariate statistics and their applications in real life problems.             |                                                               |     |      |          |  |  |  |  |  |  |
|           | Course C                                                                                           | Contents (Topics and subtopics)                               | ]   | Hov  | irs      |  |  |  |  |  |  |
| 1         | Review of linear algebra,                                                                          | review of multivariate distributions, multivariate normal     |     | 8    |          |  |  |  |  |  |  |
| 1         | distribution and its properties, distributions of linear and quadratic forms                       |                                                               |     |      |          |  |  |  |  |  |  |
| 2         | Tests for partial and multip                                                                       | le correlation coefficients and regression coefficients and   |     | 8    |          |  |  |  |  |  |  |
| 2         | their associated confidence re                                                                     | egions. Data analytic illustrations                           |     | 0    |          |  |  |  |  |  |  |
| 3         | Wishart distribution (definition                                                                   | on, properties).                                              |     | 6    |          |  |  |  |  |  |  |
| 4         | Construction of tests, union                                                                       | i-intersection and likelihood ratio principles, inference on  |     | 8    |          |  |  |  |  |  |  |
|           | mean vector, Hotelling's T <sup>2</sup> , 1                                                        | MANOVA                                                        |     |      |          |  |  |  |  |  |  |
| 5         | Inference on covariance mat                                                                        | trices. Discriminant analysis. Principal component analysis   |     | 10   | )        |  |  |  |  |  |  |
|           | and factor analysis                                                                                |                                                               |     |      |          |  |  |  |  |  |  |
| 6         | Multivariate Linear Regressi                                                                       | ion, Practical on the above topics using statistical packages |     | 10   | )        |  |  |  |  |  |  |
| 7         | for data analytic illustrations.                                                                   |                                                               |     | 1(   |          |  |  |  |  |  |  |
| /         | Clustering, Distance methods                                                                       | s and Ordination and application to real data sets.           |     | 10   | )        |  |  |  |  |  |  |
| 1         | T.W. Anderson An Infradric                                                                         | LISE OF LEXEDOOKS/ REFERENCE BOOKS                            |     |      |          |  |  |  |  |  |  |
| 1         | T. W. Anderson, An Introduc                                                                        | ction to Multivariate Statistical Analysis.                   |     |      |          |  |  |  |  |  |  |
| 2         | K. A. Jonnson and D. W. WI                                                                         | L M. Dikha, Multivariate Analysis.                            |     |      |          |  |  |  |  |  |  |
| 3         | K. V. Mardia, J. I. Kent and $M$ S. Srivesteve and C. C. K                                         | J. M. Bibby, Multivariate Analysis.                           |     |      |          |  |  |  |  |  |  |
| 4         | M. S. Shvastava aliu C. G. K                                                                       | rsa Outcomes (students will be able to)                       |     |      |          |  |  |  |  |  |  |
|           | Illustrate the geometry of                                                                         | sample and various properties of multivariate normal          |     |      |          |  |  |  |  |  |  |
| CO1       | distribution                                                                                       | sample and various properties of multivariate normal          |     |      |          |  |  |  |  |  |  |
| CO2       | Apply various testing proced                                                                       | ures for multivariate data                                    |     |      |          |  |  |  |  |  |  |
|           | Derive the sampling distrib                                                                        | pution of statistics and apply them to construct testing      |     |      |          |  |  |  |  |  |  |
| CO3       | procedures in a multivariate                                                                       | set up                                                        |     |      |          |  |  |  |  |  |  |
| CO4       | Understand and apply multiv                                                                        | ariate regression methods to solve real life problems         |     |      |          |  |  |  |  |  |  |
| 005       | Apply various multivariate methods using statistical packages to solve real life                   |                                                               |     |      |          |  |  |  |  |  |  |
| 005       | problems                                                                                           |                                                               |     |      |          |  |  |  |  |  |  |
| CO6       | Understand and apply variou                                                                        | s clustering method in multivariate data sets.                |     |      |          |  |  |  |  |  |  |

| Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |  |
|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|--|
| PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |  |

| CO1 | 0 | 0 | 3 | 3 | 2 | 0 | 2 | 0 | 3 | 0 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO2 | 0 | 0 | 3 | 3 | 2 | 2 | 2 | 0 | 3 | 1 | 0 | 3 |
| CO3 | 0 | 0 | 3 | 3 | 2 | 0 | 1 | 0 | 3 | 0 | 0 | 3 |
| CO4 | 0 | 0 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 0 | 2 | 3 |
| CO5 | 0 | 0 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 3 |
| CO6 | 0 | 0 | 3 | 3 | 2 | 1 | 3 | 3 | 3 | 0 | 2 | 3 |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |      |  |  |  |  |  |  |
|--------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|--|
|                                                                          | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |
| CO1                                                                      | 0    | 0    | 3    | 0    | 1    | d?   |  |  |  |  |  |  |
| CO2                                                                      | 0    | 0    | 3    | 0    | 1    | 1    |  |  |  |  |  |  |
| CO3                                                                      | 0    | 0    | 3    | 0    | 1    | 1    |  |  |  |  |  |  |
| CO4                                                                      | 0    | 0    | 3    | 0    | 1    | 1    |  |  |  |  |  |  |
| CO5                                                                      | 0    | 0    | 3    | 0    | 1    | 1    |  |  |  |  |  |  |
| CO6                                                                      | 0    | 0    | 3    | 0    | 1    | 1    |  |  |  |  |  |  |

|        | Course Code: MAT 2626 Course Title: Design and Analysis of Experiments                               |                                                                      |     |     | ts = 4 |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----|-----|--------|--|--|--|--|
|        | Course Coue: MAI 2020                                                                                | urse Code: MAT 2626 Course Title: Design and Analysis of Experiments |     |     |        |  |  |  |  |
|        | Elective                                                                                             | Total contact hours: 60                                              | 4   | 0   | 0      |  |  |  |  |
|        |                                                                                                      |                                                                      |     |     |        |  |  |  |  |
|        |                                                                                                      | List of Prerequisite Courses                                         |     |     |        |  |  |  |  |
| Applie | d Linear Algebra (MAT 2201)                                                                          | , Statistical Computing (MAT 2326)                                   |     |     |        |  |  |  |  |
|        |                                                                                                      |                                                                      |     |     |        |  |  |  |  |
|        | List of (                                                                                            | Courses where this course will be prerequisite                       |     |     |        |  |  |  |  |
|        |                                                                                                      |                                                                      |     |     |        |  |  |  |  |
|        | Description of relevance                                                                             | of this course in the M.Sc. Engineering Mathematics Prog             | ram |     |        |  |  |  |  |
|        |                                                                                                      |                                                                      |     |     |        |  |  |  |  |
|        | Course (                                                                                             | Contents (Topics and subtopics)                                      |     | Ног | irs    |  |  |  |  |
|        | Gauss-Markoff Theorem,                                                                               | Randomization and Replication, Analysis of one-way                   |     |     |        |  |  |  |  |
| 1      | classification model. Analys                                                                         | sis of two-way classification model with equal number of             |     | 16  |        |  |  |  |  |
| 1      | <sup>1</sup> observations per cell with and without interactions. Analysis of two-way classification |                                                                      |     |     |        |  |  |  |  |
|        | model with unequal number                                                                            | of observations per cell without interactions                        |     |     |        |  |  |  |  |
| 2      | Analysis of BIBD. Analys                                                                             | is of covariance in one way and two-way classification               |     | 1(  | )      |  |  |  |  |
| _      | models, Testing of hypothes                                                                          | es for estimable parametric functions.                               |     |     |        |  |  |  |  |
| 3      | General factorial experiment                                                                         | s, 2Kdesign, confounding in 2K design, Partial confounding           |     | 10  |        |  |  |  |  |
|        | and total confounding                                                                                |                                                                      |     |     |        |  |  |  |  |
|        | Response surface methodol                                                                            | ogy (RSM): linear and quadratic model, stationary point,             |     |     |        |  |  |  |  |
| 4      | central composite designs (C                                                                         | CD), ridge systems, multiple responses, concept of rotatable         |     | 16  | 5      |  |  |  |  |
|        | designs, Box-Behnken desig                                                                           | gn, optimality of designs, simplex lattice designs, simplex          |     |     |        |  |  |  |  |
|        | centroid designs                                                                                     |                                                                      |     |     |        |  |  |  |  |
| 5      | 5 Taguchi methods: concept of noise factors, concept of loss function, S/N ratio,                    |                                                                      |     |     |        |  |  |  |  |
|        | orthogonal arrays                                                                                    |                                                                      |     |     |        |  |  |  |  |
| 6      | Software: R/Python/MATLA                                                                             | AB                                                                   |     |     |        |  |  |  |  |
|        |                                                                                                      | List of Textbooks/ Reference Books                                   |     |     |        |  |  |  |  |
| 1      | Montgomery, D.C. Design a                                                                            | nd Analysis of Experiments, Wiley.                                   |     |     |        |  |  |  |  |
| 2      | Dean, A. and Voss, D. Desig                                                                          | n and Analysis of Experiments, Springer                              |     |     |        |  |  |  |  |
| 3      | George E. P. Box, Draper N.R. Empirical Model-Building and Response Surfaces, Wiley                  |                                                                      |     |     |        |  |  |  |  |

| 4   | W. W. Hines, D. C. Montgomery, Probability and Statistics in Engineering. John Wiley. |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 5   | Rao, C. R. Linear Statistical Inference and Its Applications, Wiley                   |  |  |  |  |  |  |
|     | Course Outcomes (students will be able to)                                            |  |  |  |  |  |  |
| CO1 | perform statistical analysis of one-way and two-way classified data.                  |  |  |  |  |  |  |
| CO2 | analyse data coming from factorial experiments.                                       |  |  |  |  |  |  |
| CO3 | understand basic principles of response surface methodology and apply them in real    |  |  |  |  |  |  |
| 005 | life problems.                                                                        |  |  |  |  |  |  |
| CO4 | apply Taguchi methods to optimize designs.                                            |  |  |  |  |  |  |
| CO5 | use statistical software to analyse real data and interpret the results.              |  |  |  |  |  |  |

|                                                                |     |     |     |     |     |     |     |     |     |      | (    |      |
|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |     |      |      |      |
|                                                                | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                            | 0   | 0   | 3   | 3   | 0   | 1   | 1   | 0   | 3   | 0    | 0    | 3    |
| CO2                                                            | 0   | 0   | 3   | 3   | 2   | 3   | 3   | 3   | 3   | 2    | 0    | 3    |
| CO3                                                            | 0   | 0   | 3   | 3   | 2   | 3   | 3   | 3   | 3   | 2.   | 0    | 3    |
| CO4                                                            | 0   | 0   | 3   | 3   | 1   | 3   | 3   | 3   | 3   | 2    | 2    | 3    |
| CO5                                                            | 0   | 0   | 3   | 3   | 1   | 3   | 3   | 3   | 3   | 2    | 2    | 3    |

5

 $\label{eq:2-Moderate} 3-Strong \ Contribution; \ 2-Moderate \ Contribution; \ 1-Low \ Contribution, \ 0-No \ contribution$ 

.

| I   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |            |      |      |      |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------------|------|------|------|--|--|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3       | PSO4 | PSO5 | PSO6 |  |  |  |  |  |  |  |
| CO1 | 0                                                                        | 0    | 3          | 0    | 1    | 1    |  |  |  |  |  |  |  |
| CO2 | 0                                                                        | 0    | 3          | 0    | 1    | 1    |  |  |  |  |  |  |  |
| CO3 | 0                                                                        | 0    | 3          | 0    | 1    | 1    |  |  |  |  |  |  |  |
| CO4 | 0                                                                        | 0 •  | <b>C</b> 3 | 0    | 1    | 1    |  |  |  |  |  |  |  |
| CO5 | 0                                                                        | 0    | 3          | 0    | 1    | 1    |  |  |  |  |  |  |  |

Approve by Acade

|          | Course Codes MAT 2622                                                             | Course Titles Operation Research                             | Cre      | ; = 4 |          |  |  |  |  |
|----------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|----------|-------|----------|--|--|--|--|
|          | Course Coue: MAI 2025                                                             | Course The: Operation Research                               | L        | Т     | Р        |  |  |  |  |
|          | Elective                                                                          | Total contact hours: 60                                      | 4        | 0     | 0        |  |  |  |  |
|          |                                                                                   |                                                              |          |       |          |  |  |  |  |
|          |                                                                                   | List of Prerequisite Courses                                 |          |       |          |  |  |  |  |
| Applie   | Applied Linear Algebra (MAT 2201), Optimization techniques (MAT 2232)             |                                                              |          |       |          |  |  |  |  |
|          |                                                                                   |                                                              |          |       |          |  |  |  |  |
|          | List of C                                                                         | Courses where this course will be prerequisite               |          |       |          |  |  |  |  |
|          |                                                                                   |                                                              |          |       |          |  |  |  |  |
|          | Description of relevance                                                          | of this course in the M.Sc. Engineering Mathematics Progr    | 'am      | 0     |          |  |  |  |  |
|          |                                                                                   |                                                              | (        |       | )        |  |  |  |  |
|          | Course C                                                                          | Contents (Topics and subtopics)                              |          | Hou   | rs       |  |  |  |  |
| 1        | Operations Research: Introdu                                                      | action of operation research using historical perspective    |          | 4     |          |  |  |  |  |
| 2        | Linear Programming Proble                                                         | m: Simplex Methods, revised simplex method, two phase        |          | 12    |          |  |  |  |  |
| 2        | simplex method, Big-M Met                                                         | hod, Karmakar Method, Sensitivity analysis and Duality       |          | 12    |          |  |  |  |  |
| 3        | Integer Programming                                                               |                                                              |          | 8     |          |  |  |  |  |
|          | Dynamic programming,                                                              | Characteristics of dynamic programming, Dynamic              |          |       |          |  |  |  |  |
| 4        | programming approach for                                                          | Priority Management employment smoothening, capital          |          | 8     |          |  |  |  |  |
|          | budgeting, Stage Coach/Shor                                                       | rtest Path, cargo loading and Reliability problems           |          |       |          |  |  |  |  |
|          | Transportation and Assignm                                                        | nent Problems: Transportation Problems definition, Linear    |          |       |          |  |  |  |  |
|          | form, Solution methods: 1                                                         |                                                              |          |       |          |  |  |  |  |
| 5        | approximation method. Degeneracy in transportation, Modified Distribution method, |                                                              |          |       |          |  |  |  |  |
|          | Unbalanced problems and                                                           | profit maximization problems. Transhipment Problems          |          |       |          |  |  |  |  |
|          | Assignment problems and Tr                                                        | avelling sales man problems.                                 | <u> </u> |       |          |  |  |  |  |
| 6        | Inventory Control: Inventor                                                       | ry classification, Different cost associated to Inventory,   |          | 4     |          |  |  |  |  |
|          | Economic order quantity, Inv                                                      | ventory models with deterministic demands, ABC analysis.     | <b> </b> |       |          |  |  |  |  |
|          | Queuing Theory: Basis of                                                          | Queuing theory, elements of queuing theory, Kendall's        |          |       |          |  |  |  |  |
| 7        | Notation, Operating charac                                                        | teristics of a queuing system, Classification of Queuing     |          | 8     |          |  |  |  |  |
|          | models and preliminary exam                                                       | nples.                                                       | <u> </u> |       |          |  |  |  |  |
| 8        | Network models                                                                    | A OY                                                         | L        | 4     |          |  |  |  |  |
|          |                                                                                   | List of Textbooks/ Reference Books                           |          |       |          |  |  |  |  |
| 1        | Hamdy Taha, Operations Re                                                         | search: An Introduction, Pearson.                            |          |       |          |  |  |  |  |
| 2        | A M Natarajan, P Balasubra                                                        | nani, A Tamilarasi, Operations Research, Pearson Education I | nc.      |       |          |  |  |  |  |
| 3        | Wayne L. Winston and M                                                            | . Venkataramanan, Introduction to Mathematical Program       | ning,    | 4th   | Ed,      |  |  |  |  |
|          | Cengage Learning.                                                                 |                                                              |          |       |          |  |  |  |  |
| 4        | Eiselt, H. A., Sandblom, Car                                                      | I-Louis, Operations Research-A Model Based Approach, Sprin   | nger.    | 11    | <u> </u> |  |  |  |  |
| 5        | Harvir Singh Kasana, Krishr                                                       | a Dev Kumar, Introductory Operations Research, Theory and    | Арр      | licat | ions,    |  |  |  |  |
|          | Springer.                                                                         |                                                              |          |       |          |  |  |  |  |
| <u> </u> | Cour                                                                              | se Outcomes (students will be able to)                       |          |       |          |  |  |  |  |
|          | understand basic concepts in                                                      | the subject of operation research.                           |          |       |          |  |  |  |  |
| <u> </u> | solve linear programming pro                                                      | oblems arising in science and engineering.                   |          |       |          |  |  |  |  |
| COB      | apply various algorithms to s                                                     | solve linear programming problems.                           |          |       |          |  |  |  |  |
| CO4      | tormulate real life problems                                                      | as linear programming or dynamic programming problems.       |          |       |          |  |  |  |  |
| CO5      | analyse linear programming                                                        | problems arising in science and engineering.                 |          |       |          |  |  |  |  |

| Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |     |      |      |      |
|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                            | 0   | 1   | 3   | 3   | 0   | 1   | 1   | 0   | 3   | 0    | 0    | 3    |
| CO2                                                            | 0   | 0   | 3   | 3   | 1   | 3   | 3   | 3   | 3   | 2    | 0    | 3    |

| CO3 | 0 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 0 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4 | 0 | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 3 |
| CO5 | 0 | 3 | 3 | 3 | 1 | 3 | 5 | 5 | 3 | 2 | 2 | 3 |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |                  |                 |                   |                  |                 |       |  |  |  |  |
|--------------------------------------------------------------------------|------------------|-----------------|-------------------|------------------|-----------------|-------|--|--|--|--|
|                                                                          | PSO1             | PSO2            | PSO3              | PSO4             | PSO5            | PSO6  |  |  |  |  |
| CO1                                                                      | 3                | 0               | 0                 | 0                | 0               | 0     |  |  |  |  |
| CO2                                                                      | 3                | 0               | 0                 | 0                | 0               | 0     |  |  |  |  |
| CO3                                                                      | 3                | 0               | 0                 | 0                | 0               | 0     |  |  |  |  |
| CO4                                                                      | 1                | 3               | 1                 | 1                | 2               | 0     |  |  |  |  |
| CO5                                                                      | 1                | 3               | 1                 | 1                | 2               | 0     |  |  |  |  |
| 3-Si                                                                     | rong Contributio | n; 2-Moderate C | ontribution; 1-La | ow Contribution, | 0 – No contribu | ltion |  |  |  |  |
|         | Course Codes MAT 2644                                                                  | C                                                            | redi | ts = 4 |         |  |  |  |
|---------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------|--------|---------|--|--|--|
|         | Course Code: MAI 2044                                                                  | Course Title: Geometry of Curves and Surfaces                | L    | Т      | Р       |  |  |  |
|         | Elective                                                                               | Total contact hours: 60                                      | 4    | 0      | 0       |  |  |  |
|         |                                                                                        |                                                              |      |        |         |  |  |  |
|         |                                                                                        | List of Prerequisite Courses                                 |      |        |         |  |  |  |
| Real ar | nd Complex Analysis (MAT 22                                                            | 202)                                                         |      |        |         |  |  |  |
|         |                                                                                        |                                                              |      |        |         |  |  |  |
|         | List of (                                                                              | Courses where this course will be prerequisite               |      |        |         |  |  |  |
|         |                                                                                        |                                                              |      |        |         |  |  |  |
|         | Description of relevance                                                               | of this course in the M.Sc. Engineering Mathematics Prog     | ram  | (      | 2       |  |  |  |
|         |                                                                                        |                                                              |      |        | 2       |  |  |  |
|         | Course C                                                                               | Contents (Topics and subtopics)                              |      | Ho     | ırs     |  |  |  |
| 1       | Local theory of plane and s                                                            | space curves: Curvature and torsion of curves, Serret-Frenet |      | 8      |         |  |  |  |
| -       | formulas, Fundamental Theo                                                             | rem of space curves.                                         |      | U      |         |  |  |  |
| 2       | Surfaces: Regular surfaces,                                                            | , Change of parameters, Differentiable functions, Tangent    |      | 8      |         |  |  |  |
|         | plane, Differential of a map                                                           | surfaces, Orientable surfaces                                |      | U      |         |  |  |  |
|         | First and second fundamental Form: The first fundamental Forms, The Gauss map,         |                                                              |      |        |         |  |  |  |
| 3       | 3 The second fundamental forms, Normal and principal curvatures, introduction to ruled |                                                              |      |        |         |  |  |  |
|         | and minimal surfaces                                                                   |                                                              |      |        |         |  |  |  |
| 4       | Curves on Surfaces: Curvature and torsions, Geodesics                                  |                                                              |      |        |         |  |  |  |
|         | The Fundamental Equation                                                               | ns of Surfaces: Tensor Notation, Gauss's Equations and the   |      |        |         |  |  |  |
| 5       | Christoffel Symbols, Codazz                                                            | ti Equations and the Theorema Egregium, The Fundamental      |      | 10     | )       |  |  |  |
|         | Theorem of Surface Theory                                                              |                                                              |      |        |         |  |  |  |
| 6       | Gauss-Bonnet theorem and i                                                             | ts applications to surfaces of constant curvatures           |      | 10     | )       |  |  |  |
|         | I                                                                                      | List of Textbooks/ Reference Books                           |      |        |         |  |  |  |
| 1       | Thomas Banchoff and Steph                                                              | en Lovett, Differential Geometry of Curves and Surfaces, A K | Pet  | ers,   | Ltd.    |  |  |  |
| 2       | Differential Geometry of Cu                                                            | rves and Surfaces, by Manfredo P. Do Carmo, Dover Publicat   | ion  |        |         |  |  |  |
| 3       | Kristopher Tapp, Differentia                                                           | l Geometry of Curves and Surfaces, Springer                  |      |        |         |  |  |  |
| 4       | Christian Bär, Elementary D                                                            | ifferential Geometry, Cambridge University Press             |      |        |         |  |  |  |
| 5       | Andrew Pressley, Elementar                                                             | y Differential Geometry, Springer.                           |      |        |         |  |  |  |
| 6       | Differential Geometry: A Fi                                                            | rst Course in Curves and Surfaces, by Theodore Shifrin, whi  | ch i | s ava  | uilable |  |  |  |
|         | free online at <u>http://math474.com/Shifrin</u>                                       |                                                              |      |        |         |  |  |  |
|         | Cou                                                                                    | rse Outcomes (students will be able to)                      |      |        |         |  |  |  |
| CO1     | understand basic concepts in                                                           | theory of plane and space curves.                            |      |        |         |  |  |  |
| CO2     | understand theory of surface                                                           | S.                                                           |      |        |         |  |  |  |
| CO3     | solve problems on finding cu                                                           | irvature of curves and surfaces.                             |      |        |         |  |  |  |
| CO4     | apply fundamental forms to o                                                           | compute curvatures of curves and surfaces.                   |      |        |         |  |  |  |
| CO5     | analyse curves and surfaces a                                                          | and their properties.                                        |      |        |         |  |  |  |
|         |                                                                                        |                                                              |      |        |         |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CÓ1 | 3                                                              | 3   | 0   | 0   | 2   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 3                                                              | 3   | 0   | 2   | 2   | 0   | 1   | 0   | 3   | 0    | 0    | 3    |
| CO3 | 3                                                              | 3   | 1   | 2   | 2   | 0   | 2   | 0   | 3   | 1    | 0    | 3    |
| CO4 | 3                                                              | 3   | 0   | 0   | 2   | 2   | 3   | 0   | 3   | 0    | 0    | 3    |
| CO5 | 3                                                              | 3   | 0   | 0   | 2   | 2   | 3   | 0   | 3   | 1    | 0    | 3    |

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)

| C01    Image: C03    Image: C04    Image: C04    Image: C04      C04    Image: C04    Image: C04    Image: C04    Image: C04      C04    Image: C04    Image: C04    Image: C04    Image: C04      C04    Image: C04    Image: C04    Image: C04    Image: C04      C04    Image: C04    Image: C04    Image: C04    Image: C04      C05    Image: C04    Image: C04    Image: C04    Image: C04      C05    Image: C04    Image: C04    Image: C04    Image: C04      Image: C04    Image: C04    Image: C04    Image: C04    Image: C04      Image: C04    Image: C04    Image: C04    Image: C04    Image: C04      Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04      Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Image: C04    Im | CO1    Image: Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution      3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution; 2-Moderate Contribution; 2-Mo |                      | PSO1             | PSO2             | PSO3              | PSO4             | PSO5            | PSO6 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|------------------|-------------------|------------------|-----------------|------|
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO3    Image: CO3      Image: CO3    Image: CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO1                  |                  |                  |                   |                  |                 |      |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO2                  |                  |                  |                   |                  |                 |      |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO3                  |                  |                  |                   |                  |                 |      |
| 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution<br>A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO4                  |                  |                  |                   |                  |                 |      |
| 3-Strog Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO5                  | ~                |                  |                   | ~                |                 |      |
| Appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>- CO5</u><br>3-St | rong Contributio | on; 2-Moderate C | Contribution; 1-L | ow Contribution, | 0 – No contribu | tion |
| 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | 5                |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                  |                  |                   |                  |                 |      |
| Ϋ́,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or                   |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPr                  |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APPr                 |                  |                  |                   |                  |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2PPr                 |                  |                  |                   |                  |                 |      |

|        | Course Code: MAT 2645 Course Title: Convex Optimization                          |                                                              |       |       |          |  |  |  |
|--------|----------------------------------------------------------------------------------|--------------------------------------------------------------|-------|-------|----------|--|--|--|
|        |                                                                                  | Course The Convex Optimization                               | L     | Т     | Р        |  |  |  |
|        | Elective                                                                         | Total contact hours: 60                                      | 4     | 0     | 0        |  |  |  |
|        |                                                                                  |                                                              |       |       |          |  |  |  |
|        |                                                                                  | List of Prerequisite Courses                                 | 1     |       |          |  |  |  |
| Applie | d Linear Algebra (MAT 2201)                                                      | , Optimization Techniques (MAT 2232)                         |       |       |          |  |  |  |
|        | T !                                                                              |                                                              |       |       |          |  |  |  |
|        | List of C                                                                        | courses where this course will be prerequisite               |       |       |          |  |  |  |
|        | Decomination of volumence                                                        | of this course in the M.S.s. Engineering Methometics Prog    |       |       |          |  |  |  |
|        | Description of relevance                                                         | of this course in the Mi.Sc. Engineering Mathematics Prog    | ram   |       | <u> </u> |  |  |  |
|        | Course (                                                                         | (ontents (Tonics and subtonics)                              |       | Hoi   | ire      |  |  |  |
| 1      | Introduction to Convex optic                                                     | nization problems                                            |       | 4     |          |  |  |  |
| 1      | Convex sets: Affine and                                                          | convex sets with examples operations that preserves          |       |       |          |  |  |  |
| 2      | convexity generalized inequ                                                      | ality separating and supporting cones dual cones             |       | 1(    | )        |  |  |  |
|        | Convex functions: Definiti                                                       | on and examples of convex functions, operations that         |       |       |          |  |  |  |
| 3      | preserves convexity, Conjug                                                      | ate and quasi conjugate functions, log concave and convex    |       | 8     |          |  |  |  |
|        | function                                                                         |                                                              |       |       |          |  |  |  |
|        | Introduction to Convex opt                                                       | imization problems: Generalized optimization and convex      |       |       |          |  |  |  |
| 4      | optimization problems with examples. Linear and quadratic optimization problems, |                                                              |       |       |          |  |  |  |
|        | Geometric programming problems.                                                  |                                                              |       |       |          |  |  |  |
| 5      | Duality: Lagrange Duality and geometric interpretation, Optimality conditions,   |                                                              |       |       |          |  |  |  |
| 5      | perturbation and sensitivity a                                                   | nalysis                                                      |       | 1     | ,        |  |  |  |
| 6      | Applications of convex opti                                                      | mization: Approximation and fitting, Statistical estimation, |       | 1(    | )        |  |  |  |
|        | Geometric problems                                                               |                                                              |       |       |          |  |  |  |
| _      | Interior point methods: Inc                                                      | equality constrained minimization problems, Logarithmic      |       | 1.    |          |  |  |  |
|        | barrier function and central                                                     | path, The barrier method, Feasibility and phase I methods,   |       | 12    | 2        |  |  |  |
|        | Mothematical acftware: Buth                                                      | on and MATLAP                                                |       |       |          |  |  |  |
|        | Mathematical software. Fyu                                                       | Lict of Textbooks/ Peference Books                           |       |       |          |  |  |  |
| 1      | Stephen Boyd and Lieven Ve                                                       | andenberghe Convex Antimization Cambridge University Pre     | 200   |       |          |  |  |  |
| 2      | R T Rockafellar Convex A                                                         | nalusis Princeton Univ. Press                                | 200   |       |          |  |  |  |
| 2      | Aharon Ben-Tal and Arka                                                          | adi Nemirovski Lectures on Modern Convex Ontimizat           | ion   | An    | alvsis   |  |  |  |
| 3      | Algorithms, and Engineering                                                      | Applications. SIAM Publication                               | 1011. | 7 111 | ury 515, |  |  |  |
| 4      | Jonathan Borwein and Adria                                                       | n Lewis, Convex Analysis and Nonlinear Optimization, Sprin   | ger   |       |          |  |  |  |
|        | Cou                                                                              | rse Outcomes (students will be able to)                      | 0     |       |          |  |  |  |
| CO1    | understand basic convex opti                                                     | imization problems.                                          |       |       |          |  |  |  |
| CO2    | formulate primal and dual of                                                     | convex optimization problems.                                |       |       |          |  |  |  |
| CO3    | solve convex optimization pr                                                     | oblems using standard algorithms.                            |       |       |          |  |  |  |
| CO4    | understand interior point met                                                    | thods to solve convex optimization problems.                 |       |       |          |  |  |  |
| CO5    | use concepts in convex optin                                                     | nization to solve real world problems.                       |       |       |          |  |  |  |
| V.     |                                                                                  |                                                              |       |       |          |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 0                                                              | 3   | 3   | 3   | 3   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 0                                                              | 3   | 3   | 3   | 2   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO3 | 1                                                              | 2   | 3   | 3   | 2   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO4 | 0                                                              | 2   | 3   | 3   | 3   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO5 | 0                                                              | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 1    | 3    |

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |  |  |
| CO1 | 3                                                                        | 0    | 0    | 0    | 0    | າ 0  |  |  |  |  |  |
| CO2 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO3 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| CO4 | 1                                                                        | 3    | 1    | 1    | 2    | 0    |  |  |  |  |  |
| CO5 | 1                                                                        | 3    | 1    | 1    | 2    | 0    |  |  |  |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 - No contribution

|                                                        | Course Code: MAT 2646 Course Title: Time Series Analysis                                                                                      |                                                               | Cr    | edits | = 4   |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|-------|-------|--|--|--|
|                                                        | Course Coue: MAI 2040                                                                                                                         | Course The: The Series Analysis                               | L     | Т     | Р     |  |  |  |
|                                                        | Elective                                                                                                                                      | Total contact hours: 60                                       | 4     | 0     | 0     |  |  |  |
|                                                        |                                                                                                                                               |                                                               |       |       |       |  |  |  |
|                                                        |                                                                                                                                               | List of Prerequisite Courses                                  |       |       |       |  |  |  |
| Statistic                                              | cal Computing (MAT 2326)                                                                                                                      |                                                               |       |       |       |  |  |  |
|                                                        |                                                                                                                                               |                                                               |       |       |       |  |  |  |
| List of Courses where this course will be prerequisite |                                                                                                                                               |                                                               |       |       |       |  |  |  |
|                                                        |                                                                                                                                               |                                                               |       |       |       |  |  |  |
|                                                        | Description of relevance of                                                                                                                   | of this course in the M.Sc. Engineering Mathematics Progr     | ram   |       |       |  |  |  |
| This co                                                | ourse enables to students to app                                                                                                              | ply various time series models for forecasting problems which | ch ab | unda  | nt in |  |  |  |
| industr                                                | y.                                                                                                                                            |                                                               |       |       |       |  |  |  |
| Course Contents (Topics and subtopics)                 |                                                                                                                                               |                                                               |       |       |       |  |  |  |
| 1                                                      | Exploratory analysis of time                                                                                                                  | series: Graphical display, classical decomposition model,     |       | 4     |       |  |  |  |
| 1                                                      | concepts of trend, seasonality                                                                                                                | and cycle, estimation of trend and seasonal components.       |       | 4     |       |  |  |  |
|                                                        | Stationary time series model                                                                                                                  | s: Concepts of weak and strong stationarity, AR, MA and       |       |       |       |  |  |  |
| 2                                                      | ARMA processes – their                                                                                                                        | properties, conditions for stationarity and invertibility,    |       | 12    |       |  |  |  |
|                                                        | autocorrelation function (AC                                                                                                                  | CF), partial autocorrelation function (PACF), identification  |       | 12    |       |  |  |  |
| Ę,                                                     | based on ACF and PACF, est                                                                                                                    | timation, order selection and diagnostic tests.               |       |       |       |  |  |  |
|                                                        | Inference with non-stationar                                                                                                                  | ry models: ARIMA model, determination of the order of         |       |       |       |  |  |  |
| 3                                                      | integration, trend stationarity                                                                                                               | and difference stationary processes, tests of nonstationarity |       | 12    |       |  |  |  |
|                                                        | i.e., unit root tests – Dickey-I                                                                                                              | Fuller (DF) test, augmented DF test, and Phillips-Perron test |       |       |       |  |  |  |
| 4                                                      | 4 Forecasting: Simple exponential smoothing, Holt-Winters method, minimum MSE forecast, forecast error, in-sample and out-of-sample forecast. |                                                               |       |       |       |  |  |  |
|                                                        |                                                                                                                                               |                                                               |       |       |       |  |  |  |
| 5                                                      | Modelling seasonal time serie                                                                                                                 | es: Seasonal ARIMA models, estimation; seasonal unit root     | t 6   |       |       |  |  |  |
| 5                                                      | test (HEGY test).                                                                                                                             |                                                               | 0     |       |       |  |  |  |
| 6                                                      | Simple state space models: State space representation of ARIMA models, basic                                                                  |                                                               |       |       |       |  |  |  |
| 0                                                      | structural model, and Kalmar                                                                                                                  |                                                               | 0     |       |       |  |  |  |

|     | Spectral analysis of weakly stationary processes: Spectral density function (s. d. f.) and |                |
|-----|--------------------------------------------------------------------------------------------|----------------|
| 7   | its properties, s. d. f. of AR, MA and ARMA processes, Fourier transformation and          | 8              |
|     | periodogram                                                                                |                |
| 8   | Statistical software: R/Python                                                             |                |
|     | List of Textbooks/ Reference Books                                                         | •              |
| 1   | P. Brockwell and R. Davis, Introduction to Time Series and Forecasting, Springer, Berlin.  |                |
| 2   | Box, G. Jenkins and G. Reinsel, Time Series Analysis-Forecasting and Control, 3rd          | d ed., Pearson |
| 2   | Education.                                                                                 |                |
| 3   | W. A. Fuller, Introduction to Statistical Time Series.                                     |                |
| 4   | Ruey S. Tsay, An Introduction to Analysis of Financial Data with R, John Wiley.            | 0-             |
| 5   | T. W. Anderson, The Statistical Analysis of Time Series.                                   | 0?             |
| 6   | R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications.                | 0              |
| 7   | C. Chatfield, The Analysis of Time Series – An Introduction, Chapman and Hall / CRC, 4t    | th ed.         |
|     | Course Outcomes (students will be able to)                                                 |                |
| CO1 | apply graphical techniques to descriptive exploration of time series data.                 |                |
| CO2 | understand different statistical properties of stationary time series models and apply     |                |
| 02  | them in analysing real data.                                                               |                |
| CO3 | apply different forecasting techniques for time series data.                               |                |
| CO4 | apply state space models in forecasting problems.                                          |                |
| CO5 | compute spectral density functions for different time series models.                       |                |
|     |                                                                                            |                |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 0                                                              | 0   | 3   | 3   | 1   | 0   | 2   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 0                                                              | 0   | 3   | 3   | 2   | 2   | 2   | 0   | 3   | 1    | 0    | 3    |
| CO3 | 0                                                              | 0   | 3   | 3   | 2.  | 1   | 2   | 0   | 3   | 1    | 0    | 3    |
| CO4 | 0                                                              | 0   | 3   | 3   | 2   | 1   | 3   | 3   | 3   | 0    | 1    | 3    |
| CO5 | 0                                                              | 0   | 3   | 3   | 1   | 0   | 3   | 3   | 3   | 2    | 1    | 3    |

| Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |          |      |      |      |      |     |  |  |  |  |
|--------------------------------------------------------------------------|----------|------|------|------|------|-----|--|--|--|--|
|                                                                          | PSO1     | PSO2 | PSO3 | PSO4 | PSO5 | PSO |  |  |  |  |
| CO1                                                                      | 0        | 0    | 3    | 0    | 1    | 1   |  |  |  |  |
| CO2                                                                      | <u> </u> | 0    | 3    | 0    | 1    | 1   |  |  |  |  |
| CO3                                                                      | 0        | 0    | 3    | 0    | 1    | 1   |  |  |  |  |
| CO4                                                                      | 0        | 0    | 3    | 0    | 1    | 1   |  |  |  |  |
| CO5                                                                      | 0        | 0    | 3    | 0    | 1    | 1   |  |  |  |  |

|                                                                               | Course Code: MAT 2611                 |                                            | C | redi | ts = 4 |  |  |
|-------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|---|------|--------|--|--|
|                                                                               |                                       | Course Title: Computational Fluid Dynamics |   |      |        |  |  |
|                                                                               | Elective      Total contact hours: 60 |                                            |   |      |        |  |  |
|                                                                               |                                       |                                            |   |      |        |  |  |
|                                                                               |                                       | List of Prerequisite Courses               |   |      |        |  |  |
| Differential Equations (MAT 2235), Advanced Differential Equations (MAT 2233) |                                       |                                            |   |      |        |  |  |
|                                                                               |                                       |                                            |   |      |        |  |  |

Approved by the ICT Academic Council on August 07, 2023

|           | List of Courses where this course will be prerequisite                                          |                   |
|-----------|-------------------------------------------------------------------------------------------------|-------------------|
|           |                                                                                                 |                   |
|           | Description of relevance of this course in the M.Sc. Engineering Mathematics Prog               | gram              |
| This co   | purse deals with several numerical and computational techniques of Applied Mathematic           | s having direct   |
| implica   | ations to industrial and other real-life applications.                                          | •                 |
|           | Course Contents (Topics and subtopics)                                                          | Hours             |
| 1         | Introduction to tensor calculus and curvilinear coordinates                                     | 8                 |
| 2         | Classification of fluids (Newtonian and Non-Newtonian fluids). Deformation, Strain              |                   |
|           | tensor, Rate of deformation tensor, material derivative, steady and unsteady flows,             | 6                 |
|           | streamline and stream function, conservation of mass, potential flows.                          | 0                 |
| 3         | Relation between stress and rate of strain, constitutive equation (Newtonian & Non-             | -02               |
|           | Newtonian fluids), Stokes' hypothesis, Derivation of Navier-Stokes equation in                  | 10                |
|           | Cartesian, Cylindrical Polar and Spherical Polar system for laminar flows.                      |                   |
| 4         | Flow in some simple cases: Fully developed flow between two parallel plates and                 |                   |
|           | through circular pipe, Flow between two concentric cylinders, flow between two                  | 6                 |
|           | concentric rotating cylinders.                                                                  |                   |
| 5         | Grid generation, Structured and Unstructured grid generation methods                            | 6                 |
| 6         | Solution of Systems of Linear Algebraic Equations using iterative methods such as:              |                   |
|           | Gauss-Seidel iterative method, Line by line TDMA, ADI (Alternating direction implicit)          |                   |
|           | method etc. Stability and convergence of numerical methods. Finite Volume                       | 10                |
|           | Discretization of 1-D, 2-D and 3-D problems. Application of various iterative methods           |                   |
|           | to the discretized Equations.                                                                   |                   |
| 7         | Finite volume discretization of convection-diffusion problem: Central difference                |                   |
|           | scheme, Upwind scheme, Power-law scheme, Generalized convection-diffusion                       | 4                 |
|           | formulation.                                                                                    |                   |
| 8         | Finite volume discretization of two-dimensional convection-diffusion problem, the               |                   |
|           | concept of false diffusion, Discretization of the Momentum Equation: Stream Function            | 10                |
|           | vorticity approach and Primitive variable approach, Staggered grid, SIMPLE,                     |                   |
|           | SIMPLER algorithmetic.                                                                          |                   |
| 1         | Dijush K. Kundu and Ira M. Cohan, Eluid Machanica, Elsaviar                                     |                   |
| 2         | G K Batchalor An Introduction to Eluid Dynamics, Cambridge University Press                     |                   |
| 2         | S. W. Yuan Foundations of Eluid Machanics, Prantice Hall                                        |                   |
| 3         | S. W. Tual, Foundations of Fluid Mechanics, Flendee Han.                                        |                   |
| - 4       | R. W. Whohow, Kheological Technique, Ellis Horwood Eld.                                         |                   |
| 5         | R.B. Bild, W.E. Stewart E.N., Lightboot, Haisport Phenomena, John Whey & Sons.                  | Vorlag            |
| 7         | C. Hirsch, Numerical Computation of Internal and External Flows, Volume I & II, Wiley           | - v criag.        |
| /<br>     | L C Tannehill D A Anderson and R H Pletcher Computational Fluid Mechanics and                   | Heat Transfor     |
| 0         | J. C. Fannenni, D. A. Anderson and K. H. Fletcher, Computational Fund Mechanics and McGraw-Hill | i ficat fransier, |
| 9         | G D Smith Numerical Solution of Partial Differential Equations: Finite Difference               | Methods New       |
|           | York NY Clarendon Press                                                                         | methods, new      |
| 10        | M. Schafer-Computational engineering- Introduction to numerical methods.                        |                   |
| 11        | M. Farrashkhalvat, J Miles, Basic Structured Grid Generation, Elsevier.                         |                   |
| 12        | S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere Pub                          |                   |
| 13        | John. D. Anderson, Jr., Computational Fluid Dynamics. The Basics with Applications. Mo          | cGraw-Hill.       |
| -         | Course Outcomes (students will be able to)                                                      |                   |
| <i>~~</i> | develop basic knowledge in tensor analysis and application to various coordinate                |                   |
| CO1       | system                                                                                          |                   |
|           | develop basic understanding for obtaining governing equation of motion for some                 |                   |
| CO2       | specific flow problems. And obtain velocity profiles and drag coefficient.                      |                   |
| CO3       | generate the grids in different coordinate system and apply various iterative methods           |                   |

|     | to a large system of linear and non-linear algebraic equations, which will guarantee |  |
|-----|--------------------------------------------------------------------------------------|--|
|     | the convergence of the system.                                                       |  |
|     | discretise ODE and PDE using finite volume method and will be able to solve the      |  |
| CO4 | discretised linear equation using various iterative methods along with boundary      |  |
|     | conditions.                                                                          |  |
|     | apply finite volume method to discretise laminar fluid flow problems using upwind,   |  |
| CO5 | hybrid and power-law schemes along with SIMPLE and SIMPLER algorithms and            |  |
|     | use of various programming languages such as: PYTHON, MAT LAB, FLUENT etc.           |  |
|     | to obtain the numerical solutions to the discretised                                 |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 0                                                              | 3   | 0   | 0   | 0   | 2   | 3   | 1   | 3   | 0    | 0    | 3    |
| CO2 | 0                                                              | 3   | 0   | 0   | 0   | 0   | 3   | 1   | 3   | 0    | 0    | 3    |
| CO3 | 0                                                              | 3   | 0   | 0   | 0   | 0   | 3   | 0   | 3   | 0    | 0    | 3    |
| CO4 | 0                                                              | 3   | 1   | 0   | 2   | 3   | 2   | 0   | 3   | 1.   | 1    | 3    |
| CO5 | 0                                                              | 3   | 0   | 0   | 3   | 3   | 3   | 1   | 3   | 3    | 0    | 3    |

| I   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |  |
| CO1 | 3                                                                        | 3    | 0    | 0    | 0    | 0    |  |  |  |
| CO2 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |
| CO3 | 3                                                                        | 2    |      | 0    | 0    | 0    |  |  |  |
| CO4 | 3                                                                        | 2    | 0    | 0    | 0    | 0    |  |  |  |
| CO5 | 3                                                                        | 2 .  | 0    | 0    | 0    | 0    |  |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution

|        | Course Code: MAT 2647 Course Title: Operator Theory                             |                                                          |     | Credits = |     |  |  |  |
|--------|---------------------------------------------------------------------------------|----------------------------------------------------------|-----|-----------|-----|--|--|--|
|        | Course Code: MAI 2047                                                           | Course flue: Operator flueory                            | L   | Т         | Р   |  |  |  |
|        | Elective                                                                        | Total contact hours: 60                                  |     |           |     |  |  |  |
|        |                                                                                 |                                                          |     |           |     |  |  |  |
|        | 10                                                                              | List of Prerequisite Courses                             |     |           |     |  |  |  |
| Applie | d Linear Algebra (MAT 2201),                                                    | Real and Complex Analysis (MAT 2230)                     |     |           |     |  |  |  |
|        |                                                                                 |                                                          |     |           |     |  |  |  |
|        | List of C                                                                       | ourses where this course will be prerequisite            |     |           |     |  |  |  |
| Not Ap | oplicable                                                                       |                                                          |     |           |     |  |  |  |
| Ľ,     | Description of relevance of                                                     | f this course in the M.Sc. Engineering Mathematics Prog  | ram |           |     |  |  |  |
|        |                                                                                 |                                                          |     |           |     |  |  |  |
|        | Course C                                                                        | ontents (Topics and subtopics)                           |     | Hou       | irs |  |  |  |
| 1      | Inner product spaces, Hilber                                                    | t spaces, Dual spaces and transposes, Orthonormal basis. |     | 15        | š   |  |  |  |
| 1      | Projection theorem and Riesz                                                    | Representation Theorem.                                  |     | 1.        | ,   |  |  |  |
| 2      | Adjoints of bounded operators on a Hilbert space, Normal, self-adjoint unitary, |                                                          |     |           |     |  |  |  |
| 2      | <sup>2</sup> Hyponormal operators.                                              |                                                          |     |           |     |  |  |  |
| 3      | 3 Spectrum of bounded operators and numerical ranges 10                         |                                                          |     |           |     |  |  |  |
| 4      | 4 Theory of Compact operators on normed spaces and its spectrum. 10             |                                                          |     |           |     |  |  |  |
| 5      | Spectral theorem for compact                                                    | self-adjoint operators and Singular value decomposition  |     | 15        | 5   |  |  |  |

|     | List of Textbooks/ Reference Books                                                      |    |  |  |  |
|-----|-----------------------------------------------------------------------------------------|----|--|--|--|
| 1   | B.V. Limaye, Functional Analysis, 2nd Edition, New Age International.                   |    |  |  |  |
| 2   | J. B. Conway, A Course in Functional Analysis, 2 <sup>nd</sup> Edition, Springer.       |    |  |  |  |
| 3   | Carlos Kubrusly, Elements of Operator Theory, Birkhauser.                               |    |  |  |  |
| 4   | Kreyzig, Introduction to Functional Analysis with Applications, John Wiley & Sons.      |    |  |  |  |
| 5   | 5 S. G. Mikhlin, Variation Methods in Mathematical Physics, Pergaman Press, Oxford.     |    |  |  |  |
|     | Course Outcomes (students will be able to)                                              |    |  |  |  |
| CO1 | identify various operators on Hilbert spaces.                                           |    |  |  |  |
| CO2 | compute spectrum of operators.                                                          |    |  |  |  |
| CO3 | understand the spectral theorem of compact operators and apply it to prove the singular | Ċ  |  |  |  |
| 005 | value decomposition.                                                                    | 0? |  |  |  |
| CO4 | apply the theory to Sturm Liouville boundary value problems.                            |    |  |  |  |
| CO5 | see the analogy between polar representation of complex numbers and operators.          |    |  |  |  |

|     | Mapping of Course Outcomes (COs) with Programme Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |
|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3                                                              | 2   | 2   | 0   | 2   | 0   | 0   | 0   | 3   | 0    | 0    | 3    |
| CO2 | 3                                                              | 2   | 0   | 0   | 3   | 0   | 2   | 0   | 3   | 1    | 0    | 3    |
| CO3 | 3                                                              | 0   | 2   | 1   | 3   | 0   | 0   | 0   | 3   | 0    | 0    | 3    |
| CO4 | 3                                                              | 0   | 0   | 0   | 2   | 1   | 1 . | 0   | 3   | 0    | 0    | 3    |
| CO5 | 3                                                              | 0   | 0   | 0   | 2   | 2   | 0   | 0   | 3   | 0    | 0    | 3    |

| Ν   | Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs) |      |      |      |      |      |  |  |
|-----|--------------------------------------------------------------------------|------|------|------|------|------|--|--|
|     | PSO1                                                                     | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |  |  |
| CO1 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |
| CO2 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |
| CO3 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |
| CO4 | 3                                                                        | 0    | 0    | 0    | 0    | 0    |  |  |
| CO5 | 3                                                                        | 000  | 0    | 0    | 0    | 0    |  |  |

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution, 0 – No contribution

## Marks distribution for On Job Training (OJT) (MAP 2811)

- At the end of OJT, students will have to submit (i) a written report of the work carried out, and (ii) Evaluation of the student from the Industry Mentor. After coming back to the Institute, the student would have to present the work carried out to a committee of two faculty members of the Institute. The presentation would be evaluated by the committee and students will be given a grade for the OJT based on the following parameters.
- Format of the evaluation by the industry mentor:

| Name of the Student               |  |
|-----------------------------------|--|
| Name and designation of the       |  |
| mentor                            |  |
| Name and address of the           |  |
| organization/ place of internship |  |
| Email of the mentor               |  |
| Phone number                      |  |

| Internship start date |  |
|-----------------------|--|
| Internship end date   |  |

Instruction to Mentor: Please evaluate the student on following Parameters & tick appropriate column: •

Excellent: > 80%, Good: 60 - 80%, Satisfactory: 40 - 60%, Needs Improvement: < 40%

|                       | Needs improvement | Satisfactory | Good | Excellent |  |  |  |
|-----------------------|-------------------|--------------|------|-----------|--|--|--|
| General behaviour:    |                   |              |      |           |  |  |  |
| ethics and            |                   |              |      |           |  |  |  |
| attendance            |                   |              |      |           |  |  |  |
| Oral and written      |                   |              |      | 6         |  |  |  |
| communication         |                   |              |      | C'L'      |  |  |  |
| skills                |                   |              |      |           |  |  |  |
| Technical             |                   |              |      |           |  |  |  |
| knowledge             |                   |              |      |           |  |  |  |
|                       |                   |              |      |           |  |  |  |
|                       |                   |              | 6:   |           |  |  |  |
| Interpersonal skills  |                   |              | 10   |           |  |  |  |
|                       |                   |              |      |           |  |  |  |
| Professional skills:  |                   |              |      |           |  |  |  |
| Initiative and        |                   |              |      |           |  |  |  |
| motivation            |                   |              |      |           |  |  |  |
| Managerial skills:    |                   | ć            |      |           |  |  |  |
| Time and resource     |                   |              |      |           |  |  |  |
|                       |                   |              |      |           |  |  |  |
| Any other remarks:    |                   | ~O~          |      |           |  |  |  |
|                       |                   |              |      |           |  |  |  |
| Signature of the ment | or with date:     | •.0          |      |           |  |  |  |
|                       |                   | N            |      |           |  |  |  |

Format for Evaluation by Faculty Members of the Institute and assigning grade: •

|                 | Item                                | Marks (out of 100) |
|-----------------|-------------------------------------|--------------------|
| C               | Background of the project           | 05                 |
|                 | Technical work on                   |                    |
| 1 1             | 1. Experiment performed.            |                    |
| 1               | 2. Mathematical modelling if any    |                    |
|                 | 3. Design                           | 30                 |
| Report          | 4. Techno-economic feasibility      |                    |
| .0              | 5. Analysis of data                 |                    |
|                 |                                     |                    |
|                 | Conclusion                          | 10                 |
|                 | Writing skills including formatting | 05                 |
|                 | as per the given instructions       |                    |
|                 | 1. Presentation based on the work   |                    |
| Presentation    | performed and its analysis.         | 20                 |
|                 | 2. Presentation skill               |                    |
|                 |                                     |                    |
| Industry mentor | Marks given by the industry         | 30                 |
|                 | mentor                              |                    |
| То              | otal                                |                    |

(a) The candidates who obtain 40% and more marks of the total marks of a subject head shall be deemed to have passed the respective subject head.

(b) The candidates who obtain marks less than 40% of the total marks of a subject head shall be deemed to have failed in the respective subject head (Grade FF).

## Rules for assigning course codes:

- **Core courses** 
  - o Course codes for Mathematics theory courses will start with MAT 22XX. Course codes for Statistics courses will start with MAT 232X. Course codes for Lab courses will start with MAP 252X.
  - In the revised syllabus some core courses are retained from the old syllabus with less than 25% 0 changes in the syllabus. For these courses course codes remain unchanged. The codes are MAT 2210, MAT 2202, MAT 2207, MAT 2210, MAT 2206, MAP 2701.
  - If a new code is given to an existing core course without any changes, equivalent codes are 0 provided in a separate table. For continuity and maintaining uniformity, Project (SEM-IV) has been given new code MAP 2702.
- **Elective courses** 
  - All the elective courses are given new codes starting as MAT 26XX. 0
- **On job Training**
- de is c council • For courses jointly with industry, a new course code is created (28XX)